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Abstract: This article presents a methodology for estimating higher-resolution soil moisture using GIS 

and frequency ratio (FR) modeling techniques. A global soil moisture database with a 9 km spatial 

resolution was used as reference data. A total of 283 reference points were selected through spatial 

fishnet analysis with optimum soil moisture. Eighty percent (80%) of these reference points served as 

inputs to the FR model, with the remaining twenty percent (20%) reserved for validation. Key 

independent variables incorporated in the FR modeling process included land use and land cover, soil 

characteristics, vegetation index, wetness index, surface temperature, rainfall, elevation, slope, and 

distance from rivers. This research was conducted in the final drainage basin of the Markham River 

basin. The resulting high-resolution surface soil moisture was further classified into five basic zones, 

namely very low (< 6), low (6 - 7), moderate (7 - 8), high (8 - 9), and very high (> 9). The result 

indicates almost 26.10% and 56.89% of the Basin area come under high and very high soil moisture 

zones respectively. The FR model evinced a prediction accuracy of 93.98% along with a succession 

rate of 91.59%. These results provide useful data for scientific applications in various domains, 

specifically in the agricultural sector, local government administrator, researcher, and planner. 
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The availability of optimum soil moisture is necessary for optimal crop production, agriculture 

drought monitoring (Zhu et al. 2019), flood preparedness (Pegram et al. 2010), water supply 

management, and agricultural monitoring. The earlier report and research indicated that agriculture 

production consumed 70% of total freshwater (Pimentel et al. 2004; Connor 2015; Paquin and Cosgrove 

2016) and it may increase to 90% by 2050 (Sophocleous 2004). The global agriculture industries are 

facing several challenges related to water resources, like water shortage, water surfeit, water pollution, 

unsustainable water use, etc. (Rosegrant et al. 2009). These conditions are being worsened by 

population growth, urbanization, climate change, and threatening food security (Srivastav et al. 2021). 

Management of water and policies for water supply as well as watershed management can reduce this 

effect. Soil moisture is one of the paramount factors that affect agriculture growth, health, and yield 

(Furtak and Wolińska 2023). 

The presence of water on the upper surface of the soil is termed soil moisture (Svetlitchnyi et 

al. 2003), which is also affected by the evaporation or transpiration process (Lawrence et al. 2007). The 

presence of water within 10cm of the topsoil is called surface soil moisture and within 200 cm is called 

root zone soil moisture (Manfreda et al. 2014; Yinglan et al. 2022). Measuring soil moisture in rugged 

terrain can prove difficult using traditional field methods (Crow et al. 2012). In such cases, modern 

technology like geographic information systems (GIS) has increased importance for modeling and 

spatial mapping soil moisture (Mulder et al. 2011; Rani et al. 2022). Several comprehensive tools are 

available, which researchers use to assess or model soil moisture content. The traditional method, the 

Soil and water assessment tool (SWAT) estimates moisture content based on the standard rainfall index 

(Havrylenko et al. 2016). It is also useful to estimate the amount of stream flow (Wang et al. 2008). The 

soil conservation service curve number (SCS-CN) can estimate runoff based on soil and land use/land 

cover combination under a storm rainfall (Pal and Samanta 2011). The topography-based hydrological 

model (TOPMODEL) is another model used by many researchers to simulate soil moisture and runoff 

in watershed areas (Tombul 2007; Zhu et al. 2009; Fu et al. 2018). Another traditional model, the 

bridging event and continuous hydrological (BEACH) can predict the probability of soil moisture based 

on rainfall, soil type, topography, and crop pattern (Sheikh et al. 2009). Traditional models require in-

situ data, including soil samples, rainfall measurements, river discharge, and topographic information 

to be collected from the ground. This process is very expensive and may not cover a large area. 

Furthermore, very few gauge stations are available in Papua New Guinea (Chua et al. 2023), which 

presents a drawback of working with traditional models. An alternative option is modern technology 

like remote sensing, which is cost-effective and can cover a vast area. 

Presently, satellite remote sensing technologies have proven the reliability of soil moisture 

prediction. A strong relationship is found between the soil moisture content and land surface 

temperature (LST) (Cammalleri and Vogt 2015; Ghahremanloo et al. 2019). Research has been 

conducted based on machine learning algorithms to estimate soil moisture, where normalized difference 



  

vegetation index (NDVI) and climate data are two major factors in alpine grassland (Wang and Fu 

2023). Temperature vegetation dryness index (TVDI) derived from the combination of NDVI and LST 

has been used to estimate soil moisture (Sandholt et al. 2002; Park et al. 2014; Zhao et al. 2021). 

