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ABSTRACT  

Air pollution, especially in cities, has a considerable impact on human health, contributing to global morbidity and 

mortality rates. With urban populations increasing and public awareness of air quality being low, there is an urgent 

need for low-cost, portable devices to monitor airborne contaminants in indoor and outdoor settings. This work 

shows the design and functionality of a low-cost, portable device capable of measuring major air quality parameters, 

such as gaseous pollutants (CO₂, O₃, TVOC, and PM₂.₅) and physical indicators (temperature and humidity). The 

device connects various sensors to an ATmega microcontroller via a signal conditioning circuit, solving current, 

format, and speed incompatibilities. Data processed by the microcontroller is sent to various devices using IoT 

technology. The device accurately measures ozone, PM₂.₅, temperature, and humidity with precisions of ±5.02 

μg/m³, ±7.94 μg/m³, ±0.67°C, and ±1.68%, respectively. The results demonstrate the system's dependability in air 

quality monitoring, providing an affordable and accessible alternative for environmental surveillance. This 

innovation has the potential to raise public awareness and enable large-scale pollution monitoring activities, making 

it a useful tool for minimizing the negative consequences of air pollution on public health. 
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 INTRODUCTION 

Air pollution poses a significant threat to global public health, exacerbated by rapid urbanization and 

industrial growth (Kortoçi et al. 2022). Urban areas, characterized by dense populations, transportation 

networks, and industrial activity, are particularly vulnerable to elevated pollutant levels. Globally, air pollution 

contributes to over 7 million premature deaths annually due to respiratory diseases, cardiovascular disorders, 

and lung cancer, with 90% of the world’s population exposed to pollutant concentrations exceeding World 

Health Organization (WHO) guidelines (Jiang et al. 2016, Meo et al. 2021). These alarming statistics underscore 

the need for robust air quality monitoring systems to inform policy reforms and mitigate health risks (Perillo et 

al. 2022). 

Existing regulatory monitoring networks, though critical, are often limited in spatial coverage and cost, 

restricting their deployment to specific urban zones (Baca-López et al. 2021). To address this gap, recent studies 

emphasize integrating low-cost sensors with traditional networks to enhance spatial resolution and data 

accessibility, particularly in underserved areas (Motlagh et al. 2021, Shindler 2021). However, conventional 

monitoring systems face challenges such as high power consumption, complex circuitry, and frequent 

calibration requirements, limiting their practicality for widespread deployment (Castell et al. 2013, Idrees et al. 

2018). 

Among pollutants, particulate matter (PM₂.₅) and ground-level ozone (O₃) are particularly hazardous due 

to their ability to penetrate deep into the respiratory system and exacerbate conditions such as asthma and 

cardiovascular disease (Meo et al. 2021). PM₂.₅ exposure is linked to elevated mortality rates, especially among 

vulnerable populations such as pregnant women and the elderly, while tropospheric ozone formed through 

reactions between vehicle emissions and sunlight poses severe risks in both indoor and outdoor environments 

(Cao & Thompson 2016). These health impacts necessitate affordable, portable devices capable of real-time, 

multi-parameter monitoring to complement existing infrastructure. 

Recent advancements in IoT-enabled devices show great potential for enhancing air quality monitoring. 

However, many systems remain confined by low sensor precision, a single-parameter concentration, and 

reliance on bulky or resource-bound hardware. For instance, wireless networks using ATmega328P 

microcontrollers have been deployed for indoor air quality monitoring, but face memory constraints (Abraham 

& Li 2014), while mobile applications for outdoor pollution tracking often lack precision (Kodali & Sarjerao 

2018). More recent advances, such as the IoT-based APM box, which incorporates machine learning to improve 

the calibration of low-cost sensors like MQ-7 and MQ-131, provide greater pollutant measurement reliability 

(Rathnayake et al. 2024). Bi-LSTM (Bidirectional Long Short-Term Memory) models optimized with 

metaheuristic algorithms like the Osprey Optimization Algorithm (OOA) have shown promising results for 

accurate PM₂.₅ concentration estimation when paired with meteorological data (Saminathan and Malathy 2024). 
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However, extensive calibration and environmental validation are still required to ensure the wider applicability 

of these technologies. 

