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ABSTRACT 

Achieving the Sustainable Development Goals depends on the industrial sector decarbonizing since it still 

contributes most to world greenhouse gas emissions and energy consumption. Reducing emissions from 

fossil fuel-based energy systems depends critically on carbon capture—especially post-combustion carbon 

capture (PCC). Absorption-based carbon capture (ACC) is the most developed and extensively applied of 

the PCC systems. But ACC systems are quite energy-intensive and need for major heating and cooling 

utilities, which increases running costs and makes large-scale adoption difficult. This paper investigates 

current developments in carbon capture technology and emphasizes artificial intelligence (AI) integration 

to handle optimization difficulties. More especially, it suggests an artificial intelligence-based approach for 

improving ACC system design and operation and utility consumption forecast. AI-driven solutions can 

promote scalable, reasonably priced carbon capture technologies by allowing accurate, fast assessments of 

technical and financial viability. This research emphasizes how artificial intelligence might hasten the shift 

toward more environmentally friendly industrial methods and significantly support world climate action 

targets (SDG 13). 

INTRODUCTION 

In recent years, extreme weather events, including heatwaves, droughts, wildfires, hurricanes, and flooding, 

have become increasingly severe, resulting in substantial damage to human life, infrastructure, and 

ecosystems (Cotterill et al., 2021; Jain et al., 2022). The World Meteorological Organization (WMO) 

projected that severe weather events had caused over 2 million fatalities and US$4.3 trillion in economic 

damages from 1970 to 202. Global warming and anthropogenic carbon emissions are widely acknowledged 

as the causes of the escalating frequency and severity of extreme weather events, even though the attribution 

of individual events is frequently a topic of debate (Bellprat et al., 2019; Schiermeier, 2018). With 29.4% 

of all greenhouse gas emissions coming from energy usage in industry and direct industrial processes, 

industry is the sector with the highest carbon emissions. Consequently, it is imperative and crucial to 

implement industry decarbonization to mitigate extreme weather events. Energy efficiency improvement, 

carbon capture, and hydrogen energy are some of the primary techniques for industrial decarbonization 

(Baker et al., 2018; Ritchie and Roser, 2024; Schiermeier, 2018). 

Carbon emissions can be reduced by implementing strategies such as improving energy structure, 

electrification, decreasing excessive energy usage, and carbon sequestration. Carbon dioxide capture and 

storage (CCS) is a method that utilises pipeline transportation to extract carbon dioxide (CO2) from the 

atmosphere or industrial waste gas and store it in the ocean or underground at a significant concentration. 

This process has the potential to reduce the concentration of CO2 in the atmosphere (X. Zhang et al., 2021). 

Nevertheless, its development is constrained by the high cost and the potential long-term environmental 
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impact. In recent years, the field of CO2 capture and utilisation (CCU) has garnered a growing interest as a 

result of its capacity to convert CO2 into value-added products through chemical conversion, including 

thermal, electrical, and photocatalysis techniques (Liang et al., 2021; Moss et al., 2017). Table 1 summarises 

the relevant carbon dioxide capture and utilisation technologies concerning their features, benefits, and 

drawbacks. By capturing and using CO₂ gas on-site, the integrated carbon dioxide capture and utilisation 

(ICCU) system makes CO₂ use efficient and economical by lowering transportation and compression costs 

(Guo et al., 2023).  

Table 1: An overview of CO2 collecting and use technologies 

 
Technology 

Description 

 

Advantages 

 
Disadvantages References 

Technology 

to collect 

CO2 
 

Capture of 

oxyfuel 

combustion 

By combusting fuel 

with either pure 

oxygen or a 

combination of 
oxygen, the carbon 

dioxide (CO2) in the 

exhaust gas can be 
captured 

It is possible to 

store things 

directly 

The generation 

of oxygen has a 

high cost and is 

susceptible to air 
leakage 

(Martin et 

al., 2011) 

Pre-combustion 

capture 

 

Before burning fuel 

derived from 
carbon, separate 

other combustibles 

from CO2 

Significant 

CO2 
concentration 

and effortless 

separation 

Require the 

enhancement of 
the existing 

power plant, a 

task that is 

challenging and 
entails 

significant 

expenses 

(Martin et 

al., 2011) 

Absorption 

separation 

 

Gas mixtures can be 

separated based on 

their varying 

solubility 

high yield and 

elevated CO2 

concentration 

significant 

energy usage, 

significant 

equipment 
investment 

(Guo et al., 

2023) 

Post- 

combustion 
capture 

adsorption 

separation 

The separation of 

gas mixtures is 
achieved by 

exploiting the 

distinct binding 
force between gases 

and porous 

materials 

Flexible 

operation, 
safety, and 

affordability 

Inorganic 

adsorbents 
exhibit poor 

selectivity and 

unpredictable 
performance 

(Gu et al., 

2015; Tang 
et al., 

2022) 