Recently several researches have been carried out to estimate moisture in 1 km spatial resolution (Zeng 

et al. 2015; Meng et al. 2019). The microwave-based soil moisture measurements are relatively coarse 

(3 to 9 km) (Entekhabi et al. 2010; Zhang et al. 2020; Nguyen et al. 2023). GIS is utilized to create 

maps of soil surface moisture derived from passive microwave data and to assess the spatial 

arrangement of soil moisture. A recent research effort analyzes soil moisture intensity by integrating 

GIS-generated depth-to-water (DTW) table maps with soil-type maps (Mohtashami et al. 2023). Several 

researchers confirmed that different models, tools, and algorithms estimate soil moisture, but it is not 

clear which method is the best (Nguyen et al. 2022; Tramblay and Segui 2022; Kisekka et al. 2022). 

Different statistical modeling approaches have been applied for the estimation, modeling, and spatial 

mapping of soil moisture and its spatial variation (Lookingbill and Urban 2004; Ahmad et al. 2010; 

Hosseini et al. 2015; Pal et al. 2016; Aires et al. 2021). Some recent studies focused on forecasting soil 

moisture at different time scales, namely the long short-term memory (LSTM) method. The technique 

works based on weights assigned based on physical knowledge (Li et al 2022). The prediction through 

LSTM was highly accurate for short-term frames compared to the long-term. To overcome the issue a 

multi-head LSTM model was introduced which enhances the prediction in hourly, daily, and monthly 

intervals based on multiple hypotheses and a weighted averaging method (Datta and Faroughi 2023). 

Frequency ratio (FR) modeling is a statistical, quantitative, and probability approach for 

simulating the quality of the environment (Laaidi et al. 2003; Tehrany et al. 2018), flood hazard 

assessment (Samanta et al. 2018; Arabameri et al. 2019), landslide susceptibility mapping (Arabameri 

et al. 2019; Mersha and Meten 2020; Khan et al., 2024), groundwater potential mapping (Guru at al. 

2017) based on topographical and environmental conditions. The FR model can demarcate a flood-

prone area by analyzing the connection between flood events and flood factors, including elevation, 

slope, land use, distance from the river, and others. This model examines the correlation between 

landslides and various factors to develop landslide susceptibility maps. FR models also identify 

potential groundwater zones by analyzing groundwater occurrences and important factors, such as 

hydrogeomorphology, drainage density, geology, and more. FR model is a favorite method due to its 

easy application, simplicity, and relatively good prediction compared to other techniques, specifically 

when data sets are limited (Ozdemir and Altural 2013). FR model yielded the highest accuracy 

compared to the analytic hierarchy process (AHP) for landslide susceptibility assessment (Panchal and 

Shrivastava 2021). The prediction and succession rate curve are found to be very impressive compared 

to the statistical index (SI) and weights of evidence (WoE) (Razavizadeh et al. 2017). Several machine 

learning models, like logistics regression (LR), random forest (RF), support vector machines (SVM), 

and decision tree (DT) require large amounts of training data and are more complex to implement and 



  

interpret than the FR model (Meng et al. 2024). The SWAT approach simulates water and sediment 

dynamics on a watershed scale based on complex calibration, which requires extensive data input and 

is not suitable for smaller and highly variable watersheds (Thokchom 2020) compared to the FR model. 

TOPMODEL is the topography-based hydrological model used to simulate watershed hydrology. 

TOPMODEL works based on numerous parameters and assumptions, which creates uncertainties 

(Jeziorska and Niedzielski 2018). 

This research is an ensemble method, which used frequency ratio (FR) a statistical approach 

for estimating high-spatial resolution soil moisture (30 m) depending on several environmental and 

topographic parameters like land use land cover (LULC), NDVI, LST, topographic wetness index 

(TWI), topographic altitude, slope of the land, rainfall, soil texture, and proximity to the river.  High 

spatial resolution (30m) soil moisture data are vital for precision agriculture, drought and flood 

monitoring and forecasting, and water resource management. The spatial variability of soil moisture 

across the landscape can be captured easily using high-resolution data sets compared to courser 

resolution data sets (9 km spatial resolution). The high-resolution data sets represent improved spatial 

variability and spatial accuracy compared to SMAP products (Vergopolan et al. 2021). This research 

aimed to estimate surface soil moisture zones in the final flow Basin of Markham River. The objectives 

of this study were to create wall-to-wall datasets on conditioning environmental and topographic factors 

into the FR model, create a higher spatial resolution (30 m) soil moisture zone database, and finally, 

validate the FR model based on prediction accuracy and succession rate.  

