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ABSTRACT  

Over the past decade, there has been a significant surge in harmful waste emissions of greenhouse gases namely 

carbon dioxide, methane and fluorinated gases in the atmosphere. Two major categories of activities can be broadly 

identified which have contributed to this condition. The first is proliferation of world- wide industrial activity ac-

counted by the industrial plants across all the major continents. Second is the human activity which also contributes 

to carbon emissions produced as a result of wide-ranging everyday activities that involve use of electricity, trans-

portation, food consumption and other consumer-mindset driven activities. This article focuses on the second cate-

gory to build a dual stage framework that will assess, evaluate, and recommend suitable mitigation measures to 

regulate usage patterns. The dual stage approach is a novelty based on sound engineering principles. Carbon emis-

sion data gathered by the system is analyzed to detect footprint generation patterns using mathematical models. 

Post-analysis, machine learning models selected from rigorous performance metrics (MAE, RMSE) are leveraged 
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to make predictions of carbon footprint, in the first stage. The second stage employs a reinforcement learning frame-

work that captures several aspects of emission in a ‘state’ and is used to analyze predictions and generate recom-

mendations, considering user preferences. The ability to absorb user goal for emission data is a strength. This unique 

finer engineering of state representation exemplifies experimental data that shows minimal variation in state goal 

values within 2000 steps. A web application is developed to visualize various aspects like usage patterns, and pre-

dictions. The user interface provides interventional and specific and recommendations on a personalized level.  

These aspects are then utilized to provide insights at the aggregated level in the context of a group of individuals, 

which is yet another strength of the framework. The extensibility of the proposed methodology for carbon emission 

mitigation for higher aggregated levels is demonstrated by an exemplar ‘location statistic’ radar chart in the context 

of vehicle and electrical appliances categories. 

INTRODUCTION 

Over the past decade, there has been a meteoric rise in the number of industrial plants and the subsequent 

wastes expended by them. The pollution resulting from such plants can be mainly attributed to the harmful gases 

that are discharged by them. A significant increase in the presence of gases like carbon dioxide, methane nitrous 

oxides and fluorinated gases in the atmosphere is due to increasing air pollution (Ulfat and Noori 2024). These 

gases trap large quantities of heat constricting their circulation in the atmosphere. A direct consequence of this 

is increased carbon presence on a global scale. 

Statistical data on greenhouse gas emissions in the Indian subcontinent provide valuable insights into var-

ious originators of carbon emissions across the country. India accounted for ~7.3% (3.9 billion metric tons 

(GtCO2) of the global greenhouse gas emissions in 2022 making it the third largest emitter after China (29.2%) 

and the United States of America (~11.2%) (Chandel 2022). G20 countries have been responsible for three-

quarter of global warming as of 2022 (Jones et al. 2023). 

The natural recovery process of the earth system to capture and store the CO2 will be exceeded unless an 

anthropogenic mitigation component is added to bring back the balance. 

The objective of this article is to address the mitigation component by assessing the amount of carbon 

footprint contributions by human activities on a personal scale and appropriately provide behavioral modifica-

tions to mitigate the carbon footprint. 

In the context of human activity, a personalized carbon footprint describes the impact of any given activity 

of a person or a group of people that results in the emission of greenhouse cases released into the atmosphere 

(Schwenkenbecher et al. 2014). It is an indicator of the amount of strain imposed on the environment. A per-

sonalized carbon footprint can result from a broad variety of activities ranging from electricity usage, personal 

vehicle usage for commuting, purchase of clothes, electronic products and various other activities like food 

consumption etc. Furthermore, buying food items and paper-based products add to the personal carbon footprint. 

A major contributor to carbon footprint in India is the domestic sector (Jain et al. 2021). Various sources of 
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footprint include electricity consumption from home appliances like tube-lights, ceiling fans, air conditioners, 

washing machines. Additionally, fuel consumption from personal vehicles contributes to foot- print on a con-

siderable level (Onat et al. 2015). The public transportation sector is yet another source of footprint emissions 

in a country. Footprint emissions are also contributed by livestock management and agricultural sectors (Rama-

chandra et al. 2015). Detailed assessments of life- cycles of carbon emitting substances provide a good under-

standing on their overall environmental impact. A recent study of various components of HCF (Household 

Carbon Footprint) of India is provided in (Huang et al. 2023). According to this study, 39% is contributed by 

energy consumption, 20% by travel, and 14% by food. Therefore, if these contributory components can be 

reduced, it will significantly improve the HCF. 

Increased emissions of greenhouse gases result in increased atmospheric temperatures (Khan et al. 2024), 

altered weather patterns causing ice-caps to melt, rising sea-levels and potentially catastrophic events like hur-

ricanes, floods and droughts (Kiehbadroudinezhad et al. 2024). Another notable consequence of increased car-

bon emissions is the rise of respiratory problems, cardiovascular diseases and premature death of flora and 

fauna. This can be mainly attributed to pollutants like Nitrogen oxides, Sulphur dioxide and particulate matter 

(PM) (Kumar et al. 2023). 

Although the major contribution to the global carbon emissions problem stems from macro-industrial ac-

tivities, it is important and cogent to address carbon emission contributions and problems from individual enti-

ties arising out of their activities and behaviors. 

Section 1 provides an introduction to the problem of increasing carbon footprints from human activities 

and the need to appropriately modulate and control them to mitigate the adverse effects. Section 2 generates the 

problem statement and solution strategy for the work described in this article. Section 3 examines important 

work in this area and segregates literature in this area by various activities. Section 4 develops the system design 

and architecture for the solution conceptualized along with a description of a prototypical system that imple-

ments the ideas to showcase a working system. Section 5 discusses experiments and data gathered from exper-

iments performed with this prototypical system with an analysis of the results obtained. Section 6 makes con-

cluding remarks and provides pointers about how this work could be applied and taken to the next level of 

research and production. 

2. MATERIALS AND METHODS 

2.1 Problem Statement and solution strategy 

The primary objective of this paper is to analyze carbon footprint generation patterns from various carbon-

emitting devices and provide a mitigation solution (Goswami et al. 2024).  

2.1.1. Summarized Problem statement 
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“Collect carbon footprint data from various categories of carbon emitters. Analyze the data and predict 

future emissions for the various activities in these categories. Using this information, provide recommendations 

to reduce carbon footprint emissions from various activities” 

2.1.2. A Workable Solution Strategy 

Our solution framework is ConForMiSt, an acronym for Carbon Footprint Mitigation System and shall 

consist of the following elements:  

1. Collect raw consumption data from various categories of carbon emitters 

2. Analyze carbon footprint generation patterns 

3. Conceptualize machine learning models that will capture essential aspects of these patterns to formulate car-

bon footprint estimation and mitigation model 

4. Use reinforcement learning models to provide recommendation to reduce carbon from various human activ-

ities – A framework 

5. Provide a web-based and cloud-centric architecture for scalability and extensibility, so that this application 

may be used in a macro level setting like an institution or organization 

2.2 Related Work 

We now describe literature that provides description of carbon footprint measurement and the attendant mitigation 

mechanisms. In order to perform this study, we have captured and categorized the work into various categories 

driven by human activities that lead to generating the carbon footprint. This prior art study provides us a starting 

point to mitigate carbon footprint. 