This study aims to design and validate a low-cost, portable, multi-sensor IoT device for real-time air quality 

monitoring in urban areas. To achieve this, a compact system was developed using a Raspberry Pi and an 

ATmega microcontroller to measure particulate matter (PM₂.₅), ozone (O₃), total volatile organic compounds 

(TVOC), carbon dioxide (CO₂), temperature and humidity. Although the system’s primary emphasis is on 

effective hardware integration, it presents a practical and scalable solution by strategically combining multiple 

low-cost sensors into a compact, portable, and IoT-enabled device. A custom signal conditioning circuit was 

implemented to address sensor incompatibilities, and Python-based software with IoT connectivity enables real-

time data visualization on both local and remote devices. Its novelty lies in the synergistic integration of diverse 

sensors for comprehensive air quality monitoring, real-time data transmission for accessible urban deployment, 

and its adaptability for use across varied environmental settings. This approach offers a scalable and cost-

effective solution to address spatial coverage limitations in urban air quality monitoring, making it particularly 

suited for city-wide deployment and community-based environmental tracking. 

2. MATERIALS AND METHODS 

2.1 Instrumentation 

The system's hardware architecture includes a processing unit with a Raspberry Pi, an ATmega 

microcontroller, and other critical components, as shown in Fig. 1. The sensors used in the sensing unit are 

described in Table 1. Furthermore, Fig. 2. depicts the physical implementation of the portable device, 

emphasizing its compact and modular architecture. Fig. 3. depicts the data transmission process from the device 

to IoT-enabled platforms, highlighting its seamless connectivity and real-time monitoring capabilities.  

To allow portability and outdoor use, the system is powered by a 5V USB supply, typically via a 

rechargeable power bank or wall adapter. It consumes approximately 350–400 mA during continuous operation, 

enabling several hours of uninterrupted monitoring. As shown in Fig. 2, all internal components are housed 

within a compact plastic enclosure. While not industrially ruggedized, the casing provides basic protection 

against dust, light moisture, and handling, making it suitable for short-term urban and semi-outdoor 

deployments. 
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Fig. 1: Block diagram of a Portable device for measuring indoor and outdoor Air pollutants 

 

Fig. 2: Hardware Setup for a Portable Environmental Monitoring System 

Table 1: Sensors used in the sensing unit 

Sensor Name Measured Parameter Range Accuracy 

SPS30 Particulate Matter 0 to 1000 µg/m³ ±10 μg/m³ 

MiCS2614 Ozone 10 to 1000 ppb -- 

CCS811 TVOC 0 to 1187 ppb ±15% 

MHZ19B CO2 0 to 5000 ppm ±50 ppm + 3% of reading 

HDC1080 Temperature & Humidity -40°C to 125°C, 0% to 100% ±0.2°C, ±2% 

 

The system's sensing unit incorporates various sensors, including the MICS 2614 ozone sensor, the SPS30 

particulate matter sensor, the CCS811 TVOC sensor, the MHZ19B CO2 sensor and the HDC1080 temperature 
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and humidity sensor. The system processing layer is composed of an ATmega microcontroller (Al-Kofahi et al. 

2019) and a Raspberry Pi (Vivek et al. 2017). Utilizing the protocols, the ATmega microcontroller reads the 

sensor data through the signal conditioning circuit and processes the information.  

The Raspberry Pi can run a software stack, comprised of an operating system, a web server, a database, 

and a programming language. It has an execution speed of up to 1.2 GHz and can run operating systems like 

Android and Linux. The communication layer of the system contains a WLAN module linked with the processor 

to transmit sensor data to various IoT-enabled devices. The data analyzing layer of the system displays the 

environmental parameters on an LVDS (Low Voltage Differential Signalling) monitor and stores them in the 

database. 