Membrane 

separation 

 

Utilize variations in 
solubility and 

diffusivity to 

capture 
 

High 
selectivity 

with low 

energy usage 

restricted 
application, 

weak stability 

(Yan et al., 
2012) 
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Technology 

for using 
CO2 

 

Solar 

thermochemical 

conversion 
technology 

Solar radiation is 
employed to 

generate a robust 

endothermic 
reaction that is 

suitable for 

utilization by 
driving CO2 and 

H2O 

low usage of 
energy 

minimal 
efficiency of 

conversion 

(Ishaq et 
al., 2021) 

Electrochemical 

conversion 

 

The voltage 

difference between 
the two electrodes 

is what drives the 

reduction of carbon 
dioxide into 

compounds 

flexible 

running 
circumstances, 

moderate 

reaction 
environment 

Electrocatalyst 

instability and 
elevated energy 

consumption 

(Meng et 

al., 2021) 

Catalytic 

conversion 
 

Chemical bond 
formation and 

breakage are 

facilitated by the 

employment of 
catalysts 

cheap cost and 
excellent 

safety 

Improvements 
are needed in 

stability and 

conversion 

efficiency 

(Rahimi et 
al., 2016) 

Photochemical 

conversion 
 

The absorption of 

thermal energy and 
the overriding of 

activation energy 

facilitate the CO2 

conversion reaction 

moderate 

reaction 
circumstances 

and potent 

oxidation 

capacity 

low light energy 

utilization rate 
efficiency and 

control issues 

(GUO et 

al., 2023) 

 

An essential part of carbon capture, use, and storage (CCUS) to reduce greenhouse gas emissions and meet 

climate objectives is geological carbon storage (GCS) (Ringrose and Meckel, 2019). With the potential to 

manage over 220 Mton of CO2 annually, project developers expect to put more than 200 new capture and 

storage facilities into operational globally by 2030, according to the International Energy Agency (IEA) 

(Lin et al., 2022). Because one of the biggest CCUS projects to date, the water alternating gas (WAG) 

injection project in the Brazilian Pre-Salt, has only injected 20 Mton of CO2 over a decade into the four 

largest carbonate reservoirs in Brazil, or less than 10% of the IEA target, it is important to put this ambitious 

goal into perspective. When fossil fuels are burned, carbon dioxide (CO2) is released into the atmosphere. 

This quantity of CO2 increases as the global energy consumption increases to support our energy-intensive 

activities (Seabra et al., 2024). For the foreseeable future, fossil fuels will remain the primary source of 

energy in the globe, despite the grave environmental problems that are often linked to CO2 emissions. 

Numerous carbon dioxide storage locations are found in geologically intricate formations, such as 

channelized reservoirs or fractured carbonate rocks (March et al., 2018). Consequently, it is imperative to 
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identify and develop a technological solution that is both feasible and effective in reducing the emission of 

carbon dioxide into the atmosphere. 

Most carbon capture and storage methods involve either post-combustion carbon capture, oxyfuel 

combustion carbon capture, or pre-combustion carbon capture. The development and deployment of 

combustion systems that are suitable for their intended purpose are necessary for both pre-combustion and 

oxyfuel carbon capture (Al-Hamed and Dincer, 2022; Park et al., 2015). Alternatively, post-combustion 

carbon capture technology may be used to upgrade and modify already existing fossil-fuel burning facilities 

(Khalilpour, 2014). Thus, it may reduce emissions without replacing infrastructure (Aliyon et al., 2020). 

Absorption, adsorption, and membrane separation are the three most prevalent methods for capturing 

carbon after burning (Akinola et al., 2022; Aliyon et al., 2020; H. Zhang et al., 2021). 

This work develops a substitute machine learning (SML) model to predict the heating and cooling utility 

consumption of ACC plants using machine learning (ML) techniques. System engineering models are 

enhanced or replaced by SML models. SML models outperform engineering models in a number of ways, 

such as quick running times, robustness in predicting system performance that engineering models are 

unable to fully capture, robustness in predicting system performance as components age, ability to make 

predictions without in-depth knowledge of the system, and ability to make predictions with few inputs 

(Chegari et al., 2022; Li et al., 2022; Spinti et al., 2022; H. Zhang et al., 2021). This work uses SML models 

to provide rapid and accessible utility consumption prediction models to help build energy-efficient ACC 

procedures. 

