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ABSTRACT

Achieving the Sustainable Development Goals depends on the industrial sector decarbonizing since it still
contributes most to world greenhouse gas emissions and energy consumption. Reducing emissions from
fossil fuel-based energy systems depends critically on carbon capture—especially post-combustion carbon
capture (PCC). Absorption-based carbon capture (ACC) is the most developed and extensively applied of
the PCC systems. But ACC systems are quite energy-intensive and need for major heating and cooling
utilities, which increases running costs and makes large-scale adoption difficult. This paper investigates
current developments in carbon capture technology and emphasizes artificial intelligence (Al) integration
to handle optimization difficulties. More especially, it suggests an artificial intelligence-based approach for
improving ACC system design and operation and utility consumption forecast. Al-driven solutions can
promote scalable, reasonably priced carbon capture technologies by allowing accurate, fast assessments of
technical and financial viability. This research emphasizes how artificial intelligence might hasten the shift
toward more environmentally friendly industrial methods and significantly support world climate action
targets (SDG 13).

INTRODUCTION

In recent years, extreme weather events, including heatwaves, droughts, wildfires, hurricanes, and flooding,
have become increasingly severe, resulting in substantial damage to human life, infrastructure, and
ecosystems (Cotterill et al., 2021; Jain et al., 2022). The World Meteorological Organization (WMO)
projected that severe weather events had caused over 2 million fatalities and US$4.3 trillion in economic
damages from 1970 to 202. Global warming and anthropogenic carbon emissions are widely acknowledged
as the causes of the escalating frequency and severity of extreme weather events, even though the attribution
of individual events is frequently a topic of debate (Bellprat et al., 2019; Schiermeier, 2018). With 29.4%
of all greenhouse gas emissions coming from energy usage in industry and direct industrial processes,
industry is the sector with the highest carbon emissions. Consequently, it is imperative and crucial to
implement industry decarbonization to mitigate extreme weather events. Energy efficiency improvement,
carbon capture, and hydrogen energy are some of the primary techniques for industrial decarbonization

(Baker et al., 2018; Ritchie and Roser, 2024; Schiermeier, 2018).

Carbon emissions can be reduced by implementing strategies such as improving energy structure,
electrification, decreasing excessive energy usage, and carbon sequestration. Carbon dioxide capture and
storage (CCS) is a method that utilises pipeline transportation to extract carbon dioxide (CO>) from the
atmosphere or industrial waste gas and store it in the ocean or underground at a significant concentration.
This process has the potential to reduce the concentration of CO> in the atmosphere (X. Zhang et al., 2021).

Nevertheless, its development is constrained by the high cost and the potential long-term environmental
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impact. In recent years, the field of CO, capture and utilisation (CCU) has garnered a growing interest as a

result of its capacity to convert CO, into value-added products through chemical conversion, including

thermal, electrical, and photocatalysis techniques (Liang et al., 2021; Moss et al., 2017). Table 1 summarises

the relevant carbon dioxide capture and utilisation technologies concerning their features, benefits, and

drawbacks. By capturing and using CO: gas on-site, the integrated carbon dioxide capture and utilisation

(ICCU) system makes CO:2 use efficient and economical by lowering transportation and compression costs

(Guo et al., 2023).

Table 1: An overview of CO; collecting and use technologies

Technology Description Advantages Disadvantages References
By combusting fuel Itispossibleto The generation (Martin et
with either pure store things of oxygen has a al., 2011)
Capture of oxygen  or a directly high cqst and is
combination of susceptible to air
oxyfuel leak
combustion oxygen, the carbon eakage
dioxide (CO,) in the
exhaust gas can be
captured
Before burning fuel Significant Require the (Martin et
derived from CO; enhancement of al., 2011)
carbon, separate concentration  the existing
Pre-combustion other combustibles and effortless power plant, a
capture from CO, separation task  that is
challenging and
entails
Technology significant
to collect . . . expenses
Gas mixtures can be high yield and significant Guo et al.,
CcO ghy g
: Absorption separated based on elevated CO, energy usage, 2023)
separation their varying concentration  significant
solubility equipment
investment
The separation of Flexible Inorganic (Guetal.,
gas mixtures is operation, adsorbents 2015; Tang
Post- . .
combustion achieved by safety, and exhibit poor etal.,
exploiting the affordability selectivity and 2022)
capture . .l .
. distinct binding unpredictable
adsorption
. force between gases performance
separation
and porous
materials
Utilize variations in  High restricted (Yan et al.,
Membrane solubility and selectivity application, 2012)
separation diffusivity to with low weak stability