Most sensors used in the system provide factory-calibrated digital outputs, eliminating the need for manual 

calibration. The system uses temperature compensation and CRC-based checksum verification to achieve real-

time software-level validation to guarantee data integrity, as shown in the software flow diagram (Fig. 4). The 

prototype's performance was evaluated by placing it at a site where an APPCB (Andhra Pradesh Pollution 

Control Board) monitoring station was already in place. The APPCB reference values for that location were 

compared with the data that the gadget collected over a 24-hour period. The accuracy of the system was robustly 

validated at the field level through the use of statistical metrics such as Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Mean Bias (MB) to assess the results. 

 

 

Fig. 3: Mechanism of Data Transmission to IoT Platforms 

2.2 Interfacing of Particulate Matter Sensor 

The SPS30 optical sensor is crucial for the precise measurement of 2.5-micrometre-diameter particles 

(PM2.5), leveraging laser scattering technology. Renowned for its stability and contamination resistance, the 
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sensor features a built-in fan for controlled airflow, regulated through an internal feedback loop. Airborne 

particles passing through a laser beam generate light scattering, processed by algorithms on the SPS30's 

microcontroller, yielding accurate mass concentration output. This comprehensive integration ensures robust 

performance across diverse environmental conditions. 

2.3 Interfacing of Ozone Sensor 

To monitor ozone concentrations, the MICS-2614, a MOS-type sensor, is employed with a measuring range 

of 10 to 1000 ppb. The sensor module integrates heating circuits along its edges and a sensing material. The 

heating circuit, powered by a voltage source, warms the sensing material by connecting the heater to the supply 

voltage through a resistor, forming a voltage divider circuit. The MCP 3201 (ADC) operates within a voltage 

range of 2.7V to 5.5V and employs a successive approximation register (SAR) architecture. Communication 

between the microcontroller and ADC is facilitated through the SPI protocol. Eq. (1) is to derive ozone 

concentration from the measured ADC data. 

 Ozone concentration [in ppb] = 10(
2566−(ADC value−584)

1283
) + 1 … (1) 

2.4 Interfacing of TVOC Sensor 

The CCS811 sensor, designed for TVOC concentration measurement, integrates a microcontroller and an 

analog-to-digital converter. The analog output from internal ADC converts into a digital signal and is processed 

by the microcontroller. Interfacing with the host microcontroller is established through the SDA and SCL pins 

and operating within a current range of up to 30mA and a voltage range of 1.8 to 3.6 volts, the sensor maintains 

energy efficiency, consuming only 46mW. 

2.5 Interfacing of Carbon Dioxide Sensor 

The MHZ19B, a non-dispersive infrared (NDIR) sensor, is employed to monitor ambient CO2 

concentration. It consists of an infrared source, optical filter, detector, and gas chamber. The emitted infrared 

light, closely matching the absorption band of CO2, facilitates the accurate identification of CO2 molecules. As 

light traverses the gas chamber, CO2 molecules absorb specific wavelengths, and the detector measures the 

unabsorbed light, converting it into voltage. CO₂ concentration is gauged by analyzing the on and off times of 

the PWM output, connected to a PWM-compatible GPIO pin on the microcontroller. Additionally, the sensor 

is configured in UART mode, connecting to the transmitter and receiver pins of the controller. The on-time and 

off-time of the signal, extracted from the PWM output, are then substituted into Eq. (2) to derive the carbon 

dioxide concentration in parts per million (ppm). This integration of PWM and UART modes enhances the 

precision of CO₂ measurement. 

 CO₂ [in ppm] = 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒 × (𝑇𝑂𝑁−𝐶𝑦𝑐𝑙𝑒 𝑆𝑡𝑎𝑟𝑡 ℎ𝑖𝑔ℎ−𝑙𝑒𝑣𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡)

𝑇𝑂𝑁+𝑇𝑂𝐹𝐹  − 𝐶𝑦𝑐𝑙𝑒 𝑆𝑡𝑎𝑟𝑡 ℎ𝑖𝑔ℎ−𝑙𝑒𝑣𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡− 𝐶𝑦𝑐𝑙𝑒 𝐸𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡
  … (2) 
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2.6 Interfacing of Temperature and Humidity Sensor 

The HDC1080 sensor, connected to the microcontroller through the I2C protocol for atmospheric 

temperature and relative humidity measurement, operates as a digital moisture and temperature sensor. Notably, 

this factory-calibrated sensor eliminates the need for user calibration. The sensor boasts high precision, with a 

±2% accuracy for relative humidity and ±0.2°C for temperature. 

