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ABSTRACT  

Land Use and Land Cover (LULC) classification is essential for monitoring environmental changes, man-

aging resources, and planning sustainable development. Accurate classification, however, remains a chal-

lenge due to the diversity of landscapes and the computational demands of processing large datasets. Among 

various machine learning (ML) algorithms such as Convolutional Neural Networks (CNN), Support Vector 

Machines (SVM), Random Forest (RF), and Classification and Regression Trees (CART), RF and CART 

were chosen for this study due to their robustness, simplicity, and efficiency in handling complex LULC 

classification tasks. This research focuses on the Brahmani-Baitarani River basin, a region known for its 

environmental significance and susceptibility to land-use changes. Using remote sensing data from Landsat 

8, Landsat 9, and Sentinel-2 satellites, a comparative analysis of RF and CART was conducted to evaluate 

their performance in LULC mapping. The datasets were processed and analyzed on the Google Earth Engine 

(GEE) platform, utilizing multi-temporal image data and advanced filtering techniques. The results reveal 

that RF consistently delivers higher classification accuracy compared to CART, making it a reliable choice 
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for LULC studies in dynamic and heterogeneous landscapes. By integrating high-resolution satellite imagery 

with ML algorithms, this study provides detailed insights into the spatial distribution of land use across the 

Brahmani-Baitarani basin. These findings have practical applications in urban planning, natural resource 

management, and environmental conservation, offering valuable information for decision-makers and re-

searchers working to address global environmental challenges. 

 

  1. INTRODUCTION 

       Land Use and Land Cover (LULC) is therefore the manner in which human begins to use land and other 

features of the physical landscape. They form a basis of analyzing human socio-economic activities and their effects 

on earth regarding the physical planning of towns, cities and the general natural resource management. LULC 

alterations have impacts on ecosystems, climate, and resources (Rong & Fu 2023) for example in recent times the 

increase in frequency of global flooding events and that changes LULC (Kadam et al. 2024). These systems are 

critical for standardizing, categorizing and differentiating between the numerous forms of land that exist; as such, 

they are considered important tools of measurement in the context of environmental studies (Nedd et al. 2021). 

Some of the uses of mapping and spatial data are important in evaluating the land observations. Therefore, it is still 

difficult to properly assess classification systems, while their ability to follow the changes in the proposed land 

frequency remains rather high. Some of these drawbacks affect environmental monitoring and functioning as well 

as planning of environment activities.  

The Brahmani-Baitarani River Basin was chosen because of its distinct environmental problems and high variabil-

ity of LULC, making it an important area for land cover classification research. The river basin is subject to fre-

quent floods, intensive land use change, and varied topography, making the area imperative for precise LULC 

mapping. The hydrological complexity of the basin also creates difficulties in the study of land dynamics, necessi-

tating strong classification methods. Also, efficient LULC analysis is crucial for flood risk management, agricul-

tural planning, and ecological protection in this area.  

Random Forest (RF) and Classification and Regression Trees (CART) have received extensive comparison in 

LULC classification but this study focuses on regional-specific analysis in a complex river basin while examining 

various sampling methods including random sampling and stratified sampling. This research deviates from previ-

ous work by assessing how the algorithms succeed in handling uneven geographic terrains and sensitive hydrolog-

ical areas. This research contributes fresh information about RF and CART performance in detecting seasonal and 

environmental impact on land cover classification despite limited investigation in past studies. 

Satellite remote sensing (RS) is a central source of data essential for studying and mapping the Earth’s surface. The 

availability and growing number of Remote Sensing data supported by improved and cheaper satellites inclusively, 

radiometric, spectral, spatial, and temporal resolutions which allow users to work with large numbers of time-series 

data (Tassi et al. 2020). However, this allows for greater accessibility due to the ability to break down components 

and perform separate computational requests at once, yet this comes at the cost of elevation of computational com-

plexity and time. To help overcome these challenges, Google has developed one of the largest platforms based on 
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cloud called Google Earth Engine that demonstrates considerable results in recent years (Feng et al. 2022). Another 

is online geospatial platform, which provides utilization of crazy amount of geospatial data as well as a set of 

powerful online tools for computational and visual analysis. Researchers can either preprocess or directly download 

multi-temporal image data that satisfies certain filtering conditions through the GEE platform (Velastegui-Montoya 

et al.2023). After this, they can engage a number of machine learning algorithms in order to perform the LULC 

classification and analysis on-line (Loukika et al. 2023). 

