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ABSTRACT

Interdependency between the infrastructure of the water and the energy represents the core challenge of the management of
resources. Effective decision-making for Water-Energy-Food (WEN) scenarios requires robust tools. Traditional Multi-
Criteria Decision-Making (MCDM) approaches are undermined by uncertainty because they assume perfect and complete
information—circumstances that rarely occur in Water-Energy Nexus (WEN) issues. The classical models oversimplify the
complex interconnections between water and energy systems and therefore end up with suboptimal decision-making
approaches. Even though fuzzy and intuitionistic models are efforts towards uncertainty modelling, they also fall short in
fully capturing the dynamics of real-world scenarios. they are inefficient in addressing conflicting and uncertain information
that hinders the practical implementation of these techniques. Besides that, the non-existence of a platform that unites MCDM
with the integrated uncertainty management increases decision-making complications. In bridging the above gaps, the current
study proposes a new framework that integrates D-number-based Multi-Criteria Analysis with Dempster-Shafer Theory (DST)

for WEN decision-making. The integration of DST rigorously enhances the ability of DST for processing complete, uncertain,
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and conflicting information for WEN decision-making. The study also compares the performance of the Random Forest and

Optimized Artificial Neural Network models.

INTRODUCTION

The The Water-Energy Nexus (WEN) highlights the intimate interdependence and mutual interrelation of water and energy
infrastructures. Water is vital for energy generation, from power to fuel extraction, while energy is needed for water sourcing,
treatment, distribution, and wastewater handling. This interrelatedness places water and energy as essential pillars of economic
development, environmental resilience, and human health. Mitigating the uncertainties in this nexus—much like in supply chain
management or sustainable production models—calls for sophisticated decision-making paradigms that transcend conventional
practices, fusing fuzzy logic, neutrosophic techniques, and multi-attribute decision-making to improve resource optimization. While
global population increase, industrialization, and urbanization fuel demand for water and energy, the challenge of resources grows
more intense. Climate change adds to the situation by causing shifts in the weather patterns of precipitation, lowering the supply of
freshwater resources, and raising the demand for cooling and desalination of energy. Historically separate infrastructures for water
and energy are now integrated for efficient and sustainable consumption of resources. Policymakers, researchers, and engineers
need to understand the Water-Energy Nexus so that they can develop plans that achieve maximum utilization of resources, minimum
environmental footprint, and resilience in water and energy systems. A few of the sustainable solutions are desalination powered by
renewable energy, smart water grids, and energy-efficient wastewater treatment plants. Societies can become water and energy
secure and minimize climate and environmental risks if they have an integrated approach (Ding, T et al. 2020). Water and energy
are critical inputs into modern economies. Over the past several years, prompted by imperatives of supply security, sustainability,
and economic efficiency, both sectors have experienced profound reforms. Yet, their very interdependence creates challenging
issues for policymakers (Hussey, K., & Pittock, J. 2012). Over the past decade, the Water-Energy Nexus analysis has drawn
increasing attention from the scientific community and policymakers. In a review of recent scientific literature, 70 relevant studies
were identified, and 35 were selected for detailed case study analysis (Dai, J et al. 2018). A review of more than 120 analyzed
studies examined their objectives, scope, methodology, and limitations. Additionally, 23 case studies were summarized based on
their titles, objectives, and key findings, while 21 case studies were critically analyzed within the context of water-energy nexus
research in urban systems (Fayiah, M et al. 2020). The nexus framework has become more important for analyzing these vital
resources' challenges and for comprehending the relationships between the resources (Al-Sumaiti, A. S et al. 2020). The most
significant contribution of this research is to offer a valuable knowledge base to successfully manage this nexus. The use of a nexus
approach in tourism resource conservation is a necessary step to achieve relative and absolute reductions (Becken, S., & McLennan,
C. L. ,2017). The findings underscore Ghana's exposure to electricity significantly boost the share of renewable energy and lower
carbon emissions (Bieber, N., et al. 2010). The results further indicate thegaps towards the realization of the Sustainable
Development Goals. The food-energy-water nexus must be prioritized for sustainable development (Apeh, O. O., & Nwulu, N,
2024). This article provides a conceptual model for emerging technologies in the WEF sector of new cities. Its primary focal points
are internal relations, external drivers, and linkage system evaluation in the WEF nexus (Abdelzaher, M. A et al. 2023). This study
emphasizes water's dual role in treatment and processing, and their interdependence. The use of integrated and strategic solutions
can direct research and development toward addressing local water and energy problems. Enhancing models and data engagement
will better serve researchers, policymakers, and communities (Maftouh, A., et al, 2022). The review contrasts the various policy
initiatives African nations have embarked on with regard to managing the WEN, their efficiency, and improvement areas. It further
locates innovative practices and effective interventions in the African context, with insightful recommendations and local initiatives
devoted to simplifying the interface between water and energy resources (Nwokediegwu, Z. Q. S et al. 2024). Approximate technical
outcomes show that hybrid renewable energy plants in North African countries are the most appropriate choice for a regional