 

2.2.1. Mobile Phone Usage 

A study that describes the usage of devices that have networking and communication capabilities has been suc-

cinctly described in (Lövehagen et al. 2023). Experiments were performed on smartphones, feature phones, tab-

lets, laptops and personal computers in this study, revealing varied emissions of carbon on any given day. The 

equivalent carbon footprint (CO2e) phone use through the factor 57 g Co2 e per minute use. Study findings re-

vealed that the respondents spent the most in texting with an average of 17.95 kg CO2e per day. A general rec-

ommendation on reducing electronic usage was also described in this study. 

2.2.2. Forest Activity 

A categorization of the carbon emissions produced from different types of forests namely- primary forests, naturally 

regenerated forests and planted forests has been provided in (Mancini et al. 2016). The effect of forest wildfires 

and harvested wood product have been factored into the calculated of carbon footprint. A detailed account on forest 

carbon sequestration as a contributing factor to carbon footprint has been provided. 
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2.2.3. Organizational Activities 

The concept of operational boundaries that define physical and geographical limits of an organization’s activities 

for the purpose of measuring and reporting its greenhouse gas emissions have been detailed in (Gao et al. 2014). A 

study on carbon emissions generated in the corporate sector has been assessed by leveraging several machine learn-

ing models in (Musa et al. 2024). 

2.2.4. Food Consumption and Behaviour 

Analysis of changes in consumer behaviour in the context of food products that contain labels detailing carbon 

footprint output of food processing has been succented in (Rondoni et al. 2021). Labels enable food manufacturers 

to indicate the impact that their food production process has on the environment. Consequently, this allows con-

sumers to make informed choice while purchasing processed food products. The findings of this work reflect the 

positive attitude of countries like Egypt and China towards carbon footprint information urging other emerging 

countries to develop a similar outlook on processed food products. 

 

2.2.5. Approaches and Frameworks for estimation of carbon footprint 

An approach revolving around statistical modelling has been employed in order to predict carbon footprints from 

a corporate standpoint for climate finance risk analysis (Nguyen et al. 2021). Models like linear regression, k-

nearest neighbours, and decision tree ensembles have been leveraged for carrying out predictions. Model perfor-

mance has been evaluated using mean absolute error (MAE) and multiple resampling techniques. A framework 

that targets systemic reporting, energy promotion and carbon efficiency using machine learning techniques has 

been described in (Henderson et al. 2020). The use of green defaults and effective component integration to achieve 

pro-environmental behaviour has been elaborated. An empirical framework comprising of elastic network regres-

sion models and machine learning models to arrive at effective carbon footprint mitigation strategies has been 

provided in (Dong et al. 2023). Energy consumption dynamics have been examined and correlation between carbon 

emissions and its causation factors have been analysed in order to provide suggestions for carbon emission mitiga-

tion measures (Liu et al. 2023). 

The comparison of ConForMist framework with existing works has been provided in Table 1 to highlight the key 

features and differences of the proposed system.  

Table 1: Comparison report of ConForMist with existing literature frameworks 

Research Paper Methodology  Key Results Comparison 

Lissa et al. (2021) 

Deep Rein-

forcement 

Learning 

Unique comfort fac-

tor v/s energy sav-

ings metric.   

 

User’s preferences are taken 

as an input and use of ML 

models with historical data to 

provide statistical data.   



NEPT 6 of 37 
 

 

(Lee and Choi, 

2019) 

Deep Q-Net-

work, Deep 

Learning   

 

 
Forecast of indoor 

temperatures and 

ToU prices lead to 

real time decision 

making  

Different models for different 

appliances hence providing 

more granularity.  

(Mahmoud and 

Ben Slama, 2025) 

 

Deep Learn-

ing, Rein-

forcement 

Learning 

Vehicle to Home bi-

lateral communica-

tion 

Usage of carbon emission data 

over energy units to focus on 

home emission data. 

(Solatidehkordi et 

al., 2023) 
LSTM, IOT 

Real time classifica-

tion of appliance 

data usage  

 
 

Microcontroller with 

timestamp recording, UI 

Dashboard provides yearly, 

location-based data and emis-

sion data statistics  

 

2.2.6. Research gap in existing implementations of home energy management system (HEMS) 

The existing frameworks in the HEM systems primarily focus on energy savings on electricity and money. The 

research gap being addressed in ConForMist is the carbon emission focus centric approach in homes. The proposed 

system will help the stakeholders to track and achieve reduced carbon emission goals. There is a need for develop-

ing sustainability solutions which can be easily integrated to existing architectures. The architecture functions with-

out considering smart meters, smart appliances and smart grids and hence can be deployed faster, cheaper and 

provides a scalable solution in lesser developed electrical grids and homes. 

We use carbon emission data directly to train our regression models. The outputs of carbon emissions are offset by 

a percentage (that is determined by the end-user) and fed as input to the reinforcement model as goal states. The 

novelty of the reinforcement model lies in its learning that is based on the concept of having the four phases in a 

day along with optimization on the usage of devices. Another research gap being addressed is the user flexibility 

on the input to their solutions and trade-offs on comfort versus energy savings. 

2.3 Top Level Systems Approach System Design And Implementation 

The first stage handles tasks ranging from collection of user consumption data to its cleaning and pre-

processing. As a starting point, six different carbon emitting sources have been considered for measurement. 

Data related to carbon emission resulting from human activities are collected. These sources have been chosen 

to demonstrate proof of concept considering their consumption priority over low-usage devices in the Indian 

subcontinent. Two broad categories of carbon emission are considered (Transport and Electricity) to demon-

strate the concept of operations and this can be easily extended to other categories as well. The transport com-

ponent comprises of Four-wheeler and Two-wheeler vehicles which run on two types of fuel sources: petrol and 
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diesel. Usage patterns for vehicles running on both types of fuel have been considered during the dataset for-

mulation process. Household devices investigated include tube-light, ceiling fan, washing machine, and air-

conditioner. 