capture

energy usage
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Solar radiation is low usage of minimal (Ishaq et
employed to energy efficiency of al., 2021)
Solar generate a robust conversion
thermochemical endof[hernnc .
. reaction that is
conversion :
technology suitable for
utilization by
driving CO, and
H.O
The voltage flexible Electrocatalyst (Meng et
difference between running instability and al., 2021)
Electrochemical the two electrodes circumstances, elevated energy
Technology conversion is what drives the moderate consumption
for using reduction of carbon reaction
CO; dioxide into environment
compounds
Chemical bond cheap cost and Improvements (Rahimi et
. formation and excellent are needed in al,2016)
Catalytic .
conversion breakage are safety stability and
facilitated by the conversion
employment of efficiency
catalysts
The absorption of moderate low light energy (GUO et
. thermal energy and reaction utilization rate al., 2023)
Photochemical L . .
. the overriding of circumstances efficiency and
conversion

activation  energy and potent control issues
facilitate the CO, oxidation
conversion reaction capacity

An essential part of carbon capture, use, and storage (CCUS) to reduce greenhouse gas emissions and meet
climate objectives is geological carbon storage (GCS) (Ringrose and Meckel, 2019). With the potential to
manage over 220 Mton of CO, annually, project developers expect to put more than 200 new capture and
storage facilities into operational globally by 2030, according to the International Energy Agency (IEA)
(Lin et al., 2022). Because one of the biggest CCUS projects to date, the water alternating gas (WAG)
injection project in the Brazilian Pre-Salt, has only injected 20 Mton of CO, over a decade into the four
largest carbonate reservoirs in Brazil, or less than 10% of the IEA target, it is important to put this ambitious
goal into perspective. When fossil fuels are burned, carbon dioxide (CO,) is released into the atmosphere.
This quantity of CO; increases as the global energy consumption increases to support our energy-intensive
activities (Seabra et al., 2024). For the foreseeable future, fossil fuels will remain the primary source of
energy in the globe, despite the grave environmental problems that are often linked to CO; emissions.
Numerous carbon dioxide storage locations are found in geologically intricate formations, such as

channelized reservoirs or fractured carbonate rocks (March et al., 2018). Consequently, it is imperative to
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identify and develop a technological solution that is both feasible and effective in reducing the emission of

carbon dioxide into the atmosphere.

Most carbon capture and storage methods involve either post-combustion carbon capture, oxyfuel
combustion carbon capture, or pre-combustion carbon capture. The development and deployment of
combustion systems that are suitable for their intended purpose are necessary for both pre-combustion and
oxyfuel carbon capture (Al-Hamed and Dincer, 2022; Park et al., 2015). Alternatively, post-combustion
carbon capture technology may be used to upgrade and modify already existing fossil-fuel burning facilities
(Khalilpour, 2014). Thus, it may reduce emissions without replacing infrastructure (Aliyon et al., 2020).
Absorption, adsorption, and membrane separation are the three most prevalent methods for capturing

carbon after burning (Akinola et al., 2022; Aliyon et al., 2020; H. Zhang et al., 2021).

This work develops a substitute machine learning (SML) model to predict the heating and cooling utility
consumption of ACC plants using machine learning (ML) techniques. System engineering models are
enhanced or replaced by SML models. SML models outperform engineering models in a number of ways,
such as quick running times, robustness in predicting system performance that engineering models are
unable to fully capture, robustness in predicting system performance as components age, ability to make
predictions without in-depth knowledge of the system, and ability to make predictions with few inputs
(Chegari et al., 2022; Li et al., 2022; Spinti et al., 2022; H. Zhang et al., 2021). This work uses SML models
to provide rapid and accessible utility consumption prediction models to help build energy-efficient ACC
procedures.