Active sites for CO2 adsorption and conversion are the primary components of dual function materials, 

which facilitate the adsorption, desorption, and in-situ conversion of CO2.  Due to the tendency of fresh 

dual function material samples to absorb carbon dioxide and water from the surrounding air, it is often 

necessary to perform a pre-reduction step prior to the reaction (Bermejo-López et al., 2022). Initially, CO2 

is drawn in at a particular temperature until the adsorbent is fully absorbed. Second, the adsorbed CO2 in 

the saturated materials interacts with hydrogen to form CH4 when they are placed in a reducing 

environment. The integrated carbon dioxide capture and methanation procedure is primarily composed of 

this two-step process (Dongbo and Xiangwei, 2022). Carbon dioxide can be consistently captured and 

transformed in a single reactor throughout multiple cycles. The reaction exhibits favorable cyclic 

performance and can be conducted at a moderate temperature of approximately 300°C. This streamlines 

the procedure and improves energy efficiency. The integrated carbon dioxide capture and utilization 

(ICCU) technology has gained significant attention due to its ability to efficiently convert carbon dioxide 

into fuels, such as carbon, using dual-function materials. This approach delivers high efficiency with little 
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energy usage by combining carbon dioxide adsorption and in-situ conversion (Guo et al., 2023). Table 2 

represents the various reviews that have used ML within the ACC.  

Table 2: Literature reviews that have used ML within the ACC 

ML 

model(s) 

 

Purpose 

 

Model Inputs 

 

Model 

Outputs 

 

Data 

Generation 

Software 

 

References 

An 

ensemble 
neural 

network 

using 

bootstrap 
aggregation, 

often 

known as 
bagging, 

with a 

single-layer 

neural 
network 

 

Forecasting 
the 

efficiency of 

CO2 capture 
 

Flow rate of flue gas, 

pressure, 
temperature, and 

concentration of 

CO2; flow rate and 
temperature of lean 

fluid; concentration 

of MEA; and 
temperature of the 

reboiler 

Efficiency in 
CO2 capture 

gPROMS 
 

(Li et al., 

2015) 

 

Single-layer 

neural 
network 

 

Predicting 

the specified 

duty of a 
reboiler and 

the rich 

loading 

Temperature, CO2 

concentration, lean 

load, removal 
efficiency, solvent 

circulation rate, and 

flue gas flow rate 

The flow rate 
of captured 

CO2 plus the 

specific duty of 
the reboiler 

plus a solvent-

rich load 

 

CO2SIM 
 

(Sipöcz et 
al., 2011) 

Network of 

profound 

convictions 
 

Forecasting 

the 
efficiency of 

CO2 capture 

 

Flow rate of flue gas, 

pressure, 

temperature, and 
concentration of 

CO2; flow rate and 

temperature of lean 
fluid; concentration 

of MEA; and 

temperature of the 

reboiler 

Efficiency in 
CO2 capture 

 

gPROMS 

 

(Li et al., 
2018) 

 

The 

extreme 

learning 
machine is 

used to 

build a 

bootstrap 

Forecasting 

the 
efficiency of 

CO2 capture 

 

Flow rate of flue gas, 

pressure, 

temperature, and 
concentration of 

CO2; flow rate and 

temperature of lean 

fluid; concentration 

Efficiency in 

CO2 capture 

gPROMS 

 

(Li et al., 
2017) 
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combined 
neural 

network 

with a 
single layer 

neural 

network. 

of MEA; and 
temperature of the 

reboiler 

Single-layer 
neural 

network 

 

Improvement 

of 

operational 

control 
 

The flow rates of 

lean solvent, flue 

gas, and reboiler 

steam 
 

Amount of CO2 

collection plus 

the temperature 

of the reboiler 
 

gPROMS 

(gCCS module) 

(Wu et al., 

2020) 

A single-

layer neural 

network and 
a few other 

components 

Optimisation 

of processes 
 

factors such as 

reboiler and 
condenser 

responsibilities, 

reboiler pressure, 
flow rate, 

temperature, and flue 

gas pressure 

 

Total work for 

reboilers, 
condensers, and 

amine coolers, 

plus the rate of 
capture, plus 

the purity of 

CO2 

 

gPROMS 

 

(Shalaby et 

al., 2021) 

 

Carbon capture research is primarily focused on developing new methods to reduce the cost of CO2 

collection. Some of the methods used are coming up with new solvents, using catalysts to make old solvents 

stronger, applying artificial intelligence to the CO2 capture process, and coming up with new ways to repair 

things. This session will thoroughly examine several approaches to determine the column height of the CO2 

absorbent. Some of the methods that are used are empirical design, theoretical design, laboratory and pilot 

plant processes, and so on. This review is based on the idea of using AI to help catch CO2. The coming 

together of many AI programs. The potential for AI-assisted CO2 collecting is examined, along with the 

difficulties involved. 