transmission grid to meet future electricity demand, given the high intermittency of renewable energies. Lastly, achieving aspirations
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of renewable energy in the region demands meticulous consideration and implementation of diverse policy strategies, particularly
in light of North Africa's strong dependence on fossil fuels for national revenue (Adun, H et al. 2022). Carbon emissions, by different
energy sources and main scenarios (van Huyssteen, T., et al.2023). Applying the WEF nexus perspective to WEF resource security
at the same time has tremendous potential to enhance overall sustainability (Simpson, G. B et al. 2023). This article compiles an
"ensemble" of water-use indicators across electricity-generation technologies from existing published research to demonstrate the
level of detail or lack thereof in extant large-scale energy-sector water-use data. Using these indicators, the study evaluates the
adequacy of such estimates for modeling electricity-production water use at broader scales (Larsen, M. A. D., & Drews, M. 2019).
Coupled with the coal-led electricity sector in the region, high water demand will remain a long-term constraint (Sun, L et al. 2018).
This paper synthesizes the interrelation of energy and water based on two primary considerations: the level of dependence of energy
on water and the drivers of this dependence. It first synthesizes literature on the water dependence of energy-by-energy type. It then
elaborates on the primary drivers of this relation. It further summarizes primary methodologies in the existing literature. Finally, the
paper outlines primary advancements and gaps in the literature (Tan, C., & Zhi, Q. 2016). It is essential to synthesize this
dependence through this analysis and review to be able to design more efficient and sustainable infrastructure systems that optimize
resource conservation (Simpson, Gareth . 2023). The study demonstrates that past policy design has largely been cast in sector-
specific mandates (Venghaus, S., & Hake, J. F. 2018). In the new model, the team members' ratings are presented in the form of D
numbers (Bian, T et al. 2018). In this paper, we present a hybrid decision-making support model in the form of D numbers and D
numbers are employed in acquiring input parameters for computing the weight coefficients of the criteria (Bozani¢, D et al. 2021).
This article enlarges ANP methodology within the D numbers framework to address three types of imprecise information (Chatterjee,
K et al. 2018). The article introduces a conceptual framework, the "Informational Paradigm," for addressing. The study
systematically explores a number of approaches to these uncertainties, beginning with easier cases that address one source and
proceeding to more complex cases in which multiple sources interact (Coppi, R. 2008). This research can be coupled with the D-
AHP (D numbers extended AHP) model developed earlier, and it is an integrated solution for MCDM (Deng, X et al. 2014). As a
result, fuzzy risk assessment has been an active research trend, with increasing interest in its potential to circumvent these drawbacks
(Deng, X., & Jiang, W. 2017) and (Deng, X., & Jiang, W. 2019). An extension principle is then defined to allow the utilization of
aggregation operators (Li, X., & Chen, X. 2018). To further advance knowledge integration, we also develop D-number fuzzy
cognitive maps (DFCMs) by integrating D-number theory with fuzzy cognitive maps (Li, Y., & Shao, Y. 2022). By integrating the
strengths of D numbers in handling weights of criteria (Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. 2020). They develop the
rough D-TOPSIS approach by integrating D numbers, rough weights, and rough entropy weights, enabling the analysis of uncertain
and vague information without additional assumptions (Sarwar, M. 2020). The growing threat of chemical weapons is a gigantic
global risk. The paper proposes a hybrid model of fuzzy VIKOR and an optimal search model for addressing the burning issue of
the identification of illegal chemical warehouses. As such activities are highly clandestine in nature, the issue is beset by multiple
layers of uncertainty and ambiguity. Fuzzy VIKOR is applied to rank suspect warehouses according to search time and cost under
a fuzzy decision environment (Sotoudeh-Anvari, A., & Sadi-Nezhad, S. 2022). To further test their effectiveness, a case study is
conducted by applying the developed D numbers method to bridge condition assessment (Xia, J et al. 2019). This paper illustrates
that ecosystems are a core element in the WEF nexus. Tools in existence are resource interaction-based and largely do not account
for dynamic ecosystem functions and services. Aquatic ecosystem models (AEMs) present a useful framework to quantify such
services, e.g., purification of water, sequestration of carbon, and support for biodiversity. By integrating AEMs into nexus
assessments, decision-making can be enhanced with greater appreciation for how ecosystems enhance resource sustainability. Such
integration would give a more integrated management framework to water, energy, and food systems with ecological integrity
maintained (Hiilsmann, S., et al. 2019). This paper reviews a range of methods. Interdisciplinary methods are used to integrate
interrelated variables, graphically represent complex problems, evaluate significant issues, and simulate system behavior.

Qualitative methods, in particular, can be utilized to delineate the nexus in a specific region, employing direct research methods like
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questionnaire surveys and indirect methods like ontology engineering and integrated maps. With such methods, researchers are able
to better comprehend WEF interdependencies and facilitate more effective decision and policymaking (Endo, A et al. 2015). These
categories provide valuable hydrological insights, showing a variety of ways in which water is linked to energy and food systems
under varying environmental and socio-economic conditions. Understanding such connections is important for integrated and
sustainable resource management ( Endo, A et al. 2017). The application in systematically assessing water, energy, and food
interlinkages or shaping socially and politically relevant resource policies is still in its infancy (Albrecht, T. R et al. 2018). This
paper then examines prospects for integrating nexus thinking more effectively within IWRM frameworks (Benson, D et al. 2015).
This study looks through the lens of water quality to shed light on the potential for agriculture to maximize the system (Bell, A et
al. 2016). Our most important resources are land, energy, and water, yet their utilization is a major driver of climate change.
Simultaneously, resource systems are extremely vulnerable to climate changes. Efficient management is therefore crucial for
mitigation and adaptation. (Howells, M et al.2013). The models should be geographically flexible to enable resource management
for project, watershed, regional, and national levels. Spatial-temporal drivers being integrated would create more integrated models,
which would result in more effective policies for sustainable development, greater institutional synergies, and greater social welfare
(Mabrey, D., & Vittorio, M. 2018). Current nexus thinking is focused primarily social-ecological systems paradigm, nexus thought
is complementing adaptive responses to dealing with global change ( De Grenade, et al. 2016). This is counterintuitive, considering
livelihood is a foundational pillar to attaining sustainable development ( Biggs, E. M et .2015). This paper provides a conceptual
overview of significant interlinkages, primarily from a developing country perspective, and analyzes case studies in order to define
promising strategies for nexus management. It also provides features of a modeling framework for the nexus and information to
guide more effective regulations and policies at a national level (Bazilian, M., et al.2011). This paper with a world increasingly
populated and urbanizing apace, with material consumption-based lifestyles, greater focus is being placed on the interlinked system
supplying energy, water, and food—the Nexus. At the same time, greater concern is being raised regarding climate and
environmental degradation effects on this system, which is crucial for maintaining critical ecosystem services ( Keairns, D. L et al.
2016). The research revealed twenty-four ideas on governance that underpin this literature and fall within categories (Urbinatti, A.
M et al.2020).