2.3.1 Data Collection and Pre-Processing 

The top portion (a) of Figure 1 identifies the data collection and pre-processing step. The various sources 

of carbon emission across various individuals in each of these two broad categories of carbon emitters are col-

lected, aggregated, and analyzed. The carbon emission factors of these appliances are used to compute their 

carbon footprint output for a specific duration of usage. The devices exhibit complete dependency on their 

corresponding carbon emission factors. The method of data collection involves recording the device readings 

during 4 phases of each day over a course of 12 months with the following apportionment. This is indicated in 

Table 2.  

Table 2: Apportionment of Phases of a Day for Data Collection 

Phase of Day Time (24-hour Clock Format) 

Morning 00:00 - 05:59 
Afternoon 06:00 - 11:59 
Evening 12:00 - 17:59 

Night 18:00 - 23:59 

Usage (in hours) is recorded during each phase of the day and the carbon footprint is computed. The usage-

footprint pair values are stored in a dataset (CSV file) for further cleaning and processing. Subsequently, the 

values in the dataset are checked for their logical correctness in order to clean the data set from inaccurate 

measurements recorded by the sensors. If a user-input value exceeds the range provided in Table 2, it is per-

ceived as an error input and subsequently discarded. 

2.3.2 Initial Dataset Preparation 

The left bottom portion (b) of Figure 1 identifies the data preparation step. In the second stage, the cleaned 

dataset is fed to machine learning models for training in the next stage of the implementation. The selection of 

a particular machine learning model for predicting carbon footprint output of a given device has been made after 

examining the input-output variable relationships. A linear regression model is trained for input-output data 

columns that exhibit a linear relationship (Maulud et al. 2020). Random Forest regression (Ali et al. 2012) and 

Gradient Boosting models have been trained for non-linear data points (Otchere et al. 2022) and the choice 

between these two models have been made by drawing a comparison between their mean absolute errors on 

training data. 

2.3.3 Prediction of carbon footprint from activities monitored 
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Part (c) of Figure 1 identifies the prediction step. The third and final stage of the implementation involves 

generation of personalized recommendation reports based on device usage history of the individual. A rein-

forcement learning model that is customized for each type of vehicle or electrical appliance drives the recom-

mendation generation engine. Additionally, data insights like average and total usage of appliances, major con-

tributor by location of the users at an aggregated level are generated by leveraging NumPy, Pandas and Seaborn 

libraries. The stakeholders of the aggregated data insights are government organizations whose objective is to 

cut down carbon footprint emissions of areas under their jurisdiction by levying taxes and fines. 

2.3.4 Generation of Recommendation, Strategies and on Dashboard 

Part (d) of Figure 1 identifies the recommendation step. A Web-based tool with role-based access is devel-

oped to enable analysis, interpretation, and key strategies/actions to take. A key driver for the user interface is 

to enable individuals to access personalized recommendation reports and even larger entities like government 

organizations to access aggregated data insights from different regions of the state and city. 
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Fig. 1: A Bird's Eye View of ConForMiSt Process 

 

 

 

2.4 System Design And Implementation 

(a)

(b) 

(c)

(d)
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2.4.1 Engagement of Machine Learning Models 

The structured dataset offers a rich training dataset for machine learning models. In the case of electrical 

appliance activity category, analyzing the correlations between time-dependent appliance usage, the models can 

learn to estimate carbon footprint with increasing accuracy. Similar is the case with the transport activity cate-

gory which involves analyzing the correlation between vehicle travel patterns, fuel types, and other character-

istics. This is a data-driven approach and focusses on capturing diurnal variations in user behavior. This ap-

proach is free of reliance on manual data input and paves the way for an automated and efficient system for 

carbon footprint assessment. 

Several machine learning models are trained using the dataset that is produced following preprocessing. 

The approach begins by feeding the structured data of a certain appliance or vehicle to a machine learning 

model. The selection of a machine learning model for a certain appliance or vehicle is determined by empirical 

findings obtained from experimentation from a set of investigative trials (Varoquaux et al. 2023). The models 

were chosen after comparing each one of them individually based on mean absolute error. Machine Learning 

models which were considered for extracting empirical evidences were Linear Regression, Random Forest Re-

gression and Gradient Boost Regression.  

The dataset for feeding these models was divided into training and testing sets using various trial counts 

(Ranjan et al. 2019). Four training trials, each with a distinct training and test split of the data set, were used to 

train the machine learning models. In the initial experiment, 30% of the data was used for testing and 70% for 

training. The second trial used a 80% - 20% split for testing and training. The third trial used a 90% - 10% 

dataset split for the same while the fourth trial had a 75% - 25% spilt for the test-train dataset.  

A grid-search approach to identify the right combination of hyper-parameters has been employed to me-

thodically build and evaluate a model for each combination of algorithm parameters specified in a grid (Bhatti 

et al. 2000). 

Table 3: Experimental ML Models for Third Stage (Prediction) 

Design Rationale Carbon emitter Category/ 

Human Activity/ 
ML Model chosen for Anal-

ysis 

Perf. 

 Met-

ric 

Metric 

Value 

Metric 

Value - 

RMSE 

      
Relationship between input-output varia-

bles Transport (2Wheeler) Linear Regression MAE 19.566 24.53 

To fit non-linear data points  Transport (2Wheeler) Random Forest Regression MAE 2. 499 3.13 

To reduce mean absolute error Transport (2Wheeler) Gradient Boosting Regression MAE 2. 614 3.28 

      
Relationship between input-output varia-

bles Transport (Four-Wheeler) Linear Regression MAE 29.077 36.45 

To fit non-linear data points and  Transport (Four-Wheeler) Random Forest Regression MAE 5.349 6.7 

To reduce mean absolute error  Transport (Four-Wheeler) Gradient Boosting Regression MAE 4.735 5.94 

      
Relationship between input-output varia-

bles Electricity (Tube Lights) Linear Regression MAE 0.218 0.27 

To fit non-linear data points  Electricity (Tube Lights) Random Forest Regression MAE 2.757 3.46 
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To reduce mean absolute error  Electricity (Tube Lights) Gradient Boosting Regression MAE 8.583 10.76 

      
Relationship between input-output varia-

bles Electricity (Air conditioner) Linear Regression MAE 0.175 0.22 

To fit non-linear data points  Electricity (Air conditioner) Random Forest Regression MAE 0.879 1.1 

To reduce mean absolute error  Electricity (Air conditioner) Gradient Boosting Regression MAE 1.901 2.38 

 

 
     

Relationship between input-output varia-

bles Electricity (Ceiling Fan) Linear Regression MAE 9.163 11.48 

To fit non-linear data points  Electricity (Ceiling Fan) Random Forest Regression MAE 0.200 0.25 

To reduce mean absolute error  Electricity (Ceiling Fan) Gradient Boosting Regression MAE 0.631 0.79 

      
Relationship between input-output varia-

bles 
Electricity (Washing Ma-

chine) Linear Regression MAE 3.304 4.14 

To fit non-linear data points  Electricity (Washing Ma-

chine) Random Forest Regression MAE 0.336 0.42 

To reduce mean absolute error  Electricity (Washing Ma-

chine) 
Gradient Boosting Regres-

sion MAE 0.189 0.24 

Comparing the metrics of the various models for the activities of transport and electricity usage from Table 

3, the conclusions are as follows: Linear Regression model was found to give accurate results for data recorded 

by Tube light and Air Conditioner for the Electricity usage category. Similarly Random Forest Regression model 

was found to give accurate results for inputs provided by Ceiling Fan for the Electricity usage category wile the 

same model also was the model of choice for Two-Wheeler and Four-Wheeler usage in the transport category. 