2. MATERIALS AND METHODS 

2.1. A summary of the process of capturing carbon dioxide 

Extensive research has been conducted on CO₂ capture systems, which are crucial in reducing industrial 

carbon emissions. Among the most significant contributors to carbon monoxide emissions are high-

temperature industrial activities, which include the manufacturing of steel, cement, oil, and gas. Post-

combustion capture technologies, more especially absorption, adsorption, and membrane separation, are 

among the many ways that have been extensively researched and utilized (Chao et al., 2021). Amine-based 

chemical absorption is the post-combustion capture method that has the greatest documented track record 

and is potentially economically viable. This technique involves the utilization of amine solvents that are 
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aqueous in order to selectively absorb carbon monoxide from exhaust gasses (Raganati et al., 2021). In real 

time, intelligent control systems that make use of artificial intelligence are able to monitor membrane 

performance, identify fouling or degradation, and dynamically alter operating settings. Models that are 

driven by data also provide support for the selection of materials and the creation of hybrid systems (for 

example, coupling membranes with adsorption or absorption). 

The procedure involves absorbing CO2 from flue gas with an amine solvent and then separating the CO2 

from the solvent using a stripping column. The solvent is recycled back into the absorber, and the 

concentrated CO2 is collected for storage or use after it has been extracted (Yamada, 2021). The capture of 

CO2 is essential in petrochemical activities, particularly in the production of ammonia, due to the significant 

volume of CO2 emissions produced during the process (Takht Ravanchi and Sahebdelfar, 2014). It is 

common practice to implement this cycle process in large-scale industrial processes, such as the processing 

of natural gas and the manufacturing of ammonia, when the amount of carbon dioxide produced is 

significant. The solvent-based approach is frequently followed by the sorbent method. At present, fewer 

than a third of the processes are implemented membrane-based. In the collection of CO2 through absorption, 

adsorption, and membrane separation technologies, the selection of a solvent, adsorbent, or membrane 

material, as well as the optimization of operating pressure and temperature, are all critical operational 

factors. These characteristics significantly influence the efficiency and efficacy of the capture process; 

therefore, it is necessary to conduct a comprehensive selection and optimisation of these parameters to 

achieve the desired results. The subsequent discourse will provide a comprehensive examination of the 

diverse techniques for CO2 capture, including membrane-based, adsorption, and absorption (Priya et al., 

2023). 

Adsorption is a relatively new alternative to absorption that offers a number of benefits similar to those of 

absorption, including reduced energy usage and simpler regeneration. Carbon monoxide molecules are able 

to attach themselves to the surface of a solid porous substance, which is referred to as an adsorbent, in this 

approach. Temperature, pressure, pore size, surface area, and adsorption kinetics are some of the key 

operating parameters that have a significant impact on performance. High CO2 selectivity, rapid adsorption 

and desorption rates, mechanical durability, and economic viability for regeneration are only few of the 

characteristics that should be present in effective adsorbents (Abd et al., 2020). Systems that are based on 

absorption consume a significant amount of energy, particularly because of the requirements for thermal 

regeneration. Predicting the performance of a solvent, optimizing the amount of energy required for 

regeneration, and simulating the behavior of a process under a variety of different operating circumstances 

are all possible applications of artificial intelligence models. It is possible to considerably improve the 
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design and control of absorption systems in terms of energy efficiency and economic feasibility by utilizing 

AI-driven predictive modeling. 

Additionally, the adsorbent material must fulfill the operational and budgetary requirements for efficient 

CO2 removal by demonstrating CO2 selectivity, rapid adsorption and desorption kinetics, sufficient 

mechanical strength, and economically feasible regeneration (Abd et al., 2020). Most of the area in the 

column is occupied by the adsorbent, which lets CO2 flow over the system unhindered. The adsorbent grabs 

CO2 through its surface. Once the balancing condition is reached, the duplicated adsorbent can be employed 

for the following one in CO2 intake. Pressure swing adsorption is a technique that includes controlling 

pressure to improve both the absorption and desorption of CO2 by the adsorbent, to separate CO2 from a 

gas mixture. The technique will occur until the necessary amount of CO2 removal is accomplished, at which 

point the gas mixture will exit the adsorbent bed with a decreased concentration of CO2 (Siqueira et al., 

2017). When optimizing adsorption processes, it is necessary to solve difficult problems that involve 

multiple variables. Modeling non-linear interactions among parameters, predicting breakthrough curves, 

and optimizing PSA cycle times and operating conditions are all possible with the help of artificial 

intelligence and machine learning techniques. 

The performance of the system is heavily dependent on the following factors, regardless of the capture 

technology: 

• The selection of the material for the membrane, the adsorbent, or the solvent 

• Temperature, pressure, and flow rate are examples of operating parameters. 