2. LITERATURE REVIEW

A review was conducted to assess the situation in the water—energy—food nexus in terms of methodology and how the nexus
approach has expanded geographically and in academia. This research looks into how this approach brings together a number of
discourses, disciplines, and fields using integrated and interdisciplinary methodologies (Endo, A et al.2020). This paper provides an
overview of twenty case studies featured in this special issue, with emphasis on practice and scientific foundations of the Nexus
(Taniguchi, M et al.2017). The reviewed studies were categorized and evaluated based on their geographic scale and nexus scope
(Dai, J etal. 2018). This article sets out a balanced Nexus framework and applies this to the Mekong Basin. Analysis highlights the
strengths of a sectorally balanced, dynamic Nexus approach, most particularly its ability to uncover new cross-sectoral relationships
or shifts in such relationships as a result of single-sector interventions (Smajgl, A et al. 2016). Recent literature increasingly demands
a shift from "nexus thinking" to "nexus action," with emphasis on actual implementation. Nexus policies should be implemented
across a variety of different geographic levels, supported with effective measures and a range of tools developed through research
programs and on-the-ground projects. Far from being a one-size-fits-all solution, however, the nexus approach should be seen as a
flexible framework that will need to be adapted to each individual situation in order to be effective in managing complex resource
interdependencies (Simpson, G. B., & Jewitt, G. P. 2019). The nexus strategy is likewise concerned with addressing the needs of
the most vulnerable people in the world (Leese, M., & Meisch, S. 2015). Increasing awareness is present for a need to break away

from a sector-based framework in science, policy, and practice to an integrated one that considers interlinkages between water, food,
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and energy. This is a realization that identifies synergies and trade-offs in managing all three resources (Reinhard, S et al.2017).
This research examines how nexus discourse is unfolding and being mobilized in various stakeholders in UK natural resource
discourse (Cairns, R., & Krzywoszynska, A. 2016). This paper seeks to establish a method for comparing the perceived complexity
of nexus tools identified by international organizations and primary literature sources (Dargin, J., et al.2019). This research looks
into problems and prospects for enhancing water efficiency in thermoelectric power plant cooling systems (Pan, S. Y et al. 2018).
The systems for all three resources are interdependent in nature, and there is a requirement to create assessment tools that reflect
their interdependencies, particularly in assessing a food production system's environmental performance (Al-Ansari, T et al. 2015).
As a pilot project for the multiple interlinkages among the three elements, this research explored biogas production from energy
crops through anaerobic digestion. Similar to all bioenergies, greater production from energy crops is raising concern about potential
negative environmental impacts, competition in food markets, and progressive land-use changes (Pacetti, T et al.2015). System
dynamics models give a framework for simulating and assessing system-wide impacts from interventions in a given area ( Purwanto,
A et al. 2021). These papers include water resources required to generate various foods and energy, energy per unit water or
agricultural product delivered, and COz-equivalent emissions for water and energy delivery ( Sadegh, et al. 2020). The integrated
framework thus developed is then utilized in four case studies in irrigation: food production and energy consumption using water
allocation in a Spanish irrigation project; food and bioenergy production and delivery using treated water in Germany; water
allocation for food production and urban use in Kenya; and energy production and delivery for food production in Hyderabad, India
( Villamayor-Tomas, S et al.2015). The interdependence between developments on a global and a Brazilian scale is investigated,
with a focus on how changes in the world and in Brazil influence each other and how Brazil influences other countries and the world.
It is maintained that reform in the scientific approach to such issues is needed as a facilitator for strengthening science-policy
bridging in making sustainability policies ( Mercure, J. F., et al. 2019). This article sets out a generic scenario-based methodology
employing the Q-Nexus Model to assess nexus effects to be addressed in WEF planning and policymaking (Karnib, A. 2018).
integrating both production (supply) and demand aspects of WEF systems into one system-of-systems framework ( Wu, L et al.
2023). This study looks at the San Antonio Region in Texas, a high-growth resource-intensive region with expanding energy
production in the Eagle Ford Shale Play and rising agricultural activity. It summarizes findings from a survey conducted with 370
researchers and regional stakeholders from government, nongovernmental/nonprofit, and business sectors in the region's water,
energy, and food industries ( Daher, B et al. 2020). This research applies a participatory modeling process to outline significant
interlinkages in Andalusia's Water-Energy-Food (WEF) nexus as a basis for constructing a system dynamics model. With fuzzy
cognitive mapping, 14 decision-makers were asked to contribute insight to enhance knowledge regarding the WEF nexus and
enhance stakeholder awareness and consensus ( Martinez, P et al. 2015). This research explores nascent vulnerabilities in Bwaise
and Kanyogoga's informal settlements ( Mguni, P., et al. 2020). This technique enables quantifiable measures for stakeholder
satisfaction and resource integration in economic and environmental terms. A case study was conducted in a region in Mexico due
to industrial activity and challenges in meeting resource demands with low water levels (Cansino-Loeza, B., & Ponce-Ortega, J. M.
2021). The principal scientific challenges arise from gaps in data, information, and knowledge in comprehending interlinkages in
the WEF nexus. It is additionally constrained by a deficiency in systematic tools that can manage all interlinked trade-offs. Increasing
the pool of information is a priority for future research(Liu, et al. 2017). Classical MCDM approaches are confronted with the issue
of uncertainty, since they presume complete and perfect information—a thing that is scarcely present in WEN contexts. Furthermore,
the absence of a general platform coupling MCDM with holistic uncertainty management contributes to the decision-making
complexity. In order to fill these research gaps, this paper develops a novel framework that combines D-number-based Multi-Criteria
Analysis and Dempster-Shafer Theory for enhancing WEN decision-making.