2. STUDY LOCATION AND MATERIALS 

The final flow basin in the lower basin of the Markham River which has a land area of 1806.85 

square kilometers is selected as the research area. It is situated between longitudes 146.09º E and 

174.04º E and latitudes 6.23º S and 6.78º S (Figure 1). The Finisterre range is the source the Markham 

River, which empties into the Huon Gulf (Renagi et al. 2010). The upper basin region spans 

approximately 12800 square kilometers and is characterized by steep slopes, rough terrain, thick forest, 

and drainage (Sam et al. 2020). The study area experiences hot and humid weather throughout the year 

(Ningal et al. 2008). In the research region, 4200 mm of total rainfall falls annually. Most of the basin's 

soils have a modest amount of drainage. The month of June through October is usually the dry season 

in this area (Prentice and Hope 2007). Because of the decreased rainfall, a progressive deterioration in 

soil moisture conditions was also observed. This has a significant impact on crop output; thus, farmers 

should think about moisture-saving management techniques. 

Several microwave sensors are accruing global soil moisture data. The spatial resolution is very 

low, which is around 9 km. Soil Moisture Active Passive (SMAP) is a satellite mission designed to 

measure the presence or quantity of water in the topsoil of the Earth (Reichle et al. 2014). The onboard 



  

radiometer (L-band) is designed to investigate moisture variability (Sales et al. 2007; Escorihuela et al. 

2010). Algorithm Theoretical Basis Documents (ATBDs) are used to generate of SMAP database 

(Reichle et al. 2019; Chan et al. 2013). SMAP has two immediate parameters, namely global root zone 

soil moisture and global surface soil moisture (Reichle et al. 2012). The average of 3-hourly geophysical 

data of a particular day is estimated to be the 1200 - 1500 hours data sets. These data sets are freely 

available to use without restrictions for science and application users (Reichle et al. 2022a). The SMAP 

geospatial data set (for the date of 23rd September 2023: 1200 - 1500 hrs.) was downloaded from 

https://nsidc.org/ in h5 format (Reichle et al. 2022b) and further processed in ArcGIS v10.5 to re-format, 

re-project, and subset as per the study area. Advanced space-borne thermal emission and reflection 

radiometer (ASTER) provide an elevation model for the globe in 30 m spatial resolution (Abrams et al. 

2020). Landsat 8 operational land imager (OLI) was freely downloaded from 

http://earthexplorer.usgs.gov. Furthermore, after the radiometric enhancement and rearrangement of the 

spectral bands, the image was clipped as per the study area for further use. Other GIS data layers, like 

soil texture and rainfall, were taken from the existing GIS database of the Papua New Guinea Resource 

Information System. 

https://nsidc.org/
http://earthexplorer.usgs.gov/


  

 

Fig. 1: Location map of the Study area (a) Papua New Guinea with the Markham watershed and (b) 

The study area sub-basin no.14. 

 



  

3. METHODOLOGY 

Estimation of soil moisture was carried out based on nine-fold (9) geospatial parameters based 

on the consultation of local soil scientists and agricultural experts. They are LULC, NDVI, soil texture, 

LST, TWI, rainfall, elevation, slope, and distance from the river. Geospatial layers were constructed 

from satellite remote sensing images and the national-level GIS database of PNG. After supervised 

classification, a LULC map was generated from the standard false colour bands of Landsat 8 satellite 

data. Soil texture map and rainfall map were developed from the national-level GIS database of PNG. 

A proximity analysis in ArcGIS v10.5 was performed to develop distance from the drainage network 

Elevation and slope were calculated from ASTER GDEM. TWI and LST data sets were generated from 

DEM and TIRS data through the topographic wetness model and surface temperature model 

respectively. TWI database was prepared based on the basin area length of contour and slope of the land 

in degrees as presented in equation 1 (Beven and Kirkby 1979; Samanta et al. 2018). 

TWI =   Ln(
a

tanB
)          …(1) 

TWI stands for the topographic wetness index, a refers to catchment further denoted as “A/L”, A refers 

to the area of the basin and L is the length of a contour, B stands for the slope of the land. 