Finally, the Gradient Boosting Regression model gave accurate results for inputs from Washing machine. 

Output of the trained models: 

The aforementioned machine learning models predict emission from the carbon emitter categories from 

usage input usage data.  

Post Processing: 

These trained models are serialized into a pickle file and later deployed on to a web server. Pickle files are 

generated by employing the technique of serialization. Serialization is the process of decomposition of complex 

data structures into a sequence of primitive data parts, which can be saved directly in a file or transferred over 

a network (Bellman 1957). On the receiver end, the pickled files are deserialized and fed with inputs from users 

to obtain prediction of the amount of carbon emission with respect to the amount of usage in hours or kilometers. 

The obtained prediction value is displayed to the user by the help of a responsive user interface. The user is 

offered a choice to offset their prediction by an amount of 5%, 10% or 15% respectively. The reduced value of 

carbon emission represents the users preferred amount of emission or a target which has to be achieved in a 

specific duration. The offset value along with preferences containing the amount of usage expected in all four 

time slots of a day, namely - morning, afternoon, evening and night are given as input to the corresponding 

reinforcement learning model deployed on the web server and tuned to that particular appliance takes the goal 
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consumption input, preferences in a day and the fuel type in case of vehicles and gives personalized recommen-

dation of the amount of usage in the hour-minute format in case of electrical appliances and Kilometer format 

in case of vehicles to achieve the goal consumption. 

 

2.4.2 Engagement of Reinforcement Learning Models 

The predicted carbon emissions from the usage of carbon emitters (devices in the various categories) are 

used as the base data for further processing after user interactions. 

The user interaction involves the following steps: 

• Present a summary of the carbon emission from the individual’s 12 month recorded data 

• Provide the user three different reduction level choices. 

• Accept the goal quantity for reduction in terms of percentage over the base data.  

• This target is used to process the information through a reinforcement learning model to work out a suitable 

strategy for reducing the user carbon footprint. The reduced carbon emission from the offset value will be the 

goal state of the reinforcement model. 

The reinforcement learning model is mechanized as follows:  

Each state of the model is defined as a tuple indicative of: 

• Phase of the day 

• Device Operational Parameter 

• Energy Consumption Level 

An action set consisting of action values represented as an enumerative list: 

Action_1Action2, …… 
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         Fig. 2: Phase 2 Agent Mechanization using RL 

A value function(q-value) that evaluates the value of a state and provides a value to the best state that 

generates the lowest consumption value.  The reward value generation is driven by the simple principle of 

providing rewards for high carbon generation (Eg: higher temperature setting in case of an air conditioner).  

The underlying principle of using reinforcement learning is to optimize and simulate the usage of the de-

vices during a 24-hour period based on a percentage reduction from the previous machine learning algorithm 

prediction values. The output given to the user will be the apportionment of optimal usage of the devices among 

different phases of the day. The agent is given a goal consumption value as the input and learns until the con-

sumption for a episode reaches the goal value. The agent mechanization is provided in Figure 2. 

The reinforcement learning algorithm is devised for six different models corresponding to tube light, fan, 

washing machine, air conditioner, two-wheeler, and four-wheeler vehicles. Each of them has the same underly-

ing principle which consists of a Markov decision process (Watkins et al. 1992) with a policy of q-learning 

(Babiuch et al. 2020). The idea behind considering the states in this process stems from the dataset structure 

which is the division of the 24 hours into 4 phases, namely - Morning, Afternoon, Evening and Night. Any 

action taken by the devices considered, leads to a result in a change of the carbon emission output from that 

corresponding device. The relation between the states and the actions must be established and defined in a 

manner so as to construct the q-table. 
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a. Actions 

The actions define interaction of a user who makes use of the different functionalities of the devices under 

consideration. These actions are independent actions, i.e. one action has no effect on how the other action is 

performed. A brief outline of the actions for various device categories is provided below:  

Light: [“Off”, “Low Brightness”, “Medium Brightness”, “High Brightness”] 

These actions above have considered modern, present-day LED’s which have controls to change their 

brightness using a regulator component. 

Fan: [“Off”, “Low Speed”, “Medium Speed”, “High Speed”] 

The different speeds of the fan which can be set by rotating the dial are mapped to the actions above.  

Air Conditioner: [“Off”, “Moderate Cooling”, “Cold Cooling”, “Coldest Cooling”, “Eco Mode”, “Turbo 

Mode”] 

The actions for an air conditioner consider the choices that an appliance user generally selects: Ranging 

from a completely switched off state, degree of cooling (3 levels) to specific modes (Eco, Turbo). The Eco 

Mode refers to ideal cooling which will lead to a reduced consumption but achieve the required temperature at 

a slower pace and slower fan speed. Turbo Mode is quite the opposite, having higher consumption while reach-

ing the required temperature faster along with a faster fan speed. 

Washing Machine: [“Off”, “Quick Wash”, “Normal Wash”, “Heavy Duty”] 

Actions mapped for a Washing Machine are those that represent general modes of the different types of 

wash in a general washing machine. If gradation of these modes is considered, the order of heavy, normal and 

quick wash indicates the descending order of consumption. 

Transport: [“Off”, “Accelerate”, “Cruising”, “Speeding”, “Engine Braking”] 

The actions for transport category device are indicated above. Although the actions are intuitive, we dif-

ferentiate between accelerate and speeding as follows: accelerate action is a mediated increase in speed while 

the speeding action is going at a rapid pace at higher gear. Cruising and Engine Braking are ideal techniques 

which reduce the fuel consumption and emissions. 

b. States 

We need an accurate model of the state description. Therefore, a state is represented as a tuple consisting 

of ({phase of the day}, {Device Operational Parameter}, {Energy Consumption Level}).The state modelling is 
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driven by three primary factors that determine a state: (a) The phase of the day influences the consumption 

profile (b) The device under consideration may operate in various modes (Eg: A vehicle operating in low and 

high gears, an air conditioner operating in eco mode or moderate-cooling or turbo cooling mode) (c) consump-

tion level. The device operating parameter is then amenable for directly mapping user choice to the operating 

mode of the device. The Zero factor is equivalent to the OFF state and the device is not emitting footprint as 

provided in Table 5. The correlation between the device factor and the consumption level maybe either positive 

and negative depending on the action taken. 