The major drawback of conventional Multi-Criteria Decision-Making (MCDM) models in Water-Energy Nexus (WEN) decision-
making is their presumption of complete and perfect information, which is not a reality in most real-world WEN situations. The

models lack the ability to deal effectively with uncertainty, ambiguity, and conflicting information and tend to provide
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oversimplified descriptions of the intricate interdependence among water and energy systems. Consequently, conventional MCDM
techniques tend to yield suboptimal or non-reliable decisions in the context of WEN. The Dempster-Shafer Theory (DST) has the
important function of promoting uncertainty management using a flexible mathematical representation for reasoning in the presence
of incomplete, imprecise, and contradictory information. In contrast to the conventional theory of probability that only permits the
assignment of belief to individual events and not to sets of possibilities, DST models uncertainty more effectively. In Water-Energy
Nexus (WEN) decision-making, the use of DST improves the resilience of Multi-Criteria Decision-Making (MCDM) through
evidence-based information synthesis using information that may come from various uncertain sources and results in more informed
and credible decisions. The integration of a strong uncertainty-handling mechanism in Multi-Criteria Decision-Making (MCDM)
for Water-Energy Nexus (WEN) problems plays a very important role because WEN systems are dynamic, complex, and data-
sparse in nature, usually entailing conflicting goals, incomplete data, and ambivalence among stakeholders. In these settings,
traditional MCDM techniques that presume inputs to be deterministic are lacking. A strong mechanism—Iike that founded on
Dempster-Shafer Theory or D-numbers—allows decision makers to capture or represent or analyze uncertainties in a better way,
resulting in more credible, transparent, and adaptive decisions that are a true representation of the real-world complexities involved
in the management of interrelated water and energy resources. Random Forest and Optimized ANN models' performance was
compared . Measures the degree to which the model accounts for the variation in the target variable. Higher values of R? represent
good model performance and predictability. These measures altogether determine the accuracy, precision, and interpretability of the

forecasts made by the models in the context of the Water-Energy Nexus (WEN).

Current systems simplify complex relationships among water and energy systems to a level and therefore lead to suboptimal
decision-making approaches. In spite of the fact that fuzzy and intuitionistic models are an improvement of uncertainty
representation, these also fall short in fully capturing the dynamic nature of real-life situations. They are deficient in the management
of conflicting as well as uncertain information that forms a barrier to the application of the approaches in practice. Furthermore, the
absence of the existing platform that integrates MCDM and the management of the whole uncertainty escalates the complexity of

decision-making.

Existing MCDM approaches within the WEF environment tend to ignore or inadequately deal with the uncertainty and complexity
of such systems. Our research brings Dempster-Shafer Theory (DST) and MCDM together to provide a strengthened approach to
dealing with uncertainty and conflicting data, which has been relatively under-addressed within previous studies. While MCDM
methods have been traditionally employed in WEF problems, there has been limited research into the integration of machine learning
approaches for predictive decision-making. Our research fills this gap by integrating Optimized ANN and Random Forest techniques
with MCDM, using data-driven methodology to improve the accuracy of decisions. Existing studies usually address single elements
of WEF systems (e.g., energy policy, water management, or food security) independently. We bring together all of these dimensions

in one integrated decision-making context to enable consideration of the interdependencies in WEF systems in greater depth.

3. MATERIALS AND METHODS

Consider a set of m WEN scenarios S = {S;, S,, ...., S, } and n evaluation criteria C ={C,,C,, ...., C,}. Each scenario

is assessed based on these criteria and uncertain expert judgement are represented using D-number theory.
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In D-number theory, a D-number is a generalization of Dempster-Shafer Theory (DST), capturing incomplete, imprecise, or
uncertain data

Each expert k provided a judgment on scenario S; under criterion C; as

Dy (S G;) = {(H, di (1), (2, 1 = die ()} ()
Where H is the hypothesis

dy (H) is the belief degree assigned by expert k 0 < d,(H) <1

Q) represent uncertainty.

1 — d, (H) is the remaining uncertainty.

For multi experts, the aggregated D-number for scenario S; under criterion C; is

D(S;,¢;) = {(H,d(H),(Q,1—-d(H)} . (2)

Where d(H) is computed as: d(H) = %Zﬁzl d,.(H)

To ensure consistency, normalize the D-number values across all scenarios:
_ D(@sicy
Dnorm (S ) = 57 p50c .(3)
This step removes scale inconsistencies across criteria.
Weighted D-Number Aggregation
Each criterion C; has an assigned importance weight w;, obtained via an entropy based or expert based weighting method:

W, = — 2121 Dnorm(Si.€j)10gDnorm(Si.Cj)
! 1 (=214 Drorm(Si.Cj)log Dnorm(Si.Cj))

)

Then , compute the D-number based performance score for each scenario S;
Dycore(S)) = 7:1 M/j'Dnorm(Si: C]) ...(5)

The scenario with the highest D, (S;) is the optimal choice.
Scenario Ranking Using D-TOPSIS

To prioritize scenarios, we integrate D-number theory with TOPSIS:
Compute Positive & Negative Ideal Solution

. Dff = max;Dyoym (S, C;) D7 = min; Doy (Si, ;)

Df = \/Z?:l(Dnorm(Si' Cj) - Dj+)2 ---(6)

Di_ = \/Z7=1(Dnorm(5iicj) _Dj_)z (7)

Compute Relative Closeness Score

__Di
R ...(8)

Rank Scenarios

The scenario with the highest C; is ranked as the most optimal.
3.1.Algorithm

Finds ideal best and worst solutions.
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Computes Euclidean distance to these solutions.