Several analyses were performed to prepare the TWI database for the study area, namely (i) 

calculating the direction of the flow, (ii) generating flow accumulation, (iii) preparing the slope of the 

land in degree, (iv) creation of radian slope of the land, (v) calculation of tan slope, and finally (vi) 

scaled flow accumulation (Kopecký et al. 2021). Similarly, a series of calculations were performed to 

derive LST from TIRS bands, like (a) extraction of spectral radiance value, (b) calculation of brightness 

temperature, (c) calculation of NDVI, (d) generating proportion of vegetation database, (e) derivation 

of surface emissivity of the land, and finally (f) obtain the land surface temperature map (De Jesus et 

al. 2017; Wang et al. 2019).  

SMAP dataset was used as a reference database for this study. The Frequency model requires 

adequate training events to calculate the frequency ratio value for each conditioning factor and their 

subclasses. A fishnet analysis was performed to create reference points with known soil moisture values. 

“Create fishnet” is a Geo-processing tool under the data management of Arc Toolbox within ArcGIS 

(Akter and Javed 2022). It can create a feature class in a net of rectangular cells based on user-provided 

information, such as the number of rows and columns. The resulting fishnet layer can be restricted with 

the spatial extent of the input study area extension. Each fishnet cell contains a point label at the center 

of each cell. These points were used to derive moisture value from the raster-based SMAP data through 

“extract value to point” analysis. SMAP provides soil moisture values between 1 and 0, which 

represents extreme wet to extreme dry conditions respectively (Saha et al. 2021). Furthermore, SM 



  

values of more than 0.3 are considered optimum (no drought) conditions for plant growth (Parida et al. 

2008). Initially total number of 412 reference points were created through spatial fishnet analysis for 

the study area. Further analysis was conducted to select reference points with optimum moisture levels 

and 283 reference points were selected with moisture levels of more than 0.35 and 0.30 at the root zone 

and surface soil respectively. A spatial query was performed to identify these reference points from the 

initial population. Eighty percent (80%) of these reference points (226) served as inputs to the FR model, 

with the remaining twenty percent (20%) point (57) reserved for the validation process (Bashir et al. 

2023; Taffese and Espinosa-Leal 2023). The spatial resolution of all the data sets was not the same. To 

overcome this issue all the datasets were resampled to a common resolution (30m spatial resolution) 

using nearest-neighbor resampling techniques in the ArcGIS platform (Gurjar and Padmanabhan 2005). 

FR method is a bivariate statistical analysis method for the simulation of environmental 

situations, which considers conditional factors as dependent variables. FR model calculates FR value 

which expresses the type of correlation between parameters and potential soil moisture. The calculation 

of the FR value was processed using equation 2, where E represents several reference points for each 

subclass, F represents the total reference point, M stands for the histogram of each subclass and L stands 

for the total histogram (Bonham-Carter 1994; Samanta et al. 2018). FR value represents the proportion 

of the ratio factor between several reference points for each subclass and the total reference point, as 

well as the ratio of each subclass' histogram to the total histogram. A higher value indicates a higher 

correlation and a lower refers to a weak between the conditioning factor and potential soil moisture 

respectively (Tehrany et al. 2014). 

FR =
(𝐸/𝐹)

(𝑀/𝐿)
            …(2) 

After the calculation of the FR value, the frequency ratio index (FRI) was calculated using Equation 3 

(Samanta et al., 2018). The calculated FRI represents the soil moisture index (SMI) as shown in 

Equation 4. Higher value indicates higher moisture content or wet soil and lower refers to the lower 

moisture content or dry soil. 

FRI =  Σ FR           …(3) 

SMI =  FRI           …(4) 

 

4. RESULTS AND DISCUSSION 

 Different conditioning factors play specific roles in estimating high-resolution surface soil 

moisture databases. Nine (9) conditioning factors were selected carefully for this research, namely 

LULC, NDVI, LST, TWI, soil texture, rainfall, elevation, slope, and distance from rivers. The spatial 



  

distribution pattern of these parameters was mapped and statistical databases were built with their sub-

classes (Figure 2 and Table 1). The classification produces a LULC database that presents a total of 

nine (9) major classes. They are dense Forest, low dense forest, shrub land, outcrop/barren land, 

mountain grassland, urban and built-up, inland water, river water, and agriculture. The low dense forest 

is the dominant class (35.38%) mostly spread over the eastern, western, and some pockets of the 

southern region (Figure 2a). Shrubland is the second largest land cover class (26%) dominated in the 

middle portion and some pockets of northern and eastern parts. A total FR index of 7.44 was contributed 

by LULC for the FR model. The highest frequency ratio (FR) value (1.41) was calculated for shrubland 