The various states are defined using Table 4, by choosing a discrete value from each column of the device. 

Table 4: State “Tuple” Components for defining State Representation 

Phase of the day Device Device Operational Parameter Consumption 

Morning, Afternoon, 

Evening, Night 

Light Zero, Low, Medium and High Brightness 

High, Moderate, Low 

Fan Zero, Low, Medium and High Speed 

Air Conditioner 
Zero, Low, Moderate and Coldest Tempera-

ture 

Washing Machine Zero, Quick, Normal and Heavy Wash 

Transport Zero, 1 ,3 and 5 gears 

 

c. Transition Functions 

The recommender system uses Q-Learning category of reinforcement learning and therefore always 

chooses an action based on the Q-value state at a state, according to the equation (1).  

TD(sₜ, aₜ) = rₜ + γ ⋅ maxₐ Q(sₜ₊₁, a) - Q(sₜ, aₜ)                           …(1)  

where, 

sₜ: Current state at time step t 

aₜ: Action taken at time step t 

rₜ: Reward received after taking action aₜ in state sₜ 

γ: Discount factor (0 ≤ γ ≤ 1) that determines the importance of future rewards 

Q(sₜ₊₁,a): Estimated future reward for taking action a in the next state sₜ₊₁ 

maxₐ Q(sₜ₊₁, a): Maximum Q-value over all possible actions in the next state sₜ₊₁ 
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TD(sₜ, aₜ): Temporal Difference (TD) error, which measures the difference between the current estimate 

and the updated estimate of the Q-value. 

A minor augmentation to this transition (which is based on Q-value) is the check for an “End State” at the 

end of every action. This is because the user is provided a choice to select the offset for total carbon footprint 

reduction and this is translated to a “maximum consumption limit” check. If this limit is reached in any state, 

then the learning process is stopped. An exemplar encoding of these end states for various device categories and 

transport vehicle category is provided in Table 5.   

The transitions are based on a weight factor, the inputs to which are provided by the user. The structure of 

the weights is represented as [a, b, c, d] which represent the weights of usage for Morning, Afternoon, Evening 

and Night. Based on these weights, the reinforcement learning agent transitions to different phases. For example, 

if a user decides that the need for an LED would be higher in the evening and the night, he could increase the 

relative weightage of these two phases. A random number generator generates the next phase index based on 

the relative weights. The second part of the transition function is the action-transition function. This function 

defines the logic for device factor variation based on the action. The transitions vary based on the device. 

The “Engine Braking” state can transition to three possible states making it a stochastic process. While 

considering the braking process, the vehicle will slow down to a lower gear. Hence the three states are justified. 

Another factor considered for the transport model is traffic probability. The higher the factor, the more proba-

bility of the agent transitioning to the state of the first gear. Under higher traffic conditions, the cars are slower 

and would be in the lower gears i.e. either the first or the second gear. The second gear state is not being con-

sidered in our model for simplicity and to avoid redundancy. 

Another key factor to be considered will be the agent learning beyond a max carbon consumption. Hence 

a Max Consumption Limit has been taken into account. 

        MaxConsmpCheck = 6*(device consmp factor kgCo2/hour)   …(2)  

Table 5: End state encodings for devices and vehicles 

Device: Light 

Action Next State 

“Off” (Zero, Zero) 

“Low Brightness” 
(Low Brightness, Low 

Consumption) 

“Medium Brightness” 
(Medium Brightness, Me-

dium Consumption) 

“High Brightness” 
(High Brightness, High 

Consumption) 
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Device: FAN 

Action Next State 

“Off” (Zero, Zero) 

“Low Speed” 
(Low Speed, Low Con-

sumption) 

“Medium Speed” 
(Medium Speed, Medium 

Consumption) 

“High Speed” 
(High Speed, High Con-

sumption) 

Device: Air Conditioner 

Action End State 

“Off” (Zero, Zero) 

“Moderate Cooling” 
(Moderate Temperature, 

Low Consumption) 

“Cold Cooling” 
(Low Temperature, Mod-

erate Consumption) 

“Coldest Cooling” 
(Coldest Temperature, 

High Consumption) 

Device: Washing Machine 

Action End State 

“Off” (Zero, Zero) 

“Quick Wash” 
(Quick Wash, Low Con-

sumption) 

“Normal Wash” 
(Normal Wash, Moderate 

Consumption) 

“Heavy Duty” 
(Heavy Duty, High Con-

sumption) 

Transport: VEHICLE 

Action End State 

“Off” (Zero, Zero) 

“Accelerate” (3, Moderate) 

“Cruising” (5, Low) 

“Speeding” (5, High) 
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Algorithm 1: Recommendation Algorithm 

 
Require: 
− reward_function (state) 
− action_function (choice, action index) 
− transition (cons, action, weights, max_consump_check) 
− num_episodes 
− epsilon 

− Q_table 

− actions 
− states 
− learning_rate 

− discount_factor 
− goal_consumption 

 
Ensure: 
− Q_table update 

− Iteration for num_episodes 
Begin 
for each episode in range (num_episodes): 
    if max_consump_check is true: 
        Print “Max” and Break 

 
    Initialize weights: [a, b, c, d] 
    Initialize total_consumption: 0 

    Choose random state index: state_index 

    Initialize cons_values for times of day 

 
    while true: 
        if random number < epsilon: 
            Choose random action_index 

        else: 
            Choose action_index with highest Q−value 

        Simulate environment: 
            − Get reward 
            − Compute next_state_index, max_consump_check 

            − Update Q−value in Q_table 
 

        Update total_consumption 

        Update consumption values 
        Update state_index 

        if total consumption >= goal_consumption: 
            Break 

End 

 

 

 

2.4.3 System Implementation – Proof of Concept 

The second category of carbon emitters in Table 3, ‘Electricity’ consumption driven by Tube/LED Light 

bulbs is chosen as a representative example for experimentation and demonstration of our solution.  The exper-

imental setup shown in Fig. 3 provides a test bed to collect usage data of individuals using the light appliance. 

The hardware circuit architecture consists of an ESP-32 WROOM 32D micro-controller, a TTP-223 touch sen-

sor, a 10KΩ resistor and a LED bulb. The pin configurations for the micro-controller are provided in Fig. 3 to 
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provide clarity of the interfaces. The choice of the ESP32 module is driven by the Wi-Fi connectivity feature, 

which eases integration with a web server. 