Active sites for CO, adsorption and conversion are the primary components of dual function materials,
which facilitate the adsorption, desorption, and in-situ conversion of CO,. Due to the tendency of fresh
dual function material samples to absorb carbon dioxide and water from the surrounding air, it is often
necessary to perform a pre-reduction step prior to the reaction (Bermejo-Lopez et al., 2022). Initially, CO,
is drawn in at a particular temperature until the adsorbent is fully absorbed. Second, the adsorbed CO; in
the saturated materials interacts with hydrogen to form CHs when they are placed in a reducing
environment. The integrated carbon dioxide capture and methanation procedure is primarily composed of
this two-step process (Dongbo and Xiangwei, 2022). Carbon dioxide can be consistently captured and
transformed in a single reactor throughout multiple cycles. The reaction exhibits favorable cyclic
performance and can be conducted at a moderate temperature of approximately 300°C. This streamlines
the procedure and improves energy efficiency. The integrated carbon dioxide capture and utilization
(ICCU) technology has gained significant attention due to its ability to efficiently convert carbon dioxide

into fuels, such as carbon, using dual-function materials. This approach delivers high efficiency with little
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energy usage by combining carbon dioxide adsorption and in-situ conversion (Guo et al., 2023). Table 2

represents the various reviews that have used ML within the ACC.

Table 2: Literature reviews that have used ML within the ACC

Data
ML Purpose Model Inputs Model Generation
model(s) Outputs References
Software
An
ensemble
neural Flow rate of flue gas,
network
using pressure,
. temperature, and
bootstrap Forecasting .
aggregation the concentration of (Li et al
geree ’ . CO2; flow rate and Efficiency in gPROMS °
often efficiency of 2015)
temperature of lean CO; capture
known as CO; capture Auid: .
bagging uid; concentration
> ’ of MEA; and
with a
single-layer temperature of the
reboiler
neural
network
The flow rate
Predicting Temperature, CO, of captured
Single-layer the specified  concentration, lean CO: plus the
neural duty of a load, removal specific duty of CO2SIM (Sipocz et
network reboiler and efficiency, solvent the reboiler al., 2011)
the rich circulation rate, and  plus a solvent-
loading flue gas flow rate rich load
Flow rate of flue gas,
pressure,
Forecastin temperature, and
Network of the & concentration of Efficiency in (Li et al
profound . CO2; flow rate and y gPROMS "
. efficiency of CO; capture 2018)
convictions temperature of lean
CO; capture L .
fluid; concentration
of MEA; and
temperature of the
reboiler
The Flow rate of flue gas,
extreme Forecasting pressure,
leamlng -the temperatur.e, and Efficiency in ePROMS (Lietal.,
machine is  efficiency of concentration of CO,» capture 2017)
used to CO2 capture  COy; flow rate and 2¢ap
build a temperature of lean

bootstrap

fluid; concentration
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combined of MEA; and
neural temperature of the
network reboiler
with a
single layer
neural
network.

. Improvement The flow rates of ~ Amount of CO»
Single-layer

meural of lean solvent, ﬂue collection plus sPROMS (Wu et al.,
network operational gas, and reboiler the temperature (2CCS module) 2020)
control steam of the reboiler
factors such as Total work for
reboiler and reboilers,
A single- condenser condensers, and
layer neural ~Optimisation respon51b111tles, amine coolers, aPROMS (Shalaby et
network and  of processes reboiler pressure, plus the rate of
al., 2021)
a few other flow rate, capture, plus
components temperature, and flue  the purity of
gas pressure CO,

Carbon capture research is primarily focused on developing new methods to reduce the cost of CO;
collection. Some of the methods used are coming up with new solvents, using catalysts to make old solvents
stronger, applying artificial intelligence to the CO; capture process, and coming up with new ways to repair
things. This session will thoroughly examine several approaches to determine the column height of the CO2
absorbent. Some of the methods that are used are empirical design, theoretical design, laboratory and pilot
plant processes, and so on. This review is based on the idea of using Al to help catch CO,. The coming
together of many Al programs. The potential for Al-assisted CO; collecting is examined, along with the

difficulties involved.
2. MATERIALS AND METHODS

2.1. A summary of the process of capturing carbon dioxide

Extensive research has been conducted on CO: capture systems, which are crucial in reducing industrial
carbon emissions. Among the most significant contributors to carbon monoxide emissions are high-
temperature industrial activities, which include the manufacturing of steel, cement, oil, and gas. Post-
combustion capture technologies, more especially absorption, adsorption, and membrane separation, are
among the many ways that have been extensively researched and utilized (Chao et al., 2021). Amine-based
chemical absorption is the post-combustion capture method that has the greatest documented track record

and is potentially economically viable. This technique involves the utilization of amine solvents that are
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aqueous in order to selectively absorb carbon monoxide from exhaust gasses (Raganati et al., 2021). In real
time, intelligent control systems that make use of artificial intelligence are able to monitor membrane
performance, identify fouling or degradation, and dynamically alter operating settings. Models that are
driven by data also provide support for the selection of materials and the creation of hybrid systems (for

example, coupling membranes with adsorption or absorption).