(Table 1) based on the FR equation (Equation 8), which indicates a higher correlation with the moisture 

level in the soil (Kidron and Gutschick 2013). As per the United States Department of Agriculture 

(USDA) classification scheme, nine (9) textural classes, namely (i) silty clay, (ii) silty clay loam, (iii) 

sandy loam, (iv) sandy clay loam, (v) silty loam, (vi) sand, (vii) sandy clay, (viii) loamy sand and (xi) 

clay are found in this research area (Figure 2b). Sandy clay loam is the largest soil texture class (31.57%) 

dominated in the middle portion, where the floodplain is located. The clay class (1.13%) is found in 

some pockets of the eastern part and contributes a maximum frequency ratio (FR) value of 1.57 as a 

single subclass. The maximum total FR index of 9.33 was contributed by the soil texture parameter into 

the FR model compared to other parameters (Table 1), which describes a robust correlation with the 

available moisture content in the soil (Petrone et al. 2004; Takada et al. 2009).  

 NDVI has a dynamic response to soil moisture variation (Ahmed et al. 2017). The output NDVI 

value ranges from -0.39 to 0.67 (Figure 2c) and categorised into five (5) different zones, namely (i) less 

than 0.1 (20.24 %), (ii) 0.1 - 0.15 (13.19 %), (iii) 1.15 - 0.30 (18.62 %), (iv) 0.30 - 0.45 (31.83 %), and 

(v) more than 0.45 (16.11 %). FR value of 1.41 is calculated for the 2nd category (0.1 – 0.15) and a total 

FR index of 5.20 is contributed by the soil texture parameter into the FR model (Table 1). There is a 

reverse relationship between LST and surface soil moisture except in higher latitude locations 

(Ghahremanloo et al. 2019; Jiang et al. 2023). The modeled LST of this area is varied from 9⁰ to 47⁰ 

centigrade (C) and further grouped into five (5) classes, namely (i) less than 20⁰ C (3.03%), (ii) 20⁰ C - 

25⁰ C (15.36 %), (iii) 25⁰ C - 30⁰ C (61.44 %), (iv) 30⁰ C - 35⁰ C (17.03%), and (v) more than 35⁰ C 

(3.14 %). The highest temperature is observed in the township area in the eastern part and some pockets 

of middle and northwest parts of the research location (Figure 2d).  

 TWI quantifies the topography-based soil moisture variation (Raduła et al. 2018; Kopecký et 

al. 2021). The calculated TWI varied between 0.47 and 42.31 (Figure 2e). The maximum range of TWI 

is spread over the middle part of the watershed area where the topographic slope is very gentle (Qin et 

al., 2011). The spatial database of TWI was further reclassified into five (5) categories, namely (i) less 

than 5.0 (4.43 %), (ii) 5.0 – 7.5 (38.46 %), (iii) 7.5 – 10.0 (38.10 %), (iv) 10.0 – 12.5 (9.09 %), and (v) 

more than 12,.5 (9.91 %). LST and TWI contribute a total FR index of 4.76 and 4.87 to the FR model 

respectively (Table 1). Rainfall is the primary source of Soil moisture and also depends on the quantity 



  

and continuity of the rainfall (Sehler et al. 2019). The average yearly rainfall recorded between 1350 

mm and 3850 mm, which was categorised into five (5) different groups, specifically (i) less than 1500 

mm (0.85 %), (ii) 1500 mm to 2000 mm (14.55 %), (iii) 72000 mm to 2500 mm (57.11 %), (iv) 2500 

mm to 3000 mm (10.22 %), and (v) more than 3000 mm (17.27 %) (Figure 2f and Table 1). 

Elevation and slope have a greater impact on surface soil moisture (Moeslund et al. 2013). As 

water flows downhill under the influence of gravity, the higher elevation areas are characterized by 

lower soil moisture and lower elevation areas are dominated by higher moisture conditions (Qiu et al. 