• In terms of energy efficiency and the capacity for regeneration. 

To optimize these variables, techniques based on artificial intelligence play a crucial role. This study 

highlights a growing corpus of work that employs artificial intelligence to enhance the scalability, 

responsiveness, and sustainability of carbon capture systems.  

3. RESULTS AND DISCUSSIONS 

3.1. Technologies for sequestering carbon  

Deep-ground injection, ocean storage, and improved oil recovery (EOR) are main approaches of carbon 

sequestration (Alvarado and Manrique, 2010; Lemieux, 2011). Deep-ground injection involves using 

geological formations to store CO2, while ocean storage takes advantage of the vast carbon-absorbing 

capacity of the oceans. Enhanced oil recovery (EOR) combines CO2 storage with the practical generation 

of energy. These several techniques demonstrate the complex endeavors to tackle carbon emissions, with 

each strategy employing distinct natural and technological mechanisms to reduce atmospheric CO2. Deep 

ground injection is a procedure in which carbon dioxide (CO2) is crushed and injected into geological 
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formations located beneath the surface of the Earth. As a result of the intense pressure and temperature at 

extreme depths, the CO2 frequently becomes supercritical, leading to improved storage efficiency because 

of its higher density (Bloom Energy, 2024). Trapping by structural means beneath impermeable caprocks, 

residual trapping within rock fissures, solubility trapping as CO2 dissolves in water, and mineral trapping 

as it combines with minerals to produce stable carbonates are some of the methods that sequester CO2 over 

time. The integrity and continuity of caprocks are essential for structural entrapment, as they serve as seals 

that prevent upward migration (Arif et al., 2016). Residual trapping is a process that effectively prevents 

migration by utilizing capillary forces to hold CO2 in the pore spaces, even if the structural trap is 

compromised (El-Maghraby and Blunt, 2013). Carbonic acid is produced when CO2 dissolves in formation 

water during solubility trapping. This process also reduces buoyancy and leakage potential by re-acting to 

generate bicarbonate ions (Adamczyk et al., 2009). Mineral trapping refers to the process in which carbon 

dioxide (CO2) reacts with minerals in the formation and forms stable carbonate minerals. This reaction 

occurs over a long period and helps to improve the long-term security of CO2 storage (Soong et al., 2004). 

The longevity of this method's ability to store huge volumes of CO2 is heavily contingent upon geological 

and technical conditions. The fissures in the rock, which might be worsened by seismic activity, have the 

potential to weaken this seal, resulting in the release of CO2 back into the environment (Blake et al., 2022). 

Furthermore, permanent sequestration is complicated by the substantial technical challenges associated 

with the monitoring and verification of stored CO2. 

Table 3: Machine Learning approaches: Advantages and Limitations 

 

ML Model 

Typical Use 

in CO₂ 

Capture 
Advantages Limitations References 

Artificial Neural 

Networks (ANN) 

Prediction of 

energy use, 
solvent 

recovery, 

system 

optimization 

High predictive accuracy; 

handles non-linear 
systems well 

Prone to overfitting; 

requires large 
datasets 

(Alabdraba et 

al., 2017) 

Support Vector 

Machines (SVM) 

Classifying 

optimal 

operating 
conditions, 

CO₂ 

selectivity 
prediction 

Effective in high-

dimensional space; good 

for 
classification/regression 

Computationally 
intensive; kernel 

selection is critical 

(Afkhamipour 

and Mofarahi, 

2016) 

Random Forest 
(RF) 

Sensitivity 

analysis, 

feature 

Robust to noise; handles 
missing data well 

Less interpretable; 

can be slow for 

large datasets 

(Chen et al., 

2021) 
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importance 

ranking 

Gradient Boosting 

Machines (e.g., 

XGBoost) 

Performance 

prediction 
and fault 

detection 

High accuracy; handles 
heterogeneous data 

Risk of overfitting; 
tuning complexity 

(Zhang et al., 

2022) 

Reinforcement 

Learning (RL) 

Dynamic 
control 

system 

optimization 

Suitable for real-time 

control and adaptive 
optimization 

Limited industrial 
deployment; needs 

well-defined reward 

structures 

(Moradi et al., 
2022) 

Hybrid AI models 

(e.g., ANN+GA, 

SVM+PSO) 

Optimizing 

operating 

conditions 

Combines benefits of 

multiple techniques for 

improved optimization 

Complex to 

implement and 

validate 

(Ehteram et 

al., 2021) 

 