The procedure involves absorbing CO; from flue gas with an amine solvent and then separating the CO»
from the solvent using a stripping column. The solvent is recycled back into the absorber, and the
concentrated COs is collected for storage or use after it has been extracted (Yamada, 2021). The capture of
CO; is essential in petrochemical activities, particularly in the production of ammonia, due to the significant
volume of CO, emissions produced during the process (Takht Ravanchi and Sahebdelfar, 2014). It is
common practice to implement this cycle process in large-scale industrial processes, such as the processing
of natural gas and the manufacturing of ammonia, when the amount of carbon dioxide produced is
significant. The solvent-based approach is frequently followed by the sorbent method. At present, fewer
than a third of the processes are implemented membrane-based. In the collection of CO; through absorption,
adsorption, and membrane separation technologies, the selection of a solvent, adsorbent, or membrane
material, as well as the optimization of operating pressure and temperature, are all critical operational
factors. These characteristics significantly influence the efficiency and efficacy of the capture process;
therefore, it is necessary to conduct a comprehensive selection and optimisation of these parameters to
achieve the desired results. The subsequent discourse will provide a comprehensive examination of the
diverse techniques for CO; capture, including membrane-based, adsorption, and absorption (Priya et al.,

2023).

Adsorption is a relatively new alternative to absorption that offers a number of benefits similar to those of
absorption, including reduced energy usage and simpler regeneration. Carbon monoxide molecules are able
to attach themselves to the surface of a solid porous substance, which is referred to as an adsorbent, in this
approach. Temperature, pressure, pore size, surface area, and adsorption kinetics are some of the key
operating parameters that have a significant impact on performance. High CO, selectivity, rapid adsorption
and desorption rates, mechanical durability, and economic viability for regeneration are only few of the
characteristics that should be present in effective adsorbents (Abd et al., 2020). Systems that are based on
absorption consume a significant amount of energy, particularly because of the requirements for thermal
regeneration. Predicting the performance of a solvent, optimizing the amount of energy required for
regeneration, and simulating the behavior of a process under a variety of different operating circumstances

are all possible applications of artificial intelligence models. It is possible to considerably improve the
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design and control of absorption systems in terms of energy efficiency and economic feasibility by utilizing

Al-driven predictive modeling.

Additionally, the adsorbent material must fulfill the operational and budgetary requirements for efficient
CO; removal by demonstrating CO, selectivity, rapid adsorption and desorption kinetics, sufficient
mechanical strength, and economically feasible regeneration (Abd et al., 2020). Most of the area in the
column is occupied by the adsorbent, which lets CO, flow over the system unhindered. The adsorbent grabs
CO; through its surface. Once the balancing condition is reached, the duplicated adsorbent can be employed
for the following one in CO; intake. Pressure swing adsorption is a technique that includes controlling
pressure to improve both the absorption and desorption of CO, by the adsorbent, to separate CO, from a
gas mixture. The technique will occur until the necessary amount of CO, removal is accomplished, at which
point the gas mixture will exit the adsorbent bed with a decreased concentration of CO, (Siqueira et al.,
2017). When optimizing adsorption processes, it is necessary to solve difficult problems that involve
multiple variables. Modeling non-linear interactions among parameters, predicting breakthrough curves,
and optimizing PSA cycle times and operating conditions are all possible with the help of artificial

intelligence and machine learning techniques.

The performance of the system is heavily dependent on the following factors, regardless of the capture
technology:

e The selection of the material for the membrane, the adsorbent, or the solvent

o Temperature, pressure, and flow rate are examples of operating parameters.

e In terms of energy efficiency and the capacity for regeneration.
To optimize these variables, techniques based on artificial intelligence play a crucial role. This study
highlights a growing corpus of work that employs artificial intelligence to enhance the scalability,
responsiveness, and sustainability of carbon capture systems.