2001; Cai et al., 2019). The elevation data was categorized into five (5) different groups, namely (i) less 

than 200 m (63.84 %), (ii) 200 m to 400 m (21.39 %), (iii) 400 m to 600 m (6.54 %), (iv) 600 m to 800 

m (3.92 %), and (v) more than 800 m (4.82 %) (Figure 2g). The slope database was divided into five 

(5) categories. They are (i) less than 2⁰ (53.59 %), (ii) 2⁰ to 5⁰ (14.55 %), (iii) 5⁰ to 10⁰ (7.87 %), (iv) 

10⁰ to 20⁰ (13.43 %), and (v) more than 20⁰ (10.55 %). A higher slope (More than 20⁰) is found in the 

mountain range located in the northeast, southeast, and northwest of the research area (Figure 2h). Both 

gentle slope (less than 2⁰) and lower altitude (less than 200 m) are found in the middle section of the 

basin. Elevation and slope parameters shared a total FR index of 3.27 and 4.16 in the FR model 

respectively (Table 1). In general, soil moisture varies by distance from the river (Horvath, 2002). Soil 

situated near the river is characterised by higher moisture than soils located at a distance from the river 

(Kumar et al., 2016). Five different buffer areas were generated through proximity analysis from the 

river, such as (i) less than 200 m (24.62 %), (ii) 200 m to 400 m (14.04 %), (iii) 400 m to 600 m 

(10.85 %), (iv) 600 m to 800 m (8.40 %), and (v) more than 800 m (42.09 %) (Table 1). 

 

Table 1: Conditioning factors used for estimation of soil moisture (SM) through the FR model. 

Valu

e 

Class name or 

Description 

Histogra

m 

% of 

Histogram 

 Potential 

SM 

points 

% of 

Potential 

SM points 

Frequen

cy ratio 

(FR) 

Total 

FR 

index 

LULC 

1 Dense Forest  47374 2.36 2 0.885 0.37  

 

 

 

 

 

7.44 

2 Low dense forest  710143 35.38 68 30.088 0.85 

3 Shrub land 521832 26.00 83 36.726 1.41 

4 Outcrop/barren 

lands 

43242 2.15 2 0.885 0.41 

5 Mountain grassland 421354 20.99 35 15.487 0.74 

6 Urban and built-up 15443 0.77 2 0.885 1.15 

7 Inland water  4765 0.24 0 0.000 0.00 

8 River water 140449 7.00 19 8.407 1.20 

9 Agriculture 102468 5.11 15 6.637 1.30 

Soil Texture 

1 Silty clay 91671 4.57 2 0.88 0.19  

 2 Sandy loam 176212 8.78 19 8.41 0.96 



  

3 Sandy clay loam 633631 31.57 68 30.09 0.95  

 

 

9.33 

4 Silty clay loam 406699 20.26 43 19.03 0.94 

5 Clay 22672 1.13 4 1.77 1.57 

6 Silty loam 22603 1.13 3 1.33 1.18 

7 Sandy clay 14248 0.71 0 0.00 0.00 

8 Sand 555087 27.66 78 34.51 1.25 

10 Loamy sand 84247 4.20 9 3.98 0.95 

NDVI 

1 Lower than 0.1 406280 20.24 47 20.80 1.03  

 

 

5.20 

2 0.1 - 0.15 264815 13.19 42 18.58 1.41 

3 1.15 - 0.30 373813 18.62 38 16.81 0.90 

4 0.30 - 0.45 638820 31.83 63 27.88 0.88 

5 Higher than 0.45 323342 16.11 36 15.93 0.99 

LST in degree C 

1 Less than 20 60822 3.03 3 1.33 0.44  

 

4.76 

2 20 - 25 308266 15.36 20 8.85 0.58 

3 25 - 30 1233168 61.44 149 65.93 1.07 

4 30 - 35 341812 17.03 43 19.03 1.12 

5 More than 35 63002 3.14 11 4.87 1.55 

TWI 

1 Less than 5.0 88958 4.43 6 2.65 0.60  

4.87 2 5.0 - 7.5 771982 38.46 76 33.63 0.87 

3 7.5 - 10.0 764626 38.10 95 42.04 1.10 

4 10.0 - 12.5 182526 9.09 26 11.50 1.27 

5 More than 12.5 198978 9.91 23 10.18 1.03 

Rainfall in mm 

1 Less than 1500 16990 0.85 2 0.88 1.05  

 