Calculates closeness score to rank scenarios.

Ranking Output: Higher closeness score means a better scenario.

Mathematical Model for D-Number-Based VIKOR

A ={A,A,,...A,} be the set of alternatives
C = {C;,C,, ... C,,} be the set of criteria
x;j be the performance value of alternative A; on criterion C;
w; be the weight of criterion C;, determined using D-number
D-Number representation for uncertain weight

Each criterion weight is expressed as a D Number
p(6) = (m(6)u(c))
Where m(Cj) is the belief mass assigned to criterion C;
u(c j) represent the uncertainty in the weight assignment
The total belief mass satisfies Z}l:lm((]j) + u(C]) =1
The final weight of criterion (Cj)is computed as:
where the uncertainty is evenly distributed across all criteria.
For benefit criteria:

xij—minixij maxixij—xij

For cost criteria 1;; = —— = ,
maxixij—mmixij maxixij—mmixij

Where 7;; is the normalised value of alternative A; for Criterion C;

Compute Utility and Regret Measures
Utility Measure (S;):

Si = 2j 0 (ff =)/ — 1)
Regret Measure (R;):
R; = max;S; = X} wj. (ff =)/ (ff = f;7)
Where

j
Compute the D VIKOR index

Si—=S~
S*=S~

R;—R™
R*—R™

Q;,=v +(1-v)

Where §* = maxS§; S~ = minS;

R* = maxR; R™ = minR;

v is the weight of strategy (usually set to 0.5 for equal compromise between utility and regret.

Rank the alternatives

Rank alternatives based on Q;

The best alternative A* satisfies

Acceptable advantages Q(4,) — Q(4;) =1/(m—1)

Acceptable stability: The best ranked alternative should also be top ranked in either S or R.

fj=max;r;; (best value for criterion C;, f;”=max;r;; (Worst value for criterion C;)

...(9)

.. (10)

.11

. (12)

..(13)

(1)
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Given a D-number set:

D ={4;d)|i=12,...n}

Where 4; is a focal element and d; is the corresponding D-number satisfies 0 < d; < 1)1, d; <1

(the sum can be less than 1, allowing for incomplete information). The D-number entropy quantifies uncertainty by considering

both distribution and incompleteness. A commonly used entropy measure for D-numbers is

H(D) = - XL d;logd; — (1 — Xz dplog (1 — XL, d; -.-(15)

The first term accounts for the uncertainty in assigned D-values.

The second term measures the uncertainty due to incomplete information

Transition to data analysis takes place as we transform quantitative data into D-numbers and utilize the same to determine optimal
decisions in light of uncertainty. The mathematical expressions form the base of data analysis as a process, where the Euclidean
distance of alternatives from the ideal solution is calculated using real data.

The theoretical model governs the calculation of compromise solutions, whereas the data analysis deploys data from the decision
matrix to calculate S and R values to determine ranking. The entropy calculation theory gives us the formula to calculate consistency.
The data analysis implements this formula to calculate to what extent the process of making decisions coincides with the theoretical

expectations derived from the input data.

3.2. Database

Data from open access sources Simpson, Gareth (2023), The Excel file contains four sheets labelled "2019," "2020," "2021," and
"2022. The dataset provides an in-depth assessment of countries by various factors in respect to water, energy, and food security. It
covers essential indexes such as WEF Nexus Index Rank and Score that reflect an overall rating of resources sustainability in a
country. The dataset further analyzes water-related factors such as Water Pillar, Water Access, and Water Availability that reflect a
nation's ability to supply sufficient and equal water resources. Similarly, energy-related factors measure factors such as Energy
Pillar, Energy Access, Electric Power Consumption (kWh/capita), and Energy Imports to reflect energy sustainability and
dependency. Food-related factors integrate essential factors such as Prevalence of Undernourishment, Malnutrition in children
(wasting, stunting, obesity), Yield in cereals, and Value in Food Production to reflect a country's standing in food security. Through
integrating these diverse measurements, the dataset provides an overall rating of interlinks between water, energy, and food security.
The dataset utilizes various methods of decision making to rank each alternative in terms of performance. TOPSIS (Technique for
Order of Preference by Similarity to Ideal Solution) ranks alternatives in accordance with closeness to ideal optimum solution where
greater DTOPSIS value is better performance. VIKOR (VIsekriterijumska Optimizacija i Kompromisno ReSenje) takes both
optimum and worst-case options into consideration by ranking alternatives in favor of closest compromise towards ideal solution
where better performance is indicated by lower value in DVIKOR. Additionally, the Entropy method ranks each alternative in
importance by taking uncertainty into consideration where greater importance is indicated by greater value in D Entropy. Utilizing
these methods in an integrated manner, the dataset provides an efficient system to perform multi-criteria decision making by ranking

alternatives in comparative performance.

4. RESULTS AND DISCUSSION

The Total WEF Nexus Index holds a mean of 57.45 with moderate balance between the management of resources within the

examined areas. The most negative recorded index is 35.00, pointing toward serious difficulties within particular areas, while the



NEPT 10 of 20

best recorded index of 80.77 identifies areas with more efficient and more sustainable linking of resources together. The index
displays moderate diversity with a standard deviation of 9.20, pointing toward serious inequalities between the performance of the

WEF nexus within different areas.