Using ML algorithms on remote sensing imagery on LULC classification has garnered significant interest recently. 

Unlike the limitations of human decipher, AI techniques can effectively identify subtle patterns(Mahajan et al. 

2024; Mahajan et al. 2024). ML techniques are now widely used in different sectors like remote sensing technology, 

in smart agriculture etc.  Supervised techniques encompass various algorithms, including Classification and Re-

gression Trees (CART), Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Fuzzy Adaptive Reso-

nance Theory-Supervised Predictive Mapping (Fuzzy ARTMAP), Random Forest (RF), Mahalanobis Distance 

(MD), Radial Basis Function (RBF), Decision Tree (DT), Multilayer Perceptron (MLP), Maximum Likelihood 

Classifier (MLC), Naive Bayes (NB) and Fuzzy Logic (Maxwell, 2018). 

Some of machine learning methods are more accurate than others in the classification of LULC. According to the 

review of previous studies it reveals that Artificial Neural Networks (ANN), Support Vector Machines (SVM) and 

Decision Tree have the potential to conduct the classification techniques. The results show that Random Forest (RF) 

performs better in general compared with other classification methods. Among all analyzed machine learning ap-

proaches, RF and CART were identified as the best-performing algorithms for LULC. classification that offers 

much accuracy than those of the other researchers (Carranza-García, 2019). 

Many studies have been devoted to the comparison of various approaches to the classification using techniques of 

machine learning. These investigations are useful to provide information on the drawbacks and advantages of the 

approach in terms of appearance of LULC maps. In proposed research, authors aim to conduct a comparative study 

focusing on the performance of RF and CART using two distinct datasets: Dynamic WorldCover and the European 

Space Agency (ESA). By evaluating the success of these techniques, the intend to help formulate future research 

on the use of LULC mapping. 

         2. MATERIALS AND METHODS 

           2.1. Study Area 

                 The Brahmani Baitarani area which shown in fig. 1 is located in eastern Odisha and between 83°55′ to 87°30′                      
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east longitudes and 20°28′ to 23°38′ north latitudes. It starts from the highlands of Jharkhand and flows through 

Odisha to the Bay of Bengal. That can be written down as the length of the river = 799 km and 355 km (Indraja, 

G., 2024). The Baitarani River is one of the six major rivers from Odisha with an elevation range from 32 to 1024 

m.  

                                                                                       Fig. 1:  Study Area 

 

The major part of the region is covered with agricultural areas where the monsoon starts in June and extends till 

October.The southwest monsoon season (June to September) measures about 80% of yearly rain-

fall. The Baitarni sub-basin 1250- 1500 mm and Brahmani sub-basin receives 1250-1750 mm. Mean tempera-

tures are 32°C (max) and 20°C (min). Recently occurred land use and climate changes have led to frequent flood-

ing, damaging infrastructure and agriculture (Swain et al. 2021). 

 

        

2.2.        Satellite Data  

          Landsat-8, launched in 2013, provides medium-resolution imagery (30 meters) for land monitoring, urban 

mapping, and vegetation analysis. Landsat-9, launched in 2021, continues this mission with advanced technology, 

maintaining a 12-day revisit period and providing essential day data for continued land cover monitoring. Sentinel-

2 L1C images, starting from June 27, 2015, with a 2–5-day revisit period, are also pivotal in this process. 

Dynamic World Cover and LULC Data Dynamic World Cover offers near real-time LULC data with a 10-meter 

resolution, categorizing land into nine classes with probabilities (Brown et al. 2022). Using the Cloud Displace-

ment Index, Directional Distance Transform, and S2 Cloud Probability, it achieves less than 35% cloud masking. 

This project, inspired by the 2017 World Cover conference and launched by the ESA, produces a global 10-meter 

resolution land cover map incorporating data from both Sentinel-1 and Sentinel-2 satellites, focusing on 11 land 

cover types with over 75% accuracy (Zanaga et al. 2020; Zanaga et al. 2022).  
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2.3.   Methodology 

                                                                  Fig.2: Methodology 

 

The methodologies employed in this study are described in detail in the subsequesnt sections. The study aids in 

classifying the classification made by two Machine Learning algorithms Random Forest and CART in Fig.2.              