3. RESULTS AND DISCUSSIONS

3.1. Technologies for sequestering carbon

Deep-ground injection, ocean storage, and improved oil recovery (EOR) are main approaches of carbon
sequestration (Alvarado and Manrique, 2010; Lemieux, 2011). Deep-ground injection involves using
geological formations to store CO2, while ocean storage takes advantage of the vast carbon-absorbing
capacity of the oceans. Enhanced oil recovery (EOR) combines CO; storage with the practical generation
of energy. These several techniques demonstrate the complex endeavors to tackle carbon emissions, with
each strategy employing distinct natural and technological mechanisms to reduce atmospheric CO,. Deep

ground injection is a procedure in which carbon dioxide (CO») is crushed and injected into geological
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formations located beneath the surface of the Earth. As a result of the intense pressure and temperature at
extreme depths, the CO; frequently becomes supercritical, leading to improved storage efficiency because
of its higher density (Bloom Energy, 2024). Trapping by structural means beneath impermeable caprocks,
residual trapping within rock fissures, solubility trapping as CO, dissolves in water, and mineral trapping
as it combines with minerals to produce stable carbonates are some of the methods that sequester CO; over
time. The integrity and continuity of caprocks are essential for structural entrapment, as they serve as seals
that prevent upward migration (Arif et al., 2016). Residual trapping is a process that effectively prevents
migration by utilizing capillary forces to hold CO, in the pore spaces, even if the structural trap is
compromised (El-Maghraby and Blunt, 2013). Carbonic acid is produced when CO, dissolves in formation
water during solubility trapping. This process also reduces buoyancy and leakage potential by re-acting to
generate bicarbonate ions (Adamczyk et al., 2009). Mineral trapping refers to the process in which carbon
dioxide (CO,) reacts with minerals in the formation and forms stable carbonate minerals. This reaction
occurs over a long period and helps to improve the long-term security of CO» storage (Soong et al., 2004).
The longevity of this method's ability to store huge volumes of CO: is heavily contingent upon geological
and technical conditions. The fissures in the rock, which might be worsened by seismic activity, have the
potential to weaken this seal, resulting in the release of CO; back into the environment (Blake et al., 2022).
Furthermore, permanent sequestration is complicated by the substantial technical challenges associated

with the monitoring and verification of stored CO».

Table 3: Machine Learning approaches: Advantages and Limitations

Typical Use
ML Model in CO: Advantages Limitations References
Capture
Prediction of (Alabdraba et
energy use, . L ) . al,2017)
Artificial Neural solvent High predlctlye accuracy; Pron.e to overfitting;
handles non-linear requires large
Networks (ANN) recovery,
systems well datasets
system
optimization
Classifying (Afkhamipour
optimal ST and Mofarahi,
operating Ef fectlYe in high ) Computationally 2016)
Support Vector conditions dimensional space; good intensive: kernel
Machines (SVM) ’ for ’

CO: . . . selection is critical
classification/regression

selectivity
prediction
Random Forest Sens1t1-V1ty Robust to noise; handles Less interpretable; (Chen etal.,
analysis, . can be slow for 2021)
(RF) missing data well
feature large datasets
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importance
ranking
. . Performance (Zhang et al.,
S[r:fﬁ?;letsB(gOStmg prediction High accuracy; handles Risk of overfitting;  2022)
£ and fault heterogeneous data tuning complexity

XGBoost) detection

Dynamic . . Limited industrial (Moradi et al.,

. Suitable for real-time
Reinforcement control . deployment; needs  2022)
Learning (RL) system control and adaptive well-defined reward
¢ o}II)timization optimization structures

Hybrid Al models  Optimizing ~ Combines benefits of Complex to (Ehteram et
(e.g., ANN+GA, operating multiple techniques for implement and al., 2021)
SVM+PS0O) conditions improved optimization validate

3.2. Al-based carbon capture applications

As computer technology has improved significantly over the last two decades, numerical simulation of
processes has grown in importance and popularity across a wide range of engineering and academic
disciplines. Many researchers are presently investigating artificial intelligence (AI) technologies, namely
machine learning approaches, because of their potential as attractive alternative solutions (Alabdraba et al.,
2017). Significant post-combustion CO; collecting facilities such as TMC Mongstad in Norway and BD3
SaskPower in Canada generate large amounts of operating process data. This information can be used as a
great source of input to create knowledge meant to enhance the CO; capture mechanism (Chan and Chan,
2017). Artificial neural networks or ANN are one of the widely utilized and popular techniques of artificial
intelligence applied for mass transfer and property prediction in the CO; capture process; this can be due to
several factors. Quick formulation of the ANN predictive models including several parameters is possible.
They possess a great degree of adaptability and often yield more accurate outcomes compared to numerical
simulations and correlations (Li et al., 2015). The ANN method is briefly introduced as follows. Fig. 1

shows the smart carbon capture technologies and its utilization.
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Fig. 1: Smart carbon capture technologies and utilisation