       

Fig. 3:  Experimental setup for Lighting Consumption Data Gathering 

a.  Experimental setup of data gathering 

The touch sensor is placed on the switch which is used to control the appliance. The touch sensor interfaced 

to the ESP32 module is used to record the electricity consumption by the individual. The implementation (code) 

that supports the touch sensor functionality has been configured as follows: the bulb is initially in an OFF state. 

On pressing the sensor (stimuli), the bulb transitions to ON state and continues to be in the same state until the 

sensor is pressed again. This subsequent action results in a transition of the bulb to OFF state. The timestamp at 

which the bulb transitions to the ON and OFF stats are recorded (Arduino IDE interface) from which the dura-

tion for which the bulb is utilized can be easily computed. 

b. Data Collection and Processing from Sensor equipment 

Fig. 4 provides an overview of the data processing pipeline showing how the information is gathered from 

devices with the help of touch sensors and a micro-controller (ESP32) (Hiraman 2018). The recorded data has 

the device usage data in milliseconds. The usage data obtained from the sensors is stored in a text file, with each 

device usage interval duration (each on-off condition) stored on a new line.  

This usage device usage data is sent to an Apache Kafka platform for further processing. Apache Kafka is 

a platform for processing real time streaming data, using distributed publisher-subscriber messaging system. 

The significant advantage is its ability to handle large volumes of data (concurrent requests from users) and 

reduce latency in providing predictions to the users (Thein 2014). As noted earlier the device usage data is 
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recorded with files and these files need to be uniquely identified. The identification process is enabled by the 

file’s unique hash value called a message digest. This is created using a hashing algorithm like MD5, which is 

of fixed length and uniquely identifies the contents of the file. 

       

Fig. 4:  Data Processing Pipeline in ConForMiSt 

An update operation to the file will replace the pre-existing message digest with a new hash value, which 

now uniquely identifies the modified content of the file. A Python script, which indefinitely monitors the state 

of the message digests, triggers an event when the file is modified with the new sensor reading. The latest data 

obtained is passed to the Kafka broker with the corresponding device name (Eg: “Tube-light”) as the topic 

through a Kafka Producer via a message after serialization. Another Python script indefinitely running the Kafka 

Consumer fetches the message from the broker and deserializes it, in order to obtain the usage data. Producers 

publish messages to Kafka topics, and consumers subscribe to these topics and consume the messages (Bahrami 

et al. 2018).  

The obtained usage data is sent to a web server running the trained Machine Learning models using a HTTP 

request to the API endpoints exposed by the web server (Raptis et al. 2022). The web server returns the predicted 

emission value, which is again sent to the broker using a Kafka Producer that is configured to a topic (Wu et al. 

2019) named “Database Insertion” after serialization of the dictionary containing the user details, device name, 

sensor type, emission, and usage values. The Python script indefinitely running the Kafka consumer fetches the 

message (Narayanan 2024) under the “Database Insertion” topic in the broker and deserializes it to obtain the 

dictionary. The dictionary is saved to a database and to a CSV file along with timestamps, thus serving as a 

dataset to re-train the existing models. 
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3. RESULTS AND DISCUSSIONS 

The subsection that follows describes inferences drawn from machine learning models of each type of 

device and vehicles belonging to the carbon emitter categories of electricity and transport. The consumption 

parameter has been examined using graphical plots. 

3.1 Results from Machine Learning Models 

The structured dataset offers a rich training ground for machine learning models. By analyzing the corre-

lations between time-dependent appliance usage, vehicle travel patterns, fuel types, and the calculated carbon 

footprint, the models can learn to estimate carbon footprint with increasing accuracy. This data-driven approach, 

with its focus on capturing diurnal variations in user behavior, holds the potential to reduce reliance on manual 

data input in the future, paving the way for a more automated and efficient system for carbon footprint assess-

ment. The results have been derived from models trained over a 12-month dataset. However, the models can be 

trained beyond the 12-month dataset. 

3.1.1 Inferences drawn from Two-wheeler and Four-wheeler plots 

The partial dependence plot in Figure 5 exhibits an overall positive correlation between Two-wheeler usage 

in kilometers and emission values, with a non-linear relationship characterized by multiple local maxima, min-

ima, and periodic fluctuations. The plot describes the effect that the increasing number of kilometers has on the 

emissions produced by the two-wheeler. While the intricate shape indicates the significance of Two-wheeler 

usage as an influential feature for predicting emissions, it also highlights the trade-off between capturing com-

plex non-linear relationships and the interpretability of the model’s behavior. 

 

 

Figure 5: Partial Dependence Plot - 2-Wheeler 

The partial dependence plot in Figure 6 represents a non-linear relationship between Four-wheeler usage 

in kilometers and emission values, with an overall positive correlation, and distinct patterns or regimes based 

on the fuel type (petrol or diesel), where the curves for petrol and diesel vehicles diverge at certain points, 
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suggesting interactions between the features of Four-wheeler usage and fuel type in influencing emission values. 

The plot captures complex non-linear relationships and feature interactions, while the varying slopes and cur-

vatures highlight the model’s ability to capture these interactions. 

 

 

Figure 6: Partial Dependence Plot - 4-Wheeler 

3.1.2 Inferences drawn from Tube-light and Air Conditioner plots 

The plot in Figure 7 is a scatter plot showcasing the differences in the actual emission values and predicted 

emission values obtained from training the Linear Regression model on tube-light usage in hours and its corre-

sponding emissions in kgCO2e. A scatter plot has been chosen to analyze the input-output relationship of vari-

ables as it provides a clear representation of data points and their alignment with predicted output data points. 

The simplicity of the scatter plot, in terms of visualization provides a clear rationale for employing it over a 

partial dependence plot. The scatter points follow a linear trend, indicating that the Linear Regression model is 

reasonably capturing the relationship between input features and target variables and hence indicates the overall 

good fit of the model. Points closer to the diagonal represents that the model is more accurate in its predictions. 

 

Figure 7: Scatter Plot - Tube Lights 

The plot in Figure 8 is a scatter plot showcasing the differences in the actual emission values and predicted 

emission values obtained from training the Linear Regression model on an Air Conditioner usage data in hours 
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and its corresponding emissions in kgCO2e. The scatter points follow a linear trend and hence indicates the 

Linear Regression model’s ability to capture the relationship between the input and target features inferring an 

overall good fit. The scatter points are uniformly distributed indicating that the model is trained and tested using 

a large variety of data points. Points closer to the diagonal represents that the model makes forecasts that are 

more accurate. 