2.7 Software Implementation 

The software is responsible for controlling different hardware devices in the system. The basic concept 

inside embedded software is to control the operation of a group of hardware components without sacrificing 

their purpose or efficiency. The Raspberry Pi supports various software utilities like an operating system, a web 

server, a database, and a scripting language for web development. In the present system, a Linux operating 

system is used, the Apache HTTP server is used to develop a web server, MySQL is used for database 

management, and a PHP scripting language is used for web servers. The software implementation in this study 

is divided into two sections: the first is the Embedded C programming language, which is used to connect the 

sensors to an ATmega microcontroller. In the second section, the software stack, which runs on the Raspberry 

Pi, stores and distributes data among IoT-enabled devices. Fig. 4 depicts the software implementation flowchart. 

The graphical user interface is built by creating PHP-scripted web pages that display the current environmental 

data and previous data stored in the database. 

 

Fig. 4: Software flow diagram showing sensor communication protocols, temperature compensation, checksum validation, and 

IoT-based data transmission 
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3. RESULTS AND DISCUSSIONS 

3.1 Monitoring Locations and System Deployment 

The system was engineered to assess air pollutant concentrations across seasons, exploring variations in 

environmental conditions. Measurements in four locations in Visakhapatnam were compared with Andhra 

Pradesh Pollution Control Board (APPCB) standards. Continuous 24-hour measurements illuminated pollutant 

fluctuations in GVMC (Greater Visakhapatnam Municipal Corporation) (high population), PORT (industrial), 

NAD (Naval Armament Depot) (traffic), and GITAM (Gandhi Institute of Technology and Management) (green 

– Control Zone / Vegetative Zone). Fig. 5. illustrates the placement of the monitoring device at GVMC and 

NAD locations. The system effectively gauges O3, PM2.5, CO2, TVOC, temperature, and humidity. The system 

allows for a quick response to any spikes in pollution levels. By monitoring these key pollutants and 

environmental conditions, the system provides valuable data for decision-makers to implement targeted 

interventions to improve air quality in Visakhapatnam. This proactive approach can help mitigate the health 

risks associated with poor air quality and contribute to a healthier environment for city residents. Furthermore, 

the data collected can also be used to track trends over time and assess the effectiveness of implemented 

interventions. This extensive monitoring system is essential for establishing a sustainable and healthier future 

for Visakhapatnam. 

 

Fig. 5: The system was placed at NAD and GVMC locations in Visakhapatnam 

3.2 Sampling and Data Collection 

The prototype was deployed for 24 hours at each of the four monitoring sites – GVMC, PORT, NAD, and 

GITAM during each of the four seasons: summer, monsoon, autumn, and winter. This resulted in a total of 96 

monitoring hours per location. Environmental data was recorded at 30-second intervals, yielding approximately 

11,520 readings per sensor per site (96 hours × 60 minutes × 2 readings per minute). Data integrity was ensured 

through checksum validation during acquisition. No additional filtering or smoothing techniques were applied. 
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The validated data was then aggregated into hourly averages to align with standard reporting intervals, enabling 

seasonal trend analysis and comparison with APPCB reference data.  A summary of the seasonal deployment, 

sampling strategy, and pre-processing steps is provided in Table 2. 