In its input and output data, an Artificial Neural Network (ANN) model can display both linear and non-
linear relationships (Fu et al., 2014). The network has many processing units that work at the same time
and are linked to each other. These are called neurons, and they are based on the nervous system of the
human brain and biological neurons (Mohagheghian et al., 2015). The neuron units in the adjacent layers
are fully coupled to every neuron in the hidden layer. The following formula can be used to determine each
neuron's output (yj). Functions such as sigmoid, piecework linear, radial basis, and Gaussian are among the
many activation or transfer functions. (Adeyemi et al., 2018). Utilising either the sigmoid or hyperbolic
functions as the concealed activation mechanism, the multilayer perceptron is the most frequently employed
feedforward neural network (Chan and Chan, 2017). Al applications in CO: capture now encounter a

number of significant constraints:
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e For CO: capture procedures at the plant size, there is a lack of high-quality datasets, particularly
for more recent technologies such as membranes.

e The inability to generalize from small training sets is a common problem with many ML models,
especially DNNs.

e Adaptability in real-time, reaction with minimal latency, and integration with existing control
systems are essential for using Al in dynamic industrial environments.

e Companies that place a premium on safety may be hesitant to use black-box models like ANN
because of the lack of understanding they provide on process dynamics.

e Retraining or substantial recalibration may be necessary to make models trained on data from lab-

scale plants work well on data from full-scale plants.

3.3. Al's application to physical attributes and solubility

The physical and chemical properties of CO» and amines, such as their viscosity, density, heat capacity,
rate of reaction, diffusivity, and conductivity, can substantially influence the efficiency and effectiveness
of the carbon capture process in CCS (Tantikhajorngosol et al., 2019). The properties are frequently utilized
in the process simulations of the CO; capture process and are necessary for the calculation of heat duty.
The properties' values are frequently determined by measuring them in a laboratory environment with costly
instruments (Pouryousefi et al., 2016). However, the experiments and the collection of experimental sample
data require a high level of expertise and a comprehensive understanding of the process. The process of
capturing data is intricate and time-consuming, often involving repetitive procedures (Adeyemi et al.,
2018).

Based on notable empirical and semi-empirical connections, numerical simulations and models tend to be
a simpler way to find the values of the features than the experimental technique (Fu et al.,, 2014;
Mohagheghian et al., 2015). However, there are several downsides to the modeling technique, including:
(i) The correlations can't capture the non-linear relationships between the parameters, (ii) there needs to be
a guarantee of access to massive amounts of data, (iii) function evaluations need to be carried out to ensure
the models and numerical simulations are correct, (iv) it might take a lot of computing power to come up
with the solutions, (v) there's a chance that the models and simulations made for certain conditions won't
work outside of those parameters, and (vi) The unfavorable characteristics of gases and amines might
complicate computations relying on correlations (Bahadori and Mokhatab, 2008; Zhou et al., 2009). Many
studies have proposed using machine-learning methods such as artificial neural networks (ANN) and
Support Vector machines (SVM) to forecast several properties connected with the CO; capture process to

solve these problems (Afkhamipour and Mofarahi, 2016).
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Baghban et al. (2015) created artificial neural network (ANN) and adaptive neuro-fuzzy inference system
(ANFIS) models to accurately predict the solubility of CO, in the carbon capture process (Baghban et al.,
2015). These models are capable of giving precise predictions across a wide range of temperatures,
pressures, and concentrations. The CO: concentration was the output variable, with the following variables
serving as inputs: acentric factor, molecular weight, critical pressure, temperature, and pressure. The
solubility of CO; in aqueous solutions of TBAB was predicted using RBFNN and ANFIS (Hoseinpour et
al., 2018). The CO; solubility served as the end parameter; mass, mole percent of TBAB, temperature, and
pressure were the study's inputs. Accuracy of the Al models' predictions was confirmed using statistical
and graphical analytic methods. The CO, solubility in the aqueous sodium salt of L-phenylalanine was
precisely predicted by the ANN model employing Lvenberg-Marquardt (LM) (Garg et al., 2017). When
contrasted with the solubility predictions offered by the Kent-Eisenberg model, the results produced by
Artificial Neural Networks (ANN) showed a higher degree of agreement with the experimental data. The
integration of genetic algorithm with least square support vector machine (GA-LSSVM) enabled precise

predictions of hydrocarbon solubility in water (Helei et al., 2021).

