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ABSTRACT  

This study evaluates environmental changes in the southeastern basins of Madre de Dios, Peru, using multi-spectral 

remote sensing and machine learning techniques. Landsat and Sentinel imagery were processed to compute the 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). Principal Com-

ponent Analysis was employed for dimensionality reduction, while unsupervised K-means clustering was used to 

classify land cover. Results reveal a marked reduction in dense vegetation alongside growing extents of bare soil 

and water bodies, underscoring the effectiveness of our approach for comprehensive environment monitoring and 

change detection. 

INTRODUCTION 

The Environmental degradation in Madre de Dios, Peru, has been associated with phenomena such as de-

forestation, soil erosion, and water contamination with heavy metals (Cuya et al. 2021; Velásquez Ramírez et 
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al. 2020). Although economic incentives may promote the expansion of these informal activities (Cuya et al. 

2021; Sanguinetti, 2020), previous studies in Madre de Dios have documented extensive deforestation, biodi-

versity loss, soil degradation, and water pollution (Cuya et al. 2021; Velásquez Ramírez et al. 2020; Diringer et 

al. 2015). However, establishing a direct causal link between these environmental changes and informal mining 

practices remains an area for further investigation, especially given the region's complex socioeconomic dy-

namics that challenge mitigation efforts (Cuya et al. 2021; Sanguinetti, 2020). 

    Advances in remote sensing and machine learning (ML) now enable detailed analyses of land cover and 

vegetation health using multispectral imagery (Camps-Valls, 2009; Kopačková-Strnadová et al. 2024; Liu et al. 

2024). Techniques such as Support Vector Machines (SVM), Random Forests (RF), and Gradient Boosted De-

cision Trees (GBDT) have demonstrated high accuracy in environmental classification and pre-diction (Nalepa, 

2021; Potić et al. 2023), facilitating real-time monitoring and environmental management (Alotaibi & Nassif, 

2024; Liu et al. 2024). 

    However, the comprehensive application of these methods to evaluate the environmental impacts of 

informal mining in Madre de Dios remains limited, as most studies have focused on the direct effects of mercury 

and socioeconomic aspects (Cuya et al. 2021; Diringer et al. 2015). This study addresses that gap by employing 

multispectral analysis enhanced by ML to identify evidence of vegetation and hydrological degradation in the 

southeastern basins of Madre de Dios, following established standards (Alotaibi & Nassif, 2024; Dios-Castillo 

et al. 2024). 

2. MATERIALS AND METHODS 

2.1. Subsection  
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The study was carried out in the southeastern watersheds of Madre de Dios, Peru (Fig. 1), a tropical region 

averaging 24.5 °C and 2,800 mm of annual precipitation (Wang et al. 2023). This biodiverse area, home to vast 

Amazonian forests, faces severe anthropogenic pressures from illegal mining and deforestation (Csillik & As-

ner, 2020; Markham & Sangermano, 2018). 

Fig. 1: Study area in the southeastern Madre de Dios region, Peru; Alto Madre de Dios, Tambopata, and Inambari 

basins. 

2.2. Satellite Image Selection and Preprocessing  

This study ensured high spatial resolution and temporal consistency by using multispectral images from 

Landsat 5 (TM) in 2003 and Landsat 8 (OLI/TIRS) in 2022, supplemented with Sentinel-2 (MSI) for its en-

hanced spectral capabilities. Sensors were selected based on free availability, low cloud cover (<10%), and 

consistent temporal coverage, with all images sourced from the USGS Earth Explorer for uniform quality. Pre-

processing included radiometric and atmospheric corrections (using SNAP: Sen2Cor for Sentinel-2 and DOS 

for Landsat 8), clipping to the study area via SINAFOR watershed shapefiles, and reprojecting to UTM Zone 

19S. Table 1 provides the satellite image specifications. 
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Table 1: Specifications of satellite images used in the study. 