Table 2: Summary of Sampling and Pre-processing 

Location 
Seasons 

Covered 

Monitoring 

Duration 

Sampling 

Frequency 

Total Readings 

(per sensor) 

Data 

Aggregation 

Pre-

processing 

Techniques 

GVMC Summer, 

Monsoon,  

Autumn, 

Winter 

384 hours  

(24 h x 4 Seasons x 

4 Locations) 

Every 30  

seconds 
11,520 

Hourly 

averages 

Checksum 

validation 

only 

PORT 

NAD 

GITAM 

 

3.3 Quantitative Error Analysis 

The accuracy of the developed system was evaluated across various monitoring sites using statistical 

metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Bias (MB). As 

shown in Table 3, the average values for O₃, PM₂.₅, Temperature, and Humidity remained within acceptable 

limits, confirming the system’s capability for consistent air quality monitoring. MAE values across pollutants 

were uniformly low, with minimal RMSE and bias, reflecting robust and precise sensor performance. Locations 

such as GVMC and NAD exhibited balanced metrics across all parameters, whereas PORT recorded higher 

PM₂.₅ error, suggesting localized variability. Despite these differences, the system consistently produced 

accurate and reproducible measurements at all sites, demonstrating its suitability as a low-cost, scalable solution 

for urban environmental monitoring. 

Table 3: Average MAE, RMSE, and MB values for O₃, PM₂.₅, Temperature, and Humidity across all monitoring locations. 

Location 
MAE RMSE MB 

O3 PM2.5 Temp. Humidity O3 PM2.5 Temp. Humidity O3 PM2.5 Temp. Humidity 

GVMC 0.719 2.480 0.540 0.342 0.636 3.667 0.595 0.055 
-

0.636 

-

3.667 
-0.190 0.050 

PORT 1.091 3.500 0.312 0.772 0.273 6.500 0.370 0.487 0.092 
-

6.500 
0.145 -0.487 

NAD 0.758 1.973 0.367 0.312 0.607 1.857 0.530 0.387 
-

0.607 

-

0.357 
-0.380 -0.387 

GITAM 1.134 2.417 0.382 1.080 0.878 1.885 0.448 0.715 0.633 
-

1.115 
-0.412 0.440 

 

3.4 Correlation Analysis and Observations 

3.4.1 Ozone Dynamics: A Spatial and Temporal Analysis 

Throughout this study, the prototype was strategically positioned in four distinct locations, each 

corresponding to a unique season. Continuous measurements were meticulously conducted for a comprehensive 
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24-hour period. The collected data was then meticulously compared against the benchmarks established by the 

Andhra Pradesh Pollution Control Board (APPCB), India. 

Higher O3 levels were recorded at the three sampling sites—GVMC, PORT, and NAD. Though the values 

were noted to be higher in comparison to other seasons, these were within the limits, as the sampling was done 

during the COVID-19 pandemic, when human and industrial activities were restricted. Higher concentrations 

of ozone can be attributed to localized pollutant emissions (Mohtar et al. 2018), while lower concentrations at 

GITAM are attributed to the dispersion of pollutants due to sea breezes (Latif et al. 2012). Even though O3 is 

not a primary pollutant, its formation is triggered by oxides of nitrogen and hydrocarbons by reacting with 

sunlight. Owing to the tropical zone and the availability of O3 concentrations were recorded to be as high as 60 

μg/m3. Nitrogen dioxide is an essential factor that influences the daily variations of O3. The higher 

concentrations of O3 during late afternoon hours are attributed to the long daylight hours (Lv et al. 2022). 

Fig. 6. presents Pearson’s correlation analysis, highlighting linear positive relationships ranging from 

moderate to very high between measured and standard ozone levels across four locations and seasons. The heat 

map visually depicts correlation coefficients, showcasing the degree of correlation between concentrations 

recorded by the developed system and APPCB standards. The colour intensity reflects the strength of these 

correlations, with values close to 1 indicating a strong positive relationship. This graph offers a concise overview 

of ozone measurements' seasonal consistency and reliability at each location.  