3.2. AI-based carbon capture applications 

As computer technology has improved significantly over the last two decades, numerical simulation of 

processes has grown in importance and popularity across a wide range of engineering and academic 

disciplines. Many researchers are presently investigating artificial intelligence (AI) technologies, namely 

machine learning approaches, because of their potential as attractive alternative solutions (Alabdraba et al., 

2017). Significant post-combustion CO2 collecting facilities such as TMC Mongstad in Norway and BD3 

SaskPower in Canada generate large amounts of operating process data. This information can be used as a 

great source of input to create knowledge meant to enhance the CO2 capture mechanism (Chan and Chan, 

2017). Artificial neural networks or ANN are one of the widely utilized and popular techniques of artificial 

intelligence applied for mass transfer and property prediction in the CO2 capture process; this can be due to 

several factors. Quick formulation of the ANN predictive models including several parameters is possible. 

They possess a great degree of adaptability and often yield more accurate outcomes compared to numerical 

simulations and correlations (Li et al., 2015). The ANN method is briefly introduced as follows. Fig. 1 

shows the smart carbon capture technologies and its utilization.   
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Fig. 1: Smart carbon capture technologies and utilisation 

In its input and output data, an Artificial Neural Network (ANN) model can display both linear and non-

linear relationships (Fu et al., 2014). The network has many processing units that work at the same time 

and are linked to each other. These are called neurons, and they are based on the nervous system of the 

human brain and biological neurons (Mohagheghian et al., 2015). The neuron units in the adjacent layers 

are fully coupled to every neuron in the hidden layer. The following formula can be used to determine each 

neuron's output (yj). Functions such as sigmoid, piecework linear, radial basis, and Gaussian are among the 

many activation or transfer functions. (Adeyemi et al., 2018). Utilising either the sigmoid or hyperbolic 

functions as the concealed activation mechanism, the multilayer perceptron is the most frequently employed 

feedforward neural network (Chan and Chan, 2017). AI applications in CO₂ capture now encounter a 

number of significant constraints: 
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• For CO₂ capture procedures at the plant size, there is a lack of high-quality datasets, particularly 

for more recent technologies such as membranes. 

• The inability to generalize from small training sets is a common problem with many ML models, 

especially DNNs. 

• Adaptability in real-time, reaction with minimal latency, and integration with existing control 

systems are essential for using AI in dynamic industrial environments. 

• Companies that place a premium on safety may be hesitant to use black-box models like ANN 

because of the lack of understanding they provide on process dynamics. 

• Retraining or substantial recalibration may be necessary to make models trained on data from lab-

scale plants work well on data from full-scale plants. 

 

3.3. AI's application to physical attributes and solubility 

The physical and chemical properties of CO2 and amines, such as their viscosity, density, heat capacity, 

rate of reaction, diffusivity, and conductivity, can substantially influence the efficiency and effectiveness 

of the carbon capture process in CCS (Tantikhajorngosol et al., 2019). The properties are frequently utilized 

in the process simulations of the CO2 capture process and are necessary for the calculation of heat duty. 

The properties' values are frequently determined by measuring them in a laboratory environment with costly 

instruments (Pouryousefi et al., 2016). However, the experiments and the collection of experimental sample 

data require a high level of expertise and a comprehensive understanding of the process. The process of 

capturing data is intricate and time-consuming, often involving repetitive procedures (Adeyemi et al., 

2018). 

Based on notable empirical and semi-empirical connections, numerical simulations and models tend to be 

a simpler way to find the values of the features than the experimental technique (Fu et al., 2014; 

Mohagheghian et al., 2015). However, there are several downsides to the modeling technique, including: 

(i) The correlations can't capture the non-linear relationships between the parameters, (ii) there needs to be 

a guarantee of access to massive amounts of data, (iii) function evaluations need to be carried out to ensure 

the models and numerical simulations are correct, (iv) it might take a lot of computing power to come up 

with the solutions, (v) there's a chance that the models and simulations made for certain conditions won't 

work outside of those parameters, and (vi) The unfavorable characteristics of gases and amines might 

complicate computations relying on correlations (Bahadori and Mokhatab, 2008; Zhou et al., 2009). Many 

studies have proposed using machine-learning methods such as artificial neural networks (ANN) and 

Support Vector machines (SVM) to forecast several properties connected with the CO2 capture process to 

solve these problems (Afkhamipour and Mofarahi, 2016). 
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Baghban et al. (2015) created artificial neural network (ANN) and adaptive neuro-fuzzy inference system 

(ANFIS) models to accurately predict the solubility of CO2 in the carbon capture process (Baghban et al., 