Water Pillar Energy Pillar Food Pillar
Mean 58.87 57.27 56.96
Min 28.23 35.07 56.96
Max 81.87 94.34 78.24

Table 1: Descriptive Statistics of the Pillar Scores

Table 1 shows disaggregated WEF Nexus Index figures by its three pillars—Water, Energy, and Food—that reflect serious
differences in resource management and access at the various regions. A mean value of 58.87 and wide spread from 28.23 to 81.87
under the Water pillar reflect serious differences in the governance of water and the availability of resources in different regions.
The wide spread signifies unevenness in the distribution and efficiency of water uses, as it is likely to reflect some of the regions
experiencing serious constraints in water security, while some have relatively efficient systems. The Energy pillar is characterized
by its mean score at 57.27, with the greatest disparity—varying from 35.07 to 94.34—indicating extreme differences in access to
energy, sustainability, and technology integration. This is indicative of the fact that some regions have access to superior, dependable
energy infrastructures while others are far behind, potentially because of limitations in infrastructure or inefficient policymaking. In
the same manner, the Food pillar, with a mean of 56.96 and ranging from 27.55 to 78.24, evidences strong differences in food
security, agricultural output, and resource efficiency. This is indicative of mixed adherence to sustainable food systems and supply

chain resilience within regions.

Water Availability Energy Access Food Security
Average 1149 cubic meters per 84.09% population with 81.72
capita access
Max 3240  (High  water 100% (Full access) 144.00
abundance)
Min 18.1  (Severe water 7.24% (Severe energy 25.70
stress) deficiency)

Table 2. Descriptive Statistics of the selected Indicators

Table 2 provides a nuanced assessment of critical indicators under the Water-Energy-Food (WEF) Nexus, which captures significant
disparity in the availability and access to critical resources by regions. The indicator for Water Availability (Ind.07), at an average
of 1,149 cubic meters, varies widely from 18.1 to 3,240 cubic meters, signaling wide geographic disparity in freshwater
availability. The indicator for Energy Access (Ind.08) is at 84.09% average but has a wide range of 7.24% to 100% coverage,
evidencing both advances and ongoing disparities in electrification. With the high median, many countries have made great advances
toward universal access to energy.For Food Security (Ind.18), the average of 81.72, ranging from 25.70 to 144.00, captures the

dispersed nature of food availability and nutritional security.
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Top 10 Countries by WEF Nexus Index
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Fig 1 : WEF Nexus index
In Fig 1 shows that the WEF Nexus Index of the Top 10 countries identifies countries that perform best at the integrated management
of Food, Water, and Energy resources. The best performer is Iceland, closely followed by Canada and Norway due to the robustness
of the country's resources and the practice of sustainability. The United States, New Zealand, Sweden, and Denmark are the other
leading countries that perform well with efficient utilization of resources and safety. Kuwait, Australia, and Brazil are the interesting
additions that find place within the top 10 with the diversity of geographical and economic resources for WEF management. The
index emphasizes the need for good policies, infrastructure, and governance for the efficient use of resources by different

geographies.

Bottom 10 Countries by WEF Nexus Index
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Fig: 2 Bottom countries WEF Nexus index.
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In fig 2 reveals that the WEF Nexus Index identifies the 10 countries with the most serious challenges with Water, Energy, and
Food security. The lowest-ranked countries are the Central African Republic, South Sudan, and Chad with the most serious scarcity
of resources and infrastructural shortfalls. Haiti, Yemen, and Niger are the other countries with the poorest access to vital resources
with the added burden of political conflicts and climate vulnerability. Madagascar, Guinea-Bissau, Lebanon, and Mauritania are the
countries with the most such bottlenecks that restrict the ability of these countries for the management of resources sustainably. The
above ratings emphasize the necessity for the implementation of policy interventions, international support, and the implementation
of sustainable development for the mitigation of critical scarcity of resources and enhancing resilience for these countries.

WEF Nexus Index ranking illustrates the top 10 and the bottom 10 nations by the level of their resource security. The top nations
(indicated by blue) have the best water, energy, and food security with excellent infrastructure, effective management of resources,
and good policymaking. The bottom nations (indicated by red) are faced with severe resources challenges with shortages of resources,
ineffective management of resources, and exposures due to climate change, economic sanctions, or political instability. The clear
contrast highlights the need for interventions with specific solutions and the necessity of solutions that are environmentally

sustainable for closing the resources gap at the global scale.

Correlation Between Water, Energy, and Food Pillars

p.02 p.01

p.03

p.01 p.02 p.03

Fig: 3 correlations between water, energy and food pillars

Correlation analysis of the Food p.01, Water p.02, and Energy pillars p.03 establishes crucial interdependency of the pillars. A
positive correlation of circa 0.85 between Food and Energy establishes that countries with good access to energy are likely to be
food-secure, validating the crucial contribution of energy to the supply, storage, and production of food. A moderate positive
correlation of circa 0.62 between Water and Energy suggests that while the presence of water influences the access to energy, it is
just one of the determinants of the latter since infrastructure and technology are crucial determinants of the latter. The relationship
between Food and Water is moderate at circa 0.58 and suggests that the latter influences the former but with weaker intensity
compared with the Food-energy relationship. The above conclusions underscore the intrinsic dependence of the nexus between the
three pillars of the nexus and the need for integrated policies for the enhancement of the nexus for enhanced efficiency and
sustainability shows in Fig 3.

The negative declining water-food relationship might be due to improvements in more efficient agriculture practices that conserve
water resources or new food production processes that decrease dependence upon water resources.