      

      2.3.1. Data Acquisition 

        The Sentinel 2 and Landsat data are being used to classify Land Use and Land Cover for the region of Bra-

hamani and Baitarani. The underlying data is obtained from three different agencies to understand the difference 

in classification and the datasets. Sentinel 2 data can be collected from Dynamic WorldCover and the European 

Space Agency. The data consists of multispectral images, which undergo preprocessing techniques to remove 
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unnecessary noise or artifacts, cloud masking, or any geometric or atmospheric correction. From the segmented 

regions, we extract key spectral, textural, and contextual features. As part of this process, various indices are 

calculated, such as the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index 

(NDWI), and Normalized Difference Built-up Index (NDBI). The derived parameters can further help in 

understanding specific land cover attributes (Zhao et al. 2024).  

 

       2.3.2. Pre-processing, Feature Extraction and Calculate Indices 

        

Preprocessing involves many procedures to improve data quality before it is time for classification. First, 

Sentinel-2 and Landsat imagery are chosen as well as they cropped based on predefined shapefile for our region 

of interest (ROI). Cloud masking is the most particular part of satellite data. Cloud masking is removed means it 

removes the unwanted pixels. In this way the accuracy for land cover classification can be substantially enhanced 

by removing armful factors such as unreliable pixels caused by both clouds and tree foliage cover. It also guaran-

tees that all spectral indices, such as: NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Dif-

ference Water Index), and NBR (Normalized Burn Ratio) are computed from correctly classified land surfaces 

and noise (clouds or cloud shadows) excluded (Mateo-García et al. 2018).  

         The data is then further improved using geospatial formats, applying transformations and exporting images for     

         analysis. These methods collectively make LULC classification results more reliable; deleting atmospheric  

         distortions and unwanted features from the image together. 

 

NDVI = (NIR - RED) / (NIR + RED) 

NDWI = (GREEN - NIR) / (GREEN + NIR) 

NBR = (NIR - SWIR) / (NIR + SWIR) 

 

Vegetation index NDVI serves as a common tool which measures plant greenness through chlorophyll levels. The 

specific area's water content is measured by NDWI (Ashok et al.2021). Distinct features within a 3-band satellite 

image of a basin are identified using the NDVI technique. NDVI evaluates vegetative cover through the evaluation 

of wavelengths in near-infrared versus red bands which produces values between -1 to 1(Gebeyehu et al. 2019). 

Vegetation indices derived from these satellite images have been used to assess vegetation cover which also means 

a biophysical indicator of soil erosion. Formula used combine visible Red Band (RED) and near infrared reflec-

tance (NIR) to determine NDVI. 

It is applied by calculating the difference between green and near infrared reflectance by using NDWI technique 

to determine water bodies from within a 3-band satellite image. Areas of high moisture content are highlighted 

against context land features in this index. Likewise, the NBR index is used to monitor burned regions and vege-

tation health by comparing short wave and near infrared reflectance. The two indices derived from Sentinel 2 data 

improve the classification of water bodies and burned land improving the accuracy of LULC analysis and envi-

ronmental monitoring (Tempa et al. 2024). 
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      2.3.3. Model Training 

       In this study, the training process begins with the selection of training datasets derived from Sentinel-2 and 

Landsat 8/9 satellite imagery. Prior to utilization the datasets receive preprocessing treatments to achieve both 

quality and consistency standards. During model training and testing operations the dataset gets divided into two 

separate parts named training samples and testing samples. A random sampling and stratified sampling approach 

ensures this split. A distributed random value appears in each outcome column for every instance in the dataset. 

The distribution of data between training and testing emerges from the split ratio value which functions as a float-

ing-point number spanning between 0 and 1. The split ratio establishes the specific portion of data which contrib-

utes to the training process. 

When preprocessing finishes the system creates labeled training samples which identify unique LULC classes 

consisting of vegetation, water bodies and constructed regions. The RF and CART systems use these selected 

samples to establish their models.  

RF implements an ensemble approach where it uses numerous decision trees that combine predictions to dr1ive 

better classification outcomes. CART implements a single decision tree approach that divides the dataset recur-

sively based on threshold of features to identify LULC types. Both classifiers leverage trained data of extracted 

spectral and textural features alongside contextual features to optimally classify the different land cover types 

present in the study region. 