Platform Sensor 
Bit   

Depth 

Spatial 

Resolution 

(m) 

Spectral 

Resolution 
Frequency Coverage 

Landsat 5 TM 8 bits 30 7 bands 16 days 
180 km × 

180 km 

Landsat 8 OLI/TIRS 16 bits 30(B8:15m) 11 bands 16 days 
185 km × 

185 km 

2.3. Environmental Index Calculation 

Two spectral indices were calculated using the corresponding satellite image bands: the Normalized Dif-

ference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). NDVI was employed 

to estimate vegetation density, calculated using the standard formula, as also applied by Jeevalakshmi et al. 

(2016). 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

where NIR and RED correspond to the near-infrared and red bands, respectively. 

NDWI was used to assess hydrological features, calculated using the following formula, as applied in re-

cent studies such as Assiri et al. (2024). 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

where NIR represents the near-infrared band (0.76–0.90 µm for Landsat 5 TM; 0.85–0.88 µm for Landsat 

8 OLI) and SWIR represents the shortwave infrared band (1.55–1.75 µm for Landsat 5 TM; 1.57–1.65 µm for 

Landsat 8 OLI). 

2.4. Dimensionality Reduction and Land Cover Classification  

PCA was applied to Bands 1, 2, and 3 from Landsat 5 (2003) and Landsat 8 (2022) imagery to reduce 

dimensionality and extract key spectral features. For land cover classification, unsupervised K-means clustering 

was used on NDVI and NDWI indices to segment the area into ecologically relevant categories. Optimal pa-

rameters were determined via the elbow method (Ketchen & Shook, 1996) and silhouette analysis (Rousseeuw, 

1987), testing K values from 2 to 10, with a maximum of 10 iterations and a 5% convergence threshold. 

2.5. Vegetation Classification and Land Cover Dynamics 
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NDVI thresholds were defined to classify vegetation into five categories, capturing variations in density 

and ecological significance. This approach allowed for detailed assessments of vegetation health and spatial 

distribution. The NDVI ranges and corresponding ecological interpretations are as follows: 

Table 2: Specifications of satellite images used in the study. 

NDVI Range Class Category Ecological Interpretation 

-1.0 to 0.2 1 Non-vegetated Bare soil, mining areas, water bodies 

0.2 to 0.4 2 Sparse vegetation Recently disturbed areas, early succession 

0.4 to 0.6 3 Moderate vegetation Secondary forest, regenerating areas 

0.6 to 0.8 4 Dense vegetation Established forest, mature vegetation 

0.8 to 1.0 5 Very dense vegetation Primary forest, optimal canopy condition 

Land cover changes (2003–2022) were evaluated by comparing vegetation categories, revealing deforesta-

tion, vegetation loss, and hydrological shifts. NDVI and NDWI metrics (mean, standard deviation, total area) 

quantified these changes. PCA reduced dimensionality, K-means classified land cover, and temporal analysis 

examined vegetation and hydrology. R and ArcGIS ensured reproducibility and provided critical insights into 

environmental change. 

3. RESULTS 

3.1. Principal Component Analysis (PCA) 

The Principal Component Analysis (PCA) applied to spectral Bands 1, 2, and 3 of Landsat 5 (2003) and 

Landsat 8 (2022) highlighted significant variability in the study area’s spectral features. The results, shown in 

Fig. 2, reveal differences in land cover characteristics between the two years analyzed.  
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Fig. 2: Differences of Principal Component Analysis (PCA). 

In 2003, the first three principal components explained 95.60% of the variance (with PC1 capturing 64.03% 

and standard deviations of 2.1171, 1.1789, and 0.9055 for PC1, PC2, and PC3, respectively), confirming effec-

tive dimensionality reduction and distinct spectral patterns in the dataset. 

Table 3: Analysis of the distribution and variability of PCA data. 

For 2022, PC1 explained 63.73% of the total variance, with slightly higher standard deviations for PC1 

(2.6477) and PC2 (1.2880), while PC3 showed a standard deviation of 1.1749. The cumulative variance for 

2022 was 91.36%, slightly lower than in 2003, which may reflect increased complexity or heterogeneity in the 

spectral data due to changes in land cover. 

3.2. Normalized Difference Vegetation Index (NDVI) 

The NDVI analysis revealed substantial changes in vegetation density and health between 2003 and 2022. 