WEF Nexus Index is a comprehensive indicator of sustainability that encompasses the linkages between the systems of water,
energy, and food. To explore the determinants of the WEF Nexus Index, multiple regression analysis shall be utilized with the
determinants of the Water Pillar, the Energy Pillar, and the Food Pillar. The analysis shall explore the separate and combined
influences of these fundamental dimensions of sustainability on the WEF Nexus Index. The analysis identifies the important
predictors and the extent of the effect they have with the aim of providing insight into the processes of resources management and
guiding the decision for improvement of the state of sustainability. The multiple regression analysis provides an exceptionally good

fit R?, the value of RZs close to one , analysis of the multicollinearity of the variables it shown in Table 3. The perfect fit is rare and
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suggests that the relationship between the predictors and the outcome measure is deterministic. All three pillars of Water (f=0.3333,
p <0.001), Energy (B =0.3334, p<0.001), and Food (f=0.3333, p <0.001) are highly significant and explain almost proportionally
the index. The non-significant intercept of -0.0002, p = 0.925, indicates that the model does not require the presence of an additional
constant term for the explanation of the relationship. All these findings verify that the WEF Nexus Index measure of sustainability
reflects the good balance of the three pillars of water, energy, and food systems with each pillar's contribution being equally

important.

Machine Learning Model Comparison for Predicting WEF Nexus Index

Variance Inflation Factor (VIF)

Feature VIF

Water Pillar 1.568
Energy Pillar 1.149
Food Pillar 1.491

Table : 3 VIF values of the water, energy and food pillars

Variance Inflation Factors for the Water, Energy, and Food pillars are all below the widely accepted threshold level of 5 as seen in
Table 3. This demonstrates there is no multicollinearity of serious nature among the data, confirming each pillar is bringing in
unique and non-redundant information to the model. The absence of multicollinearity increases the statistical accuracy of the
regression analysis and upholds the independent contribution of each WEF component to the overall nexus evaluation. This finding
attests to the strength of the analytical model, ensuring that the pillars' relationships with each other do not contort or distort the

impact of each of them individually.

Model Performance Metrics

Model RMSE (Lower is better) MAE (Lower is better) R? Score (Higher is
better)

Random Forest 2.31 1.82 0.90 (Good fit)

ANN 8.57 7.29 -0.33 (Poor fit)

Table: 4 Model performance of the metrics

Table 4 illustrates how the Random Forest model far surpasses other predictive models in its performance, capturing 90% of the
WEF Nexus Index's variance at an R? value of 0.90. This excellent level of explainability implies that Random Forest is well-suited
for modeling the intricate, nonlinear relationships among the Food, Energy, and Water pillars. Its ensembled learning architecture—
integrating many individual trees—improves resistance to overfitting and enables its ability to take into consideration complex
variable relationships that linear methods might miss. In contrast, the Artificial Neural Network (ANN) model failed to converge,
resulting in a negative R? value of -0.33, which implies that its predictive performance is worse than a simple mean-based model.
This may reflect challenges in parameter tuning, data size, or overfitting due to the high sensitivity of ANN to training dynamics
and data distribution.

future trend prediction

Year Model RMSE MAE R2
0 2019 Random 2.305147 1.818624 0.903668
Forest
1 2019 Optimized 1.786738 0.986328 0.942124

ANN
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2 2020 Random 1.944113 1.527488 0.957258
Forest

3 2020 Optimized 1.916585 1.389615 0.958459
ANN

4 2021 Random 2.784226 1.969276 0.917200
Forest

5 2021 Optimized 2.454844 1.569940 0.935632
ANN

6 2022 Random 1.614885 1.259340 0.944308
Forest

7 2022 Optimized 0.759705 0.559183 0.987675
ANN

Table: 5 Future trend and prediction analysis

Model Performance (R'Score) Over the Years

0.8

0.6

0.4

R'Score (Highest is Better)

0.2 Model

0.0/

2019 2020 2021 2022
Year
Fig :4 Model performance
Table 5 and Figure 4 compare the year-to-year performance of the Optimized Artificial Neural Network (ANN) and Random Forest
models from 2019 to 2022 in terms of RMSE, MAE, and R? criteria. For all four years, the Optimized ANN outperforms the Random
Forest model with better predictive accuracy and consistency. In 2019, the ANN model produced significantly lower RMSE (1.79
vs. 2.31) and MAE (0.99 vs. 1.82), and with higher R? (0.942 vs. 0.904), demonstrating its better capability to model nonlinear
relationships in the WEF Nexus Index.

Predicted WEF Nexus Index for 2023

Model
Random Forest
50 Optimized ANN

WEF Nexus Index

2023
Year

Fig :5 Predicted WEF Nexus index for 2023
Figure 5 presents the Random Forest and Optimized ANN 2023 WEF Nexus forecast, both of which returned very similar
estimates—59.291 and 59.363, respectively. This near-consistency reflects the strength and overall concordance of both machine
learning methods at picking up the underlying data patterns. Yet, the slightly larger forecast from the Optimized ANN aligns with
its past trend of increased accuracy as reflected in its lower RMSE and MAE values from past years.
TOPSIS computes the relative closeness of each alternative with the best solution. The greater the DTOPSIS value, the more efficient

the performance.
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VIKOR: Compares the best and the worst cases. The more the DVIKOR value decreases, the more the alternative approaches the
ideal solution.

Entropy: Measures the contribution of each alternative based on its uncertainty. A higher DEntropy score suggests higher
significance.

D-TOPSIS Analysis

The most proximate countries with the largest number of D-TOPSIS values are the best performer with regard to the criteria under
study. The poorest performers are the countries with the most distant D-TOPSIS values. A country that ranks highly under D-
TOPSIS and similarly under other approaches is a good decision-making option. high D-TOPSIS are generally Qatar, Switzerland,
and Singapore. These are Afghanistan, Chad, and Yemen that are at the tail end of the D-TOPSIS ratings.