3.4. Al application for CO; mass transfer

For designing, simulating, and improving the CO, collection process, it is especially important to get
accurate measurements of the rate of mass transfer. Over the past fifteen years, experts have looked into
how artificial intelligence (Al) can be used to copy the process of moving mass and test how well CO; can
be captured. The purpose of this study is to come up with accurate and reliable estimates of how fast mass
moves (Meesattham et al., 2020). Predicting properties like CO, concentration, temperature, heat duty, and
removal efficiency is a common focus in these applications. In contrast, the CO, collection process's
conditions are the input predictors (Afkhamipour and Mofarahi, 2016; Fu et al., 2014). The research
comprised of several crucial elements: soliciting input from experts regarding the intricate
interdependencies among the parameters required for particular algorithms, building artificial neural
networks (ANNSs), fine-tuning the internal connection weights to minimize disparities between the inputs
to the network and the desired output, and optimizing the networks handle weird data that doesn't fit in with
the training samples. Moreover, the tests produced a limited sample of data that accurately represents the
population. Here are some instances of sample investigations. The current research states that hybrid models
integrating experimental and simulation datasets have improved the prediction of CO- transfer coefficients.
To illustrate the point, accurate estimates of total mass transfer rates in absorber columns have been
achieved by estimating Sherwood and Reynolds numbers using ANN+PSO models (Hoseinpour et al.,
2018).
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3.5. The potential and difficulties of Al-assisted carbon capture

An estimated 53 gigatonnes of CO, equivalent of greenhouse gas emissions have been released into the
atmosphere worldwide, intensifying the already severe climate change. The primary objective of the 2016
Paris Agreement is to limit the rise in average global temperatures to 1.5 °C. By the conclusion of this
decade, emissions must be diminished by 50% in order to accomplish this objective. Artificial intelligence
is believed to be capable of achieving a reduction of 5% to 10% of the required reduction, which is within
the range of 2.6 to 5.3 giga tonnes of CO, equivalent (Degot et al., 2021). An important advantage of Al-
assisted carbon capture is its ability to significantly decrease the expense associated with capturing CO-.
Artificial intelligence algorithms can analyze vast quantities of data in real time, resulting in enhanced
performance of CO» capture systems while being efficient and cost-effective. Al-assisted CO» capture
enhances the reliability and accuracy of the CO, capture system. Artificial intelligence algorithms are
capable of observing and evaluating the operation of CO, extraction devices, and they can make immediate
adjustments to enhance efficiency. This can reduce the likelihood of costly malfunctions and guarantee the
system's ongoing functionality. A novel Al-based instrument has been recently created by a team of
scientists to facilitate the faster and more precise locking of greenhouse gases, including CO», in porous
rock formations with unprecedented speed. The Fourier neural operator-based deep-learning model, a
unique neural operator architecture, was employed to efficiently mimic pressure levels in carbon storage.
This model significantly improved the precision of specific jobs, enabling scientists to identify the most
efficient injection rates and sites with twice the accuracy (Wen et al., 2022). The use of artificial intelligence
(Al in carbon capture has shown promise in the lab, but practical implementations have been slow to
materialize. Compact carbon capture systems assisted by artificial intelligence have been created by Carbon
Clean for use in small and medium-scale companies. To achieve zero-emission power generation, Net
Power incorporates predictive controls powered by artificial intelligence into its Allam Cycle technology.
As part of their goal to remove carbon emissions, Microsoft and Climeworks, a software company, have
invested in direct air capture (DAC) systems that are powered by artificial intelligence (AI). The shift from
Al models in labs to real-world control systems in manufacturing is illustrated by these examples (Allam

etal., 2017).