2015). These models are capable of giving precise predictions across a wide range of temperatures, 

pressures, and concentrations. The CO₂ concentration was the output variable, with the following variables 

serving as inputs: acentric factor, molecular weight, critical pressure, temperature, and pressure. The 

solubility of CO2 in aqueous solutions of TBAB was predicted using RBFNN and ANFIS (Hoseinpour et 

al., 2018). The CO2 solubility served as the end parameter; mass, mole percent of TBAB, temperature, and 

pressure were the study's inputs. Accuracy of the AI models' predictions was confirmed using statistical 

and graphical analytic methods. The CO2 solubility in the aqueous sodium salt of L-phenylalanine was 

precisely predicted by the ANN model employing Lvenberg-Marquardt (LM) (Garg et al., 2017). When 

contrasted with the solubility predictions offered by the Kent-Eisenberg model, the results produced by 

Artificial Neural Networks (ANN) showed a higher degree of agreement with the experimental data. The 

integration of genetic algorithm with least square support vector machine (GA-LSSVM) enabled precise 

predictions of hydrocarbon solubility in water (Helei et al., 2021). 

3.4. AI application for CO2 mass transfer  

For designing, simulating, and improving the CO2 collection process, it is especially important to get 

accurate measurements of the rate of mass transfer. Over the past fifteen years, experts have looked into 

how artificial intelligence (AI) can be used to copy the process of moving mass and test how well CO2 can 

be captured. The purpose of this study is to come up with accurate and reliable estimates of how fast mass 

moves (Meesattham et al., 2020). Predicting properties like CO2 concentration, temperature, heat duty, and 

removal efficiency is a common focus in these applications. In contrast, the CO2 collection process's 

conditions are the input predictors (Afkhamipour and Mofarahi, 2016; Fu et al., 2014). The research 

comprised of several crucial elements: soliciting input from experts regarding the intricate 

interdependencies among the parameters required for particular algorithms, building artificial neural 

networks (ANNs), fine-tuning the internal connection weights to minimize disparities between the inputs 

to the network and the desired output, and optimizing the networks handle weird data that doesn't fit in with 

the training samples. Moreover, the tests produced a limited sample of data that accurately represents the 

population. Here are some instances of sample investigations. The current research states that hybrid models 

integrating experimental and simulation datasets have improved the prediction of CO₂ transfer coefficients. 

To illustrate the point, accurate estimates of total mass transfer rates in absorber columns have been 

achieved by estimating Sherwood and Reynolds numbers using ANN+PSO models (Hoseinpour et al., 

2018). 
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3.5. The potential and difficulties of AI-assisted carbon capture  

An estimated 53 gigatonnes of CO2 equivalent of greenhouse gas emissions have been released into the 

atmosphere worldwide, intensifying the already severe climate change. The primary objective of the 2016 

Paris Agreement is to limit the rise in average global temperatures to 1.5 °C. By the conclusion of this 

decade, emissions must be diminished by 50% in order to accomplish this objective. Artificial intelligence 

is believed to be capable of achieving a reduction of 5% to 10% of the required reduction, which is within 

the range of 2.6 to 5.3 giga tonnes of CO2 equivalent (Degot et al., 2021). An important advantage of AI-

assisted carbon capture is its ability to significantly decrease the expense associated with capturing CO2. 

Artificial intelligence algorithms can analyze vast quantities of data in real time, resulting in enhanced 

performance of CO2 capture systems while being efficient and cost-effective. AI-assisted CO2 capture 

enhances the reliability and accuracy of the CO2 capture system. Artificial intelligence algorithms are 

capable of observing and evaluating the operation of CO2 extraction devices, and they can make immediate 

adjustments to enhance efficiency. This can reduce the likelihood of costly malfunctions and guarantee the 

system's ongoing functionality. A novel AI-based instrument has been recently created by a team of 

scientists to facilitate the faster and more precise locking of greenhouse gases, including CO2, in porous 

rock formations with unprecedented speed. The Fourier neural operator-based deep-learning model, a 

unique neural operator architecture, was employed to efficiently mimic pressure levels in carbon storage. 

This model significantly improved the precision of specific jobs, enabling scientists to identify the most 

efficient injection rates and sites with twice the accuracy (Wen et al., 2022). The use of artificial intelligence 

(AI) in carbon capture has shown promise in the lab, but practical implementations have been slow to 

materialize. Compact carbon capture systems assisted by artificial intelligence have been created by Carbon 

Clean for use in small and medium-scale companies. To achieve zero-emission power generation, Net 

Power incorporates predictive controls powered by artificial intelligence into its Allam Cycle technology. 

As part of their goal to remove carbon emissions, Microsoft and Climeworks, a software company, have 

invested in direct air capture (DAC) systems that are powered by artificial intelligence (AI). The shift from 

AI models in labs to real-world control systems in manufacturing is illustrated by these examples (Allam 

et al., 2017). 