D-VIKOR Analysis

The countries with the best D-VIKOR rank are placed at the top since VIKOR favors the "closeness of the ideal solution. The
farthest countries from the compromise solution are the countries with the largest D-VIKOR values. Gap between Best and Worst:
A narrower gap implies homogeneity, while the wider the gap the more it implies stark contrasts between countries. Low-scoring
countries with low D-VIKOR ratings are Norway, Switzerland, and Sweden. These more highly rated countries by D-VIKOR such
as Sudan and Somalia rank lower. A few of the countries that perform well under D-TOPSIS may perform differently with slight
deviations, identifying the compromise susceptibility of VIKOR.

D-Entropy Analysis
The countries with higher D-Entropy levels are more consistent over different criteria.

Bottom Performers: Countries with lower D-Entropy values indicate higher uncertainty or worse performance on a number of
criteria. Comparison with Alternative Approaches: D-Entropy ratings are likely to be different from TOPSIS and VIKOR since they
are more sensitive to the spreading of the information over criteria rather than performance directly. These include the USA, Canada,
and Germany with high D-Entropy scores.The low-scoring nations include conflict zones like Yemen and South Sudan.It could be

different from the other methods since weight assignments affect the rank differently.

Comparison

Method Best-Ranked Countries Worst-Ranked Countries

D-TOPSIS Qatar, Switzerland, Afghanistan, Chad,
Singapore Yemen

D-VIKOR Norway, Switzerland, Sudan, Somalia, Yemen
Sweden

D-Entropy USA, Canada, Germany  Yemen, South Sudan,

Afghanistan

Table: 6 Comparision of the models

In Table 6 shows that the Countries consistently ranked high (Switzerland, Norway) excel across multiple decision criteria.
Countries with fluctuating rankings (Germany, Canada) exhibit sensitivity to criteria weight variations. Countries consistently
ranked low (Afghanistan, Sudan, Yemen) show weak performance across all metrics.

Inconsistencies in Multi-Criteria Decision-Making (MCDM) approaches have far-reaching policy-level implications for global
development planning. They have the potential to result in conflicting priorities in that various approaches recommend different
top-performing countries or strategies, which creates uncertainty or bias in strategic prioritization and the reallocation of resources.
Inconsistencies may also erode the credibility of the planning framework and that of the decision-making process among

stakeholders. In addition to this, inconsistent rankings underscore the sensitivity of results to the method and weighting schemes
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used and highlight the importance of transparent, sound methodological and robust approaches to facilitating even-handed and

effective global development policy.

5. CONCLUSIONS

In the current study, the performance of the 2019-2022 Optimized Artificial Neural Network (ANN) and Random Forest models
are compared for predictability using the performance metrics of Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and R2. The study results indicate that the Optimized ANN model outperforms the Random Forest model with steadily lower RMSE
and MAE and higher R? levels with the best improvement performance recorded for 2022. The 2023 forecast indicates tight
correspondence between the models with the Optimized ANN model maintaining the slightest margin of precision over the Random
Forest model.

In turn, multi-criteria decision-making techniques are implemented with the assistance of D-TOPSIS, D-VIKOR, and D-Entropy
techniques for country ratings with varying performance criteria. The best performance countries are Qatar, Switzerland, and
Singapore while the poorest performance countries are Afghanistan, Chad, and Yemen by the D-TOPSIS. The compromise
sensitivity variations are highlighted by D-VIKOR while D-Entropy displays the extent of the degree of consistency over multiple
criteria with the USA, Canada, and Germany at the higher ranks while Yemen and South Sudan are at the lower ranks. The
inconsistencies of these techniques highlight the effect of weightage and the difference of the techniques upon the resultant ranks.It
determines that the Optimized ANN model is more accurate and consistent decision-making prediction model compared to the
traditional model, while the proper selection of the MCDM techniques strongly affects the rank consistency. The conclusions are of
great significance for the enhancement of forecast precision and comparative performance analysis between different study areas.
In summary, the findings validate the performance of the Optimized ANN model for prediction analysis and the impact of different
MCDM techniques on rank consistency. The findings are the basis for decision-making for country forecast and comparative country
performance analysis. The varying water-energy relationship implies the effect of new policy developments or new technologies
that affect the production of energy and the consumption of water by it. The moderate increase of the energy-food relationship might
be due to increased reliance upon more energy-demanding processes of food production with the growing importance of the use of
energy within new agriculture and food processing systems. The fusion of Machine Learning (ML) and Multi-Criteria Decision-
Making (MCDM) approaches has importance far beyond the given setting of the Water-Energy-Food (WEF) nexus. ML models
have the capability to learn from large data volumes and dynamically update weights or preferences in MCDM approaches to enable
better, context-specific, and adaptive decisions.The conventional MCDM approaches have difficulty processing imprecise, fuzzy,
or incomplete data. ML methods—particularly probabilistic models and fuzzy methods—can manage such data very well,
facilitating MCDM.By using ML, MCDM processes have been made automated and scalable to process thousands of alternatives
and criteria. In futire to create dynamic, time-varying ML-MCDM processes that adapt inputs, preferences, and weights every time
they are provided with fresh data. Incorporate climate projections and models (e.g., IPCC scenarios) into ML-MCDM pipelines to
evaluate long-term WEF sustainability and resilience.Create real-time WEF dashboards using streaming data (IoT, satellites) and
ML to provide ongoing optimization and alarms.Apply geospatial ML algorithms (e.g., GIS + ML) to adapt WEF decisions to fit
typical regional characteristics and expositions.Use ML to identify shifting stakeholder preferences from participatory sites, social
media, or feedback.Model WEF systems as multi-agent ecosystems where various sectors (e.g., agriculture, energy, water-authority)

interact and compete.
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