4.65 

2 1500 - 2000 292094 14.55 25 11.06 0.76 

3 2000 - 2500 1146286 57.11 148 65.49 1.15 

4 2500 - 3000 205126 10.22 22 9.73 0.95 

5 More than 3000 346574 17.27 29 12.83 0.74 

Elevation in m 

1 Less than 200 1281891 63.87 162 71.68 1.12  

 

3.27 

2 200 - 400 429324 21.39 50 22.12 1.03 

3 400 - 600 131360 6.54 10 4.42 0.68 

4 600 - 800 78617 3.92 3 1.33 0.34 

5 More than 800 85878 4.28 1 0.44 0.10 

Slope in degree 

1 Less than 2 1075600 53.59 144 63.72 1.19  

 

4.16 

2 2 - 5 292084 14.55 39 17.26 1.19 

3 5 - 10 157971 7.87 11 4.87 0.62 

4 10 - 20 269603 13.43 20 8.85 0.66 

5 More than 20 211812 10.55 12 5.31 0.50 

Distance from the river in m 

1 Less than 200 494112 24.62 59 26.11 1.06  

 2 200 - 400 281756 14.04 40 17.70 1.26 



  

3 400 - 600 217794 10.85 21 9.29 0.86 5.06 

4 600 - 800 168666 8.40 18 7.96 0.95 

5 More than 800 844742 42.09 89 39.38 0.94 

 

 

Fig. 2: Parameters used for FR modeling (a) LULC, (b) soil texture, (c) NDVI, (d) LST, (e) TWI, (f) 

rainfall, (g) elevation, and (h) slope characteristics of the study area. 



  

 

The rating was assigned to each sub-class of all the nine conditioning parameters based on the FR value 

presented in Table 1. The FR value is ranged from 0 to 1.57. The total FR index was calculated for each 

parameter after aggregation of all FR values sponsored by individual sub-classes. Finally, the overlay 

analysis was performed after integrating all the parameters with their FR characteristics based on 

equation 3, and the high-resolution (30 m) SMI database was constructed. The resulting SMI ranged 

from 4.57 to 11.61 with an average index value of 9.01 (Figure 3a). A higher soil moisture index value 

indicates wet soil and a lower index indicates dry soil. The resulting soil moisture index database was 

further reclassified into five (5) soil groups based on surface soil moisture index. They are (i) very low 

moisture (less than 6.0), (ii) low moisture (6.0 to 7.0), (iii) moderate moisture (7.0 to 8.0), (iv) high 

moisture (8.0 to 9.0), and (v) very high moisture (More than 9.0) (Figure 2b). The result identifies that 

almost 56.89 % of the basin is termed as very high and 26.10 % as high moisture level (Table 2) and 

these relatively wet soil classes are identified within the floodplain area of the basin. These areas are 

enriched with higher moisture content because of higher topographic wetness index, lower elevation, 

and flat slopes (Figure 2). Shrubland, sandy clay loam, lower NDVI, moderate surface temperature, and 

proximity to the river are the other dominant characteristics that cause higher moisture levels in these 

areas. 

 

Table 2: Different soil moisture zones based on classified SMI. 

Class no. Soil moisture class FR index range Histogram % Area 

1 Very low Less than 6 42461 2.12 

2 Low 6 - 7 94519 4.71 

3 Moderate 7 - 8 204339 10.18 

4 High 8 - 9 523870 26.10 

5 Very high More than 9 1141881 56.89 

 

 

 



  

 

Fig. 3: Estimated SMI (a) Spatial distribution pattern of SMI (b) validation using 20% legacy soil 

moisture reference point. 

 Estimation of a high-resolution surface soil moisture database was generated in the final sub-

basin of the Markham River basin through the FR statistical approach. Although the reference point 



  

datasets were generated from 9 km SMAP level-4 data through fishnet analysis, the FR model generates 

a high-resolution database (30 meters). A statistical spatial interpolation process can forecast at 

unknown locations based on known information (Srivastava et al. 2019; Salahalden et al. 2024), but the 

critical or location variation can’t be incorporated into the prediction. So, the FR model is an alternative 

statistical method was selected for this study (Snepvangers et al. 2003). The topographic slope, 

elevation, TWI, and LST were measured statistically using linear trend line analysis (R-squared) to 

determine how well they fit the regression model (Shaw et al. 2023). The coefficient of determination 

(R-squared) values for topographic slope, elevation, NDVI, TWI, and LST were calculated through 

linear regression analysis. TWI and soil moisture were found to have a moderate relationship, with a 

calculated coefficient of determination (R squared) of 0.29. Although soil properties have an impact, a 

strong correlation was found between slope and soil moisture (0.67). The relationship between elevation 

and soil moisture was determined to be 0.46. However, due to the complexity of the terrain, the 

correlation between NDVI and soil moisture is very low (0.19), while the correlation between NDVI 

and LST with soil moisture is moderate (0.27).  