3.6. Al application in the future for the complete process of CO; capture

Artificial intelligence technology enables accurate predictions of the entire CO, capture process,
encompassing the absorber and desorber columns and the rich/lean amine heat exchanger. In their study,
Sipocz et al. applied artificial neural networks (ANNs) to model the complex relationships between input

and output parameters in a post-combustion CO; capture system that utilizes amines (Sipdcz et al., 2011).
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A rate-based process simulation (CO2SIM) was implemented to generate the data required for the training
and validation of the ANN. Lean loading, circulation rate, temperature, mass percentage of CO; in the inlet
gas, removal efficiency, inlet gas flow rate, and inlet gas percentage were all input data that may be used as
predictors. The anticipated or resulting parameters were: (i) the pace at which CO, was caught, (ii) the
amount of CO» absorbed, and (iii) the amount of heat required for the operation. The investigation used the
LM and Scaled Conjugate Gradient (CG) algorithms to improve the accuracy of the predictions. The study
found that the LM approach produced the most accurate forecasts for all three parameters. Pre-designing a
power plant that could capture CO, relied on these anticipated values (Aliyon et al., 2023). Figure 1 shows
the SWOT Analysis of Al Applications in CO: Capture Technologies.
Emphasizing Research Needs and Prospects:
There are still significant research gaps, even though we've made a lot of progress:
e There is an immediate need to develop publicly available benchmark datasets for CO. capture
across various processes and scales.
e Improved industrial trust and transparency can be achieved through explainable Al, which aims to
make Al models more interpretable.
e Combining artificial intelligence with digital twins, which are representations of processes in real
time, is an exciting new development in the field of predictive control and problem detection.
o Few studies have combined artificial intelligence with energy-economic or life cycle models to
evaluate CO: capture strategies in a comprehensive manner.
o Artificial intelligence for multi-objective optimization: little is known about how to optimise cost,

energy, emissions, and operability all at once.
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Fig. 2: SWOT Analysis: AI Applications in CO: Capture Technologies

4. Conclusion

Modelling studies that attempt to predict the physical and chemical properties of the PCC process account
for a large portion of the work; this study has also updated research activity on artificial intelligence
applications in PCC technology. Artificial intelligence methodology typically outperforms numerical
simulation and empirical correlation techniques in terms of speed and accuracy. Furthermore, helping with
design and PCC technology optimization is the artificial intelligence technology. There is a substantial need
for additional study in the area of using artificial intelligence to PCC. Hence, it is imperative to foster
collaboration between PCC specialists and Al researchers to advance research in this field. This study
utilizes surrogate machine learning models to estimate the energy and cooling utility consumption of an
ACC process plant. The results indicate that surrogate machine learning models have significant potential
for application in energy operations. Furthermore, studies suggest that specific models exhibit superior
performance when provided with a limited number of data points, while other models outperform others
when given a reduced number of input sets. Based on the data that is now accessible, one model may exhibit
more superiority compared to the other. The economic viability of carbon capture technologies is on the
rise. It is imperative to evaluate the most efficient and viable technology to minimize CO» emissions and

achieve optimal CO; removal, taking into account economic and energy considerations. Furthermore,
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optimal outcomes can be attained by integrating a diverse range of machine and deep learning models with
hybrid models. As technological advancements progress, artificial intelligence techniques are likely to offer
advantages in the field of CO, capture. Artificial intelligence models possess the capacity to produce
accurate outcomes by leveraging their capability to estimate variables and acquire knowledge from data.
Despite the growing use of these algorithms in current research, further work is needed to improve their
capacities to simultaneously manage combustion and CO; capture systems to obtain the best possible
performance. The fusion of oxy-fuel combustion technology and artificial intelligence is one example of
such a system. This process involves the combustion of fuel with oxygen, instead of air, which leads to the
generation of a stream of CO; that can be gathered and stored. Artificial intelligence can enhance the oxygen
combustion process by accurately predicting the ideal conditions for CO, capture and burning, thus

maximizing efficiency.

As covered in the section before, some possible CO> capture methods include customised greenhouse gas
absorbing devices and artificial intelligence-assisted output stream control. Many more approaches could
help to speed down CO; emissions attempts; however, researchers must find a good approach to allow a
route to see the expansion of this industry. Analysing the implementation of artificial intelligence in the
field of patent landscape analysis and CO, capture will provide carbon capture professionals with new
insights. The development of emerging Al technologies will facilitate the realisation of our future goals by

enabling precise and instantaneous prediction.
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