In 2003, areas with high vegetation density (NDVI > 0.6) covered approximately 68% of the total area, while 

Importance of Principal Components 

 Year 2003 Year 2022 

 PC1 PC2              PC3 PC1 PC2 PC3 

Standard 

deviation 
2.1171 1.1789 0.9055 2.6477 1.2880 1.1749 

Proportion of 

variance 
0.6403 0.1986 0.1171 0.6373 0.1508 0.1255 

Cumulative 

proportion 
0.6403 0.8388 0.956 0.6373 0.7881 0.9136 
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in 2022, this percentage decreased to 61%. These variations suggest a loss of dense vegetation, particularly in 

regions adjacent to mining activities. 

Fig. 3: Normalized Difference Vegetation Index (NDVI). 

Fig. 3 presents the Normalized Difference Vegetation Index (NDVI) for the years 2003 and 2022. NDVI 

is a key measure for assessing vegetation health in a specific region. In the map, NDVI values are represented 

using a color gradient: green indicates areas with high density of healthy vegetation, while yellow and orange 

tones reflect areas with lower vegetation density or bare soils. 

Fig. 4: NDVI Pixel Value Distribution. 

3.3. Normalized Difference Vegetation Index (NDVI) 

The NDVI Pixel Value Distribution shown in Fig. 4 between 2003 and 2022 shows a shift from a highly 

concentrated distribution with a peak at 0.7-0.9 (frequency ~4e+06) to a pattern with two prominent peaks at 

0.8-1.0 (frequency ~3e+06), indicating subtle changes in vegetation structure over the study period. 
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The raster dimensions for NDVI analysis covered similar spatial extents shown in Table 4, the mean NDVI 

increased from 0.725 in 2003 to 0.799 in 2022, with the standard deviation rising from 0.184 to 0.242, indicating 

a higher heterogeneity in vegetation cover. 

Table 4: Raster dimension NDVI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Normalized Difference Water Index (NDWI) 

The NDWI frequency distribution as shown in Fig. 5, display ranges from approximately -0.5 to 0.5. Most 

values are clustered around 0, indicating an intermediate water content in the vegetation. 

Metrics Year 2003 Year 2022 

Average 0.725 0.799 

Minimum -1 -1 

Maximum 1 1 

Standard 

deviation 
0.184 0.242 

Row 2233 2198 

Column 3418 3396 

Total pixel 7632394 7464408 

Spatial 

resolution 
30 30 

Area m2 6869154600 6717967200 

Area Ha 686915.46 671796.72 
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Fig. 5: Normalized Difference Water Index (NDWI). 

Furthermore, Fig. 6 shows the highest frequency just above -0.5, indicating a high concentration of pixels 

with this NDWI value, which suggests areas with relatively low water content. In summary, NDWI values near 

zero indicate moderate water presence in the vegetation, while the predominance of values around -0.5 rein-

forces the existence of regions with limited water content. 

Fig. 6: Normalized Difference Water Index (NDWI). 

A two-dimensional scatter plot with a color scale from 0.9990 to 1.0010 encodes a water-related variable 

(Fig. 7). The distribution of points forms clusters and linear features corresponding to geographic entities such 

as riverbanks or shorelines, indicating a strong spatial correlation between location and water characteristics. 

Regions with values near 1 denote a high-water concentration, signifying greater water content in those areas. 
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Fig. 7: Normalized Difference Water Index (NDWI). 

The comparative data (Table 5) reveal that between 2003 and 2022, the mean increased from 0.125 to 0.341 

while the minimum and maximum remained constant at -1 and 1. Additionally, the standard deviation rose from 

0.090 to 0.115, indicating increased variability, and the measured area decreased from 6,869,154,600 m² 

(686,915.46 ha) to 6,717,967,200 m² (671,796.72 ha). These findings indicate a complex and dynamic scenario, 

with improvements in some aspects and significant declines in others. 

Table 5: Raster dimension NDWI. 