 

Fig. 6: Pearson Correlation of Seasonal Ozone Levels in Four Urban Locations 
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The analysis reveals a consistently high correlation across most seasons and locations, indicating strong 

alignment between measured and standard O3 levels. During the winter season, correlations at all test locations 

are exceptionally high, ranging from 0.97 to 1. This suggests that O3 levels are almost perfectly aligned with 

standards, reflecting reliable monitoring and stable environmental conditions. GVMC and NAD have reasonable 

correlations of 0.81 and 0.52, respectively, but the PORT location has a significantly low correlation of only 

0.039. This fast fall is most likely due to measurement errors. The monsoon season returns to significant 

correlations across all locations, with values approaching or equal to one, showing that measurements capture 

O3 levels well during this period. This suggests that the accuracy of measurements improves during the monsoon 

season, possibly due to less variability in environmental factors. Overall, the data indicate that O3 levels are 

more reliably captured during the monsoon season compared to other times of the year. 

3.4.2 PM2.5 Dynamics: A Spatial and Temporal Analysis 

The peak emission of particulate matter was noted between 6 AM to 12 PM and 12 PM to 6 PM near 

GVMC during the Monsoon season. This diurnal variation is due to human activities and precisely to vehicular 

movement by the population to work and businesses. The PM2.5 formed due to combustion is understood to be 

more hazardous as it can reach the lungs and bloodstream owing to its smaller dimensions. Changes in human 

activities have shown a significant impact on differences in the concentration of air pollutants at various times 

of the day.  

Fig. 7. visually represents the results of bivariate correlation analysis, illustrating the dispersion between 

concentrations measured by the developed system and the standard set by APPCB. The values of the Pearson 

correlation coefficient (r) for the GVMC area ranged from 0.98 (winter) to 0.81 (autumn), portraying a robust 

and positive linear relationship. The PORT area's coefficients varied from 0.92 (winter and monsoon) to 0.79 

(summer and autumn), indicating a substantial correlation. NAD area exhibited correlations from 0.98 (winter) 

to 0.92 (monsoon), underlining a commendable association. Similarly, the GITAM area demonstrated strong 

correlations, ranging from 0.99 (winter) to 0.89 (summer). These correlations demonstrate the system's 

effectiveness in accurately capturing the variations in PM2.5 concentrations across different seasons and 

locations. 
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Fig. 7: Pearson Correlation of Seasonal PM2.5 Levels in Four Urban Locations 

3.4.3 Temperature and Humidity Dynamics: A Spatial and Temporal Analysis 

GITAM had the lowest winter temperatures, most likely due to its green surroundings, which encourage 

cooling via flora. In contrast, the highest temperatures were recorded in the PORT region, which was ascribed 

to industrial activity that generated tremendous heat. Summer temperatures rose in GVMC, a densely populated 

area with significant urban heat island effects. During the monsoon, PORT and NAD had the greatest 

temperatures, which were impacted by PORT industrial pollutants and NAD heavy traffic. In fall, the PORT 

area had the greatest and lowest temperatures, reflecting industrial heat during the day and cooling influences 

near the seaside at night. The average temperature concentration over seasons was compared to APPCB standard 

values, with an accuracy of ±0.67°C. 

During the winter, GVMC had elevated relative humidity due to high human density and water vapour 

emissions, whereas PORT had the lowest values, most likely due to industrial heat lowering moisture. In the 

summer, PORT had the most humidity, owing to its coastal vicinity and industrial cooling, whereas GITAM 

had the lowest due to its verdant surroundings and less human activity. During the monsoon, GVMC had the 

highest humidity, which was caused by rainfall and urban moisture retention, whereas PORT had the lowest, 

presumably due to industrial pollutants. In the autumn, GVMC again had the highest humidity due to urban 

density and adjacent water sources, whereas PORT had the lowest due to industrial heat. Across all seasons, the 

six-hour average humidity was compared to APPCB requirements and achieved ±1.68% accuracy. 
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Fig. 8 and 9 visually portray the outcomes of bivariate correlation analysis, showcasing the dispersion 

between concentrations measured by the developed system and the standards set by APPCB. The bivariate 

correlation analysis revealed strong positive relationships between the concentrations measured by the 

developed system and the standards set by APPCB across all locations and seasons. In the GVMC area, the 

coefficients were consistently high, ranging from 0.99 to 1.00, indicating a robust correlation. Similarly, in the 

PORT area, the coefficients ranged from 0.99 to 1.00, signifying a strong and consistent positive correlation. In 

the NAD area, the coefficients showed a strong positive correlation, ranging from 0.92 to 1.00. The GITAM 

area exhibited strong positive correlations, with coefficients ranging from 0.97 to 1.00 across different seasons. 