 

 

Figure 8: Scatter Plot - Air-Conditioner 

3.1.3 Inferences drawn from Washing Machine and Ceiling Fan plots 

The plot in Figure 9 represents a partial dependency plot obtained from Gradient Boost Regression after 

training it on usage data in hours and its corresponding emission values of a Washing Machine. The plot displays 

an overall increasing trend, indicating a positive correlation between the amount of usage and the emission 

values. The curve shows an increase in carbon emissions at higher fan usage hours, suggesting that longer 

washing machine usage times have a significantly larger impact on emissions. The plot displays a step-wise 

pattern, which is characteristic of tree-based models like Gradient Boost Regression.  

 

                                                           

Figure 9: Partial Dependency Plot - Washing Machine 
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This pattern suggests that the model is capturing different regimes or thresholds in the relationship between 

washing machine usage hours and emissions. 

 

                            

                                          Figure 10: Partial Dependency Plot - Ceiling Fan 

The plot in Figure 10 represents a partial dependency plot obtained from Random Forest Regression after 

training it on usage data in hours and its corresponding emission values of a ceiling fan. The plot displays a 

monotonically increasing trend, indicating a positive correlation between the number of hours used and the 

emission values. The curve shows a steeper increase in carbon emissions at higher fan usage hours, suggesting 

that longer fan usage times have a disproportionately larger impact on emissions.   

3.2 Results from Reinforcement Learning Models 

The following plots contain three distinct parameters of the reinforcement learning model that drive the 

performance of the model during its real-time deployment.  

The following metrics have been graphically plotted to examine the performance of the reinforcement 

learning model: 

• Steps 

• Variation 

• Consumption Dictionary Values 

 These metrics have been defined as follows:  

• Steps: The steps are represented by the number of iterations taken by the agent to reach goal consumption in 

each episode.  

• Variation: The precision of the findings with regard to the deviation from the intended state and the calculated 

overall consumption have been described by the variation between the final and goal consumption. The lower 
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the variation value, the better the model has performed indicated a more successful implementation of the 

proposed system.  

• Consumption Dictionary Values: Consumption dictionary values refer to the values for each consumption state 

which are listed in the consumption dictionary. These values provide a relative factor of consumption between 

the existing states and represents a unit of consumption consumed by the agent in that state in one iteration. 

The consumption dictionary has been represented as follows: {“Zero”: 0, “Low Temperature”: 1, “Moderate 

Temperature”: 2, “Coldest Temperature”: 5} 

 

3.2.1 Steps vs Consumption Dictionary Values plot 

 

    

                                            
  Figure 11: Line Plot - Steps v/s Consumption Dictionary Values 

The horizontal axis represents a subset of the possible values of the consumption dictionary and the vertical 

axis represents the number of steps taken to achieve the values present in the matrix in Figure 11. A decreasing 

curve describes the relationship between consumption dictionary values and number of steps taken to achieve 

it. Lower values of consumption values in the dictionary lead to lower units of consumption consumed per 

iteration of learning. Therefore, a greater number of steps have been taken in order to achieve the final goal 

state.  
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3.2.2 Steps vs Variation in final and goal consumption plot 

 

 

Figure 12: Line Plot - Steps v/s Variation in final and goal state consumption  

The graph in Figure 12 shows the number of steps taken vs variation in final and goal state consumption. 

This variation is the result of the absolute difference between the final consumption and goal state consumption. 

The higher the number of steps indicates a lower variation between final and goal consumption. However, there 

is a trade-off between accuracy and the time taken for learning in a given episode. A relatively more accurate 

result is achieved when the algorithm expends more time reach the goal state and vice-versa. The sudden steeps 

and bends in the graph indicate the randomness of the algorithm which can be attributed to the exploration-

exploitation trade-off in Q-learning.  

 

3.2.3 Variation in final and goal consumption vs Consumption Dictionary Values plot 

 

  

Figure 13: Line Plot - Consumption Dictionary Values v/s Variation in final and goal state consumption 

Figure 13 connotes the variation in final and goal state consumption with respect to consumption dictionary 

values. Smaller values of present in the consumption dictionary will lead to smaller differences between final 
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consumption and goal consumption. The choice of consumption values in the dictionary is very critical to the 

use-case presented in this paper. The objective is to reach a balanced value which is appropriate for the goal 

state, the device being used and level of accuracy required. Deployment of this model requires the values in the 

consumption dictionary to undergo optimization for achieving the desired performance. 

The key results after user interaction with ConForMist framework have been recorded in Table 6. 

Table 6: Key Results obtained using ConForMist framework 

Users Device 

Input 

(km/

hour) 

ML model 

output 

(kgCO2e) 

Offset 

(%) 
Phase of the day 

User 

Prefer-

ence (%) 

RL model output  

 

User 

1 

 

Tube light 

 

5 

 

6.02 

 

5 

 

Morning, Night 

 

53, 74 

 

2h 04m, 2h 40m 

User 

2 
Ceiling fan 8 24.08 10 Afternoon, Evening 27, 80 1h 50m, 5h 22m 

User 

3 

Washing 

machine 
3 632.22 15 Evening, Night 90, 54 1h 25m, 0h 59m 

User 

4 

Air Condi-

tioner 
9 541.89 10 Morning, Night 67, 61 4h 22m, 3h 38m 

User 

5 
2-wheeler 20 249.56 15 Morning, Evening 42, 63 9.26km, 6.25km 

User 

6 
4-wheeler 50 3169 5 Morning, Afternoon 78, 13 39.54km, 8.14km 

User 

7 
4-wheeler 30 2249.97 10 Afternoon, Night 24, 70 8.33km, 22.6km 

User 

8  

Air Condi-

tioner 
7 421.47 15 Morning, Evening 80, 49 3h 21m, 2h 37m 

User 

9 

Washing 

Machine 
2 421.48 5 Afternoon, Evening 55, 51 1h 02m, 0h 59m 

User 

10 
Ceiling fan 10 1288.41 10 Evening, Night 63, 25 3h 30m, 1h 51m 

User 

11 
Tubelight 6 7.22 15 Afternoon, Night 69, 49 2h 58m, 2h 07m 

User 

12 
2-wheeler 15 189.81 10 Morning, Afternoon 50, 45 6.67km, 5.33km 

 

 

 

 



NEPT 28 of 37 
 

 

3.3 Benchmarking and Validation with real-world data 

The data from the ConForMist framework has been compared with real-world provided in a survey report 

(Hernandez et al. 2022). Table 7 provided in this report serves as a benchmark for carrying out validation 

with real-world data .  