 

 

  

 

 

 

 

 

 

 

Metrics Year 2003 Year 2022 

Average 0.125 0.341 

Minimum -1 -1 

Maximum 1 1 

Standard deviation 0.090 0.115 

Row 2233 2198 

Column 3418 3396 

Total pixel 7632394 7464408 

Spatial resolution 30 30 

Area m2 6869154600 6717967200 

Area Ha 686915.46 671796.72 
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Likewise, Table 6 illustrates that water body areas expanded from approximately 67.36 million m² 

(~6,735.87 ha) in 2003 to about 100.73 million m² (~10,073.16 ha) in 2022, likely reflecting changes in land 

use and hydrological dynamics. 

Table 6: Water body areas – NDWI. 

Description 

                 Year 2003                  Year 2022 

m2 Ha m2 Ha 

Water body areas 67358700 6735.87 100731600 10073.16 

3.5. Land Cover Classification Using K-means 

K-means classified land cover for 2003 and 2022 (Fig. 8), distinguishing healthy vegetation (green), bare 

soil (yellow), and water bodies (blue). Healthy vegetation declined, while bare soil and water bodies increased, 

consistent with NDWI results and suggesting land degradation, conversion, and increased surface water from 

artificial reservoirs or land use changes. 

Fig. 8: Classification Kmeans. 

The land use classification (Table 7) shows that between 2003 and 2022, healthy vegetation declined from 

648,155.34 ha (94.36%) to 568,445.94 ha (84.62%), bare soil increased from 23,360.4 ha (3.40%) to 75,847.77 

ha (11.29%), and water bodies expanded from 15,399.72 ha (2.24%) to 27,503.01 ha (4.09%). 

Table 7: Areas Classified According to K-means. 

Classification 

Year 2003 Year 2022 

Ha       %     Ha    % 

Healthy Vegetation 648155.34 94.36% 568445.94 84.62% 

Non-Vegetated or Bare Soil      23360.4 3.40% 75847.77 11.29% 
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Water Bodies 

 

          15399.72 2.24% 27503.01 4.09% 

 

3.6. Statistical Evidence of NDVI and NDWI Change 

Table 4 summarizes the inferential statistics. Mean NDVI increased from 0.725 ± 0.184 in 2003 to 0.799 

± 0.242 in 2022, a rise of +0.074 (95 % CI = 0.073 – 0.075). Welch’s unequal-variance t-test confirmed the shift 

as highly significant, t (32 421) = 147.8, p < 0.001; the non-parametric Mann-Whitney U test corroborated this 

result (U = 4.52 × 10¹², p < 0.001). Effect-size metrics (Cohen’s d = 0.80; Cliff’s δ = 0.49) point to a pronounced 

shift, signaling a biologically significant decline in vegetation vitality. 

NDWI exhibited an even stronger shift, rising from 0.125 ± 0.090 to 0.341 ± 0.115 (Δ = +0.216; 95 % CI 

= 0.215 – 0.217). Welch’s test yielded t (32 143) = 403.6, p < 0.001, while the Mann-Whitney test produced U 

= 5.77 × 10¹², p < 0.001. The associated effect size is very large (Cohen’s d = 1.68; Cliff’s δ = 0.86), indicating 

a substantial alteration in surface-water signatures over the study period. 

Table 8: Statistical Comparison of NDVI and NDWI Indices. 

Index 
Year-1 Mean ± 

SD 

Year-2 Mean ± 

SD 
Δ (95 % CI) 

Welch 

t 
p 

Cohen’s 

d 

Mann-

Whitney U 

Cliff’s 

δ 

NDVI 0.725 ± 0.184 0.799 ± 0.242 
+0.074 (0.073–

0.075) 
147.8 <0.001 0.80 4.52 × 10¹² 0.49 

NDWI 0.125 ± 0.090 0.341 ± 0.115 
+0.216 (0.215–

0.217) 
403.6 <0.001 1.68 5.77 × 10¹² 0.86 

 

4. DISCUSSION  

The multi‑temporal analysis of land‑cover dynamics in Madre de Dios (2003 – 2022) documents a pro-

nounced contraction of healthy forest—from 94.36 % to 84.62 %—accompanied by a tripling of bare‑soil extent 

(from 3.40 % to 11.29 %) and a notable expansion of surface‑water bodies (from 6 735.87 ha to 10 073.16 ha). 