Resampling techniques enhance data compatibility and visualization, enabling all the data sets to be at 

a common resolution (30m spatial resolution). Additionally, they streamline the analysis procedure. 

However, depending on the resampled techniques employed, they introduce certain uncertainties, such 

as fine-scale data loss and distortion. In contrast to the bilinear and cubic approaches, the nearest 

neighbor method can maintain the original value in the unaltered datasets (Lyons et al. 2018). Accuracy 

and success rate are essential to validate model-based estimation of soil moisture (Delgoda et al. 2016; 

Chi et al. 2019). The resulting SMI database was validated through prediction accuracy and success 

rate. In landslide susceptibility mapping using the Frequency Ratio (FR) model, benchmarks for success 

rate and prediction accuracy typically range from 70% to 80%, with some studies showing success rates 

as high as 90% and prediction rates around 87% (Bhandari et al. 2024). The success rate was computed 

as 91.59% (Table 3) and the prediction accuracy of the estimation was calculated as 93.98% (Table 3), 

which is very good evidence to validate the FR model in the estimation of high-resolution SMI. The FR 

model has been proven to be the best option over the MCDA approach because the FR model estimates 

better efficiency compared to any GIS-based MCDA model (Khosravi 2016; Wang and Li 2017). 

Table 3: Prediction accuracy and succession rate of the SMI estimation. 

Moisture 

category 

FR index 

range 

Validation 

[20% 

flood 

points] 

Accuracy 

(high and 

very high 

class) 

Prediction 

 Accuracy 

%) 

Training 

[80% 

flood 

points] 

Success  

((high and 

very high 

class) 

Success  

Rate 

(%) 

Very low Less than 6 0   

  

53 

  

  

  

93.98% 

  

0   

  

207 

  

  

  

91.59% 

  

Low 6 - 7 1 2 

Moderate 7 - 8 3 17 

High 8 - 9 13 38 



  

Very high More than 9 40     169     

Total 57  226  

 

5. CONCLUSION 

 The estimation of surface soil moisture was conducted at the spatial resolution of 30 m (pixel 

size) based on LULC, soil texture NDVI, LST, TWI, rainfall, elevation, slope, and distance from the 

river. The spatial resolution of all the input conditioning parameters was in 30-meter pixels. It was 

investigated that soil moisture index distribution depends mostly on the TWI, LST, slope, soil type, 

proximity to the river, and vegetation. Topographic slope, elevation, TWI, and LST are important 

independent parameters for soil moisture estimation in selected catchment areas. A total of 283 

reference points were selected in a specified interval with known soil moisture conditions. Eighty 

percent of these reference points (226) were used as inputs and the remaining twenty percent (57) were 

kept to validate the FR model estimation. The prediction accuracy of 93.98% validates the FR model 

prediction as acceptable and realistic. Remote sensing, GIS, and FR models are promising in 

hydrological research. FR model produces results with better prediction efficiency compared to any 

other GIS-based MCDA model (Wang and Li 2017; Samanta et al. 2017; Zeleke 2019). These results 

provide useful data for scientific applications in various domains, specifically in the agricultural sector, 

local government administrator, researcher, and planner. Soil moisture databases are efficiently used 

for watershed characterization, water balance studies, soil respiration, hydrology, soil health monitoring, 

plant growth, plant water stress, and irrigation scheduling. The FR modeling can be incorporated into 

practical hydrological decision-making by examining the connections between events and conditioning 

factors, aiding in the reduction of hydrological hazards and regional development. It can evaluate the 

correlation between dependent variables, such as crop health and production, and independent variables 

like soil quality, irrigation practices, climate, and more. 

This study was focused on the estimation of the high-resolution surface soil moisture data based on the 

Frequency Ratio model,  where 80% of the data was used as training and 20% was used for validation. 

Further research is recommended to use other machine learning methods to compare the results of the 

FR model to find its robustness. The establishment of ground-based combined models over larger 

catchment areas is required to generate accurate and precise multi-temporal soil moisture on a daily, 

weekly, or monthly basis with high-resolution soil moisture databases. 
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