Table 7: Average Monthly Electricity Consumption for a household in Bangalore city 

Appliance Type Consensus Monthly Consumption (Units) Consensus Monthly Carbon Emission (kgCo2e) 

Lighting 11 9.02 

Heating 0 0 

Cooling 67 54.94 

Appliance 45 36.9 

The data in Table 8 provides user monthly aggragated carbon emissions and the variance between 

consensus data and ConForMist data. The benchmarked results show that the variance is minimal 

indicating the efficacy of the proposed system.  

Table 8: ConForMist Monthly Carbon Emissions Benchmarked Against Consensus Table Values 

Appliance Type 
User Monthly Aggregated Carbon 

Emission (KgCo2e) 

Variance Between Consensus data v/s ConForMist 

data 

Lighting 10 0.98 

Heating 0 0 

Cooling 55 0.06 

Appliance 38 1.1 

 

3.4 The User Interface 

GreenStride is the web-based tool developed to comprehensively record usage data across various carbon-

emitter categories and elicit recommendations provided by the underlying machine learning data gathered. The 

front-end user interface developed provides two kinds of users to register and login. 

The functionalities implemented in the web-based tool are portrayed in Figures 14 through 18. The key 

features of the web-based tool are detailed in Table 9. 
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Table 9: Website UI Functionality Description Table 

Key Features Description 

User Roles and Analytics Features in the Emissions 

Monitoring Application 

The application supports two distinct user types. The 

first comprises organizational or governmental entities 

that can monitor emissions and resource usage across 

regions such as constituencies, cities, or districts. These 

users gain insights through visual representations of 

emission and usage patterns over time. The second type 

includes individual users who can log the emissions and 

consumption associated with their appliances and 

vehicles. They receive personalized visual analytics, 

including charts and graphs, depicting their usage trends 

over defined time periods. 

 

Emission Tracking and Optimization Features for 

Individual Users 
Individual users can specify the type of vehicle or 

appliance they use along with the usage windows (in km 

or hours) and the date of usage to calculate the 

corresponding emissions in kilograms of CO₂ equivalent 

(KgCO₂e). The latter feature is represented in Figure 14. 

Users also have the option to reduce their estimated 

emissions by 5%, 10%, or 15%,upon which the system 

provides time-of-day–specific recommendations 

(morning, afternoon, evening, and night) for optimized 

usage aimed at lowering emissions which are 

represented in Figure 15 and Figure 16.  

 

Interactive Dashboard and Data Visualization for 

Emission Insights 
Users are provided with a dashboard that displays 

comprehensive statistics, including average, minimum, 

maximum, and total emissions and usage data across all 

recorded vehicles and appliances. The platform enables 

visualization of usage and emission patterns through 

various filters such as month, appliance type, and 

vehicle category. Product-specific statistics through 

radar charts as shown in Figure 17, monthly trends via 

area charts as shown in Figure 18 and daily statistics are 

presented using line charts as shown in Figure 19, and, 

facilitating a multi-dimensional understanding of 

consumption and emission behavior. 

 

Advanced Dashboard and Regional Analytics for 

Governmental and Organizational Users 
Governmental and organizational users have access to a 

dedicated dashboard that presents aggregated emissions 

and usage patterns. An additional location-based filter 

enables these users to visualize statistics specific to a 

selected region. Furthermore, an extended radar chart is 

provided as shown in Figure 20 to depict average, 

minimum, and maximum emissions and usage metrics 

across all monitored locations, facilitating comparative 

analysis and informed decision-making. 
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Figure 14: ConForMiSt Web User Interface (UI) - Emission calculator based on usage. 

 

 

Figure 15: ConForMiSt UI Dashboard - User preferences for usage recommendations. 

 

 

Figure 16: ConForMiSt UI Dashboard - Usage recommendation for lowering emissions 
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Figure 17: ConForMiSt UI Dashboard - Carbon Footprint Radar Plots for Appliances 

 

 

                     Figure 18: ConForMiSt UI Dashboard - Recommendations (Appliances) 

Figure 19: ConForMiSt UI Dashboard - Line charts for usage and emission patterns for a month 
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                     Figure 20: ConForMiSt UI Dashboard – Radar chart representing location-wise statistics 

4.CONCLUSIONS 

The proposed framework makes contributions in several areas: 

• Data Gathering: The proposed system has presented a simple approach to gathering data from 

primary carbon emitter sources (exemplar ESP32 based hardware as the foundation, chosen for its 

computational and IoT features) and recording real-time data in a database enabled by Apache 

Kafka. 

• Framework Design: A Dual phase framework: The design provides separation of concerns: first 

stage to understand the data and the second stage to drive recommendations with a model free 

approach. 

• The first stage uses various ML models operating on a structured dataset to elicit insights about the 

carbon emission data. The models selected in this stage use the RMSE performance index.  

• The second stage, a reinforcement learning model that uniquely models states and actions for var-

ious consumption categories drives the recommendations process. The unique state modeling cap-

turing many aspects is a novelty.  

• Experimentation and Result Interpretation: Inferences drawn from two exemplar categories: Elec-

trical appliances category and Transport category, using scatter plots and partial dependence plots.  
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• User Interface (UI) presentation: These models are used to provide recommendations that will 

influence future consumption judiciously and also mitigate carbon emissions. Options exist to an-

alyze current consumption and emissions data (Eg: Radar plots, statistical data) 

• Comparison with other frameworks: The proposed ConForMiSt has been evaluated against models 

that are proposed for similar goals using deep learning, RL, Deep-Q learning, and LSTM with IoT. 

However, ConForMiSt has a broader scope to analyze different categories of data and provides a 

mechanism to aggregate data for higher organizational levels.  

• An important aspect of hyper-parameter (consumption) optimization is elucidated. 

   4.1 LIMITATIONS 

• Relatively limited data sample size used for training and testing:  Machine Learning models operated 

on consumption and corresponding emission data for the span of a year, which was relatively small.  

• A larger sample size spanning multiple years would help in reducing Mean Absolute Errors and in-

creasing the accuracy of the models, thus achieving a better fit. Although the sample size considered 

gathering data in different time slots of a day for a multitude of carbon emission producers, it did not 

consider demographic factors such as age and gender, and location of the consumers.  

• Incorporating parameters such as age, gender, and emission source can greatly help in detecting hidden 

patterns and improving predictions from Machine Learning models by providing better context. 

    4.2 FUTURE WORK 

Smart home systems and designs can incorporate the implementation proposed in this study to en-

courage consumers to utilize resources effectively. Smart thermostats, lighting controls and automated 

energy-efficient appliance control systems can be implemented to monitor and reduce energy usage and 

resulting carbon footprint. Federated machine learning models can be trained and deployed across various 

devices to make predictions and provide recommendations thereby eliminating the need for a centralized 

training and deployment station. Edge Computing technologies can be paired with the sensor implemen-

tation proposed in the study for improved real-time data collection and processing. 
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