3.6. AI application in the future for the complete process of CO2 capture 

Artificial intelligence technology enables accurate predictions of the entire CO2 capture process, 

encompassing the absorber and desorber columns and the rich/lean amine heat exchanger. In their study, 

Sipocz et al. applied artificial neural networks (ANNs) to model the complex relationships between input 

and output parameters in a post-combustion CO2 capture system that utilizes amines (Sipöcz et al., 2011). 
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A rate-based process simulation (CO2SIM) was implemented to generate the data required for the training 

and validation of the ANN. Lean loading, circulation rate, temperature, mass percentage of CO2 in the inlet 

gas, removal efficiency, inlet gas flow rate, and inlet gas percentage were all input data that may be used as 

predictors. The anticipated or resulting parameters were: (i) the pace at which CO2 was caught, (ii) the 

amount of CO2 absorbed, and (iii) the amount of heat required for the operation. The investigation used the 

LM and Scaled Conjugate Gradient (CG) algorithms to improve the accuracy of the predictions. The study 

found that the LM approach produced the most accurate forecasts for all three parameters. Pre-designing a 

power plant that could capture CO2 relied on these anticipated values (Aliyon et al., 2023). Figure 1 shows 

the SWOT Analysis of AI Applications in CO₂ Capture Technologies.  

Emphasizing Research Needs and Prospects: 

There are still significant research gaps, even though we've made a lot of progress: 

• There is an immediate need to develop publicly available benchmark datasets for CO₂ capture 

across various processes and scales. 

• Improved industrial trust and transparency can be achieved through explainable AI, which aims to 

make AI models more interpretable. 

• Combining artificial intelligence with digital twins, which are representations of processes in real 

time, is an exciting new development in the field of predictive control and problem detection. 

• Few studies have combined artificial intelligence with energy-economic or life cycle models to 

evaluate CO₂ capture strategies in a comprehensive manner. 

• Artificial intelligence for multi-objective optimization: little is known about how to optimise cost, 

energy, emissions, and operability all at once. 
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Fig. 2: SWOT Analysis: AI Applications in CO₂ Capture Technologies 

 

4. Conclusion 

Modelling studies that attempt to predict the physical and chemical properties of the PCC process account 

for a large portion of the work; this study has also updated research activity on artificial intelligence 

applications in PCC technology. Artificial intelligence methodology typically outperforms numerical 

simulation and empirical correlation techniques in terms of speed and accuracy.  Furthermore, helping with 

design and PCC technology optimization is the artificial intelligence technology. There is a substantial need 

for additional study in the area of using artificial intelligence to PCC. Hence, it is imperative to foster 

collaboration between PCC specialists and AI researchers to advance research in this field. This study 

utilizes surrogate machine learning models to estimate the energy and cooling utility consumption of an 

ACC process plant. The results indicate that surrogate machine learning models have significant potential 

for application in energy operations. Furthermore, studies suggest that specific models exhibit superior 

performance when provided with a limited number of data points, while other models outperform others 

when given a reduced number of input sets. Based on the data that is now accessible, one model may exhibit 

more superiority compared to the other. The economic viability of carbon capture technologies is on the 

rise. It is imperative to evaluate the most efficient and viable technology to minimize CO2 emissions and 

achieve optimal CO2 removal, taking into account economic and energy considerations. Furthermore, 
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optimal outcomes can be attained by integrating a diverse range of machine and deep learning models with 

hybrid models. As technological advancements progress, artificial intelligence techniques are likely to offer 

advantages in the field of CO2 capture. Artificial intelligence models possess the capacity to produce 

accurate outcomes by leveraging their capability to estimate variables and acquire knowledge from data. 

Despite the growing use of these algorithms in current research, further work is needed to improve their 

capacities to simultaneously manage combustion and CO2 capture systems to obtain the best possible 

performance. The fusion of oxy-fuel combustion technology and artificial intelligence is one example of 

such a system. This process involves the combustion of fuel with oxygen, instead of air, which leads to the 

generation of a stream of CO2 that can be gathered and stored. Artificial intelligence can enhance the oxygen 

combustion process by accurately predicting the ideal conditions for CO2 capture and burning, thus 

maximizing efficiency.  

As covered in the section before, some possible CO2 capture methods include customised greenhouse gas 

absorbing devices and artificial intelligence-assisted output stream control. Many more approaches could 

help to speed down CO2 emissions attempts; however, researchers must find a good approach to allow a 

route to see the expansion of this industry. Analysing the implementation of artificial intelligence in the 

field of patent landscape analysis and CO2 capture will provide carbon capture professionals with new 

insights. The development of emerging AI technologies will facilitate the realisation of our future goals by 

enabling precise and instantaneous prediction. 
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