These findings emphasize the reliability and accuracy of the developed system in measuring pollutant 

concentrations in diverse environmental conditions. 

 

Fig. 8: Pearson Correlation of Seasonal Temperature Levels in Four Urban Locations 
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Fig. 9: Pearson Correlation of Seasonal Humidity Levels in Four Urban Locations 

In the GVMC area, a consistently strong correlation was observed across all seasons, with coefficients 

ranging from 0.99 to 1.00, indicating a robust agreement between measured and standard values. The PORT 

area displayed a slightly lower correlation in the summer season (0.51), but in other seasons, it exhibited a strong 

correlation (1.00). Similarly, the NAD area maintained a robust correlation (1.00) across all seasons. In the 

GITAM area, while maintaining a generally strong correlation, a minor decrease was observed in the winter and 

autumn seasons (0.98). These findings emphasize the reliability of the developed system's measurements, 

aligning closely with the established standards. 

3.5 Seasonal Variation of Pollutants 

Pollutant concentrations were recorded to be higher during monsoon and autumn due to the adverse 

meteorological conditions that would enhance the accumulation of pollutants, which can be aggravated due to 

increased humidity conditions (Johnson 2022, Wang et al. 2022). Previous studies have also reported that lower 

temperatures and wind speed would also enhance particulate matter concentrations as the meteorological 

conditions tend to trap these pollutants, inhibiting their transportation outward. Further, higher humidity and 

low temperature also favour the conversion of semi-volatile species to aerosol phase leading to higher 

concentrations of particulate matter. Our study was in line with the reports confirming higher concentrations of 

pollutants during monsoon and winter, along with O3 since the city's average temperatures during these seasons 

were the same as in other seasons. 

 

4. CONCLUSION AND FUTURE WORKS 
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The current work presents the development of a compact air quality monitoring system built on a single-

board computer and an ATmega microcontroller. The system integrates intelligent sensors to monitor O₃, PM₂.₅, 

CO₂, TVOC, temperature, and relative humidity in both indoor and outdoor environments. Designed to be 

portable and cost-effective, the device operates with a 30-second sampling interval, enabling high-frequency 

data collection. Its IoT-enabled architecture supports real-time data transmission and remote access, making it 

suitable for individual use as well as community-scale monitoring. The low overall cost of the device enhances 

its scalability, allowing for broader deployment and improved spatial coverage in air quality assessments.  

The system demonstrated consistent performance, with measurement accuracy validated against data from 

the Andhra Pradesh Pollution Control Board (APPCB). The observed accuracies for ozone, PM₂.₅, temperature, 

and humidity sensors were ±5.02 μg/m³, ±7.94 μg/m³, ±0.67°C, and ±1.68%, respectively. Seasonal and spatial 

variations in pollutant levels were evident, with PM₂.₅ concentrations notably higher during the monsoon season 

and peak traffic hours, highlighting the influence of both meteorological and anthropogenic factors. 

While the system exhibited strong performance, certain limitations exist. The sensor accuracy under 

extreme temperature and humidity conditions was not extensively evaluated, and its long-term stability over 

several months of deployment is yet to be established. Future improvements may include weatherproofing to 

support extended outdoor use, integration of solar power for off-grid functionality, and cloud-based storage 

solutions to enable large-scale data aggregation and analysis. Additionally, the onboard Raspberry Pi presents 

opportunities to implement lightweight prediction algorithms capable of forecasting meteorological conditions 

or pollutant concentrations based on historical data. Such features could support early warning systems and 

enhance decision-making in environmental management. The technology also shows significant potential for 

citizen science initiatives and urban-scale applications aimed at facilitating real-time, data-driven air quality 

interventions. 
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