Pixel‑scale heterogeneity in NDVI values evidences progressive fragmentation of the residual forest matrix, 

whereas heightened spatial variability in NDWI denotes an increasingly irregular distribution of surface water. 

Collectively, these quantitative shifts constitute the empirical foundation for the interpretative discussion that 

follows. 

The observed trajectories are attributable principally to the intensification of artisanal and small‑scale 

gold‑mining activities (Asner & Tupayachi, 2017; Caballero Espejo et al., 2018). The steep decline in healthy 

vegetation signifies escalating anthropogenic pressure, while the broader dispersion of NDVI values indicates 

habitat discontinuity capable of undermining biodiversity assemblages and perturbing local microclimates (Had-

dad et al., 2015; Laurance et al., 2014). The enlargement of water bodies accords with the proliferation of min-
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ing pits that function as artificial reservoirs (Alvarez‑Berríos & Aide, 2015) and may disrupt watershed hydrol-

ogy while enhancing mercury mobilisation (Diringer et al., 2015; Forsberg et al., 2017). Increased NDWI vari-

ability corroborates a fragmented hydrological network characteristic of deforested Amazonian landscapes (Da-

vidson et al., 2012). In concert, the elevated spectral complexity revealed by principal‑component analysis and 

the rise in non‑vegetated classes identified through K‑means clustering attest to an accelerated trajectory of land 

degradation consonant with regional observations (Numata et al., 2017). 

Methodological consonance is discernible in the work of Pushpalatha et al. (2024), wherein a multi‑tem-

poral support‑vector‑machine framework delineated rapid urban expansion and concomitant vegetational attri-

tion in Mysuru (India) with high classification fidelity, thereby underscoring the epistemic robustness and trans-

ferability of advanced remote‑sensing and machine‑learning protocols across divergent socio‑ecological set-

tings. 

Mining and infrastructure expansion remain pivotal drivers of environmental degradation in Madre de Dios 

(Fearnside, 2017; Barber et al., 2014). Road construction facilitates forest conversion by increasing territorial 

accessibility (Kaimowitz & Smith, 2001) and modulates regional hydrology and local climatic regimes (Law-

rence & Vandecar, 2015; Coomes et al., 2017). To mitigate these impacts, stricter mining regulations and con-

servation incentives, such as payment-for-ecosystem-services programs, are needed (Giudice & Börner, 2024). 

Community-based conservation efforts have proven effective in reducing deforestation (Schwartzman et al. 

2000; Rodrigues et al. 2009). This study underscores the urgent need for stronger environmental policies and 

sustainable land-use strategies to protect forests and water resources in Madre de Dios. 

5. CONCLUSIONS 

The study evidences profound environmental transformation in Madre de Dios between 2003 and 2022, 

characterized by a pronounced contraction of forest cover, an expansion of bare soil, and a measurable increase 

in surface‑water bodies. These trajectories principally attributable to deforestation and illegal gold‑mining have 

disrupted local ecosystems and modified hydrological cycles. The decline in dense, healthy vegetation, mani-

fested in lower NDVI values and shifts in land‑cover classifications, testifies to extensive land degradation 

within this biodiverse tropical region. 

The observed rise in bare soil and the enlargement of water bodies not only confirm the loss of natural 

forest but also point to the creation of artificial reservoirs and altered patterns of water distribution. Such frag-

mentation of natural habitats undermines biodiversity, perturbs microclimates, and heightens environmental 

risks, including mercury mobilization from mining activities. While these findings rest on robust remote‑sensing 

diagnostics, they derive from satellite observations alone and from imagery restricted to a single dry‑season 

epoch; future work that incorporates systematic ground‑truth verification and multi‑season datasets will further 
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refine thematic accuracy and temporal representativeness without altering the substantive trends identified 

herein. 

Overall, the findings underscore the urgent need for more stringent environmental policies, improved min-

ing regulations, and targeted conservation incentives. Community-based initiatives and sustainable land-use 

strategies are critical to mitigating further damage and restoring ecological integrity. By combining advanced 

remote sensing techniques with proactive local engagement, there is a promising pathway toward safeguarding 

the Amazon’s unique environmental heritage for future generations. 
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