 

        2.3.4. Classification 

        2.3.4.1. CART 

                CART operates as a binary decision tree classifier, creating simple, logical if-then decisions. Research 

shows that people commonly use CART for remote sensing tasks particularly land use and land cover mapping as 

well as vegetation identification and land update monitoring. Other ML algorithm often take time in normalization 

of data, but CART does not require normalization.  It evaluates input variables to determine, which provides the 

highest information gain, thus guiding node splits at each level (Shetty 2019). CART's robustness to noisy data 

and its ability to cope with split-outliers make the algorithm useful in a wider range of fields as this algorithm 

adapts some imperfections in data by adjusting splits to handle variance. 

This method suits our study well, as high-resolution datasets are typically large, but the Cart software effi-

ciently handles multiple datasets without affecting processing performance. 

Research comparing classifiers shows that the CART classifier delivers equally accurate, if not superior, re-

sults compared to other common classification algorithms.In this study, we utilized the "classifier.smile-

Cart" method for Land Use Land Cover classification. 

 

         2.3.4.2. Random Forest 

                 Machine learning algorithms, such as Random Forest, have proven highly effective in analyzing intricate  
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remote sensing datasets. stratified Forest has a key advantage in handling large datasets with high-dimensional 

features. By using multiple decision trees, the Random Forest is more resistant to overfitting than individual deci-

sions trees which contributes to its reliability, and it is able to classify complex patterns from satellite imagery 

(Mahendra et al. 2025). RF classifiers consist of multiple decision trees, where the final classification result is ob-

tained through a voting process among these trees. The RF approach involves two types of random selec-

tion. Firstly, it randomly helps in creating subsets from the training dataset, representing a subtree that pro-

vides an individual classification result. The final result is then based on the aggregated votes from all these sub-

trees (Xie et al. 2019). Our study is focused on Land cover classification using ee.Classifier.smileRandomForest(). 

This algorithm builds 100 decision trees for the classification task, enhancing the overall accuracy androbust-

ness of the predictions.  

For this study area, it is particularly effective regionally due to diverse land cover types ranging from Urbanization 

to farmlands, rivers, forests, and water bodies. The multi-spectral images collected by Sentinel-2 and Landsat 

satellites combined with Random Forests have achieved comprehensive RF classification that really is detailed 

and accurate. It also makes it possible to map such detailed land-cover change information through time series 

data analysis. This is particularly important for monitoring the impact of land-use change on water resources, 

agriculture and the environment in this region. 

 

       2.3.5. Accuracy Assessment 

                In this research, accuracy assessment involves several key steps using machine learning tools and  

methodologies. Specifically, the sklearn.metrics module is utilized to calculate and print the classification re-

port, accuracy score, and confusion matrix. The classification_report function provides a detailed break-

down of recall,precision and F1-score for each class. The accuracy_score function computes the overall accu-

racy of the model, which is the ratio of correctly predicted instances to the total instances. The confusion ma-

trix, displayed using Seaborn's heatmap, offers a visual representation of the true vs. predicted classifica-

tions, helping identify misclassifications.  

The formula for accuracy is expressed as: 

 

Accuracy=Number of correct predictions / Total number of predictions 

 

Additionally, the classifierMetrics function is designed to evaluate performance of model, highlighting the effec-

tiveness of the Random Forest classifier in this context. The function receives the true labels (y_test) and pre-

dicted labels (y_pred), printing out the classification metrics. 

 

          2.3.6. Confusion Matrix 

                 The confusion matrix is plotted to visually assess how well the model is performing across different clas    
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ses. This comprehensive assessment method ensures a robust evaluation of the classification results, provid-

ing insights into areas for potential improvement. Furthermore, the Random Forest classi-

fier is trained and tested using a subset of the dataset, with cross-validation enhancing the reliability of the accu-

racy measurement. 

Performance evaluation of classification decisions across different land cover categories occurs through the con-

fusion matrix model. The Random Forest classifier exhibits high accuracy performance in particular land cover 

categories but shows misidentification behavior in selected classes. The classification accuracy for Water and Bare 

Ground reaches maximum levels since their spectral features enable clear discrimination from other classes. The 

classification of Flooded Vegetation and Grassland suffers from major misinterpreted areas because their spectral 

signatures have similar characteristics. The spectral characteristics of Crops align closely with Shrub & Scrub 

vegetation thus leading to their classification overlap. Somewhere misclassification occurs because some images 

show a mixture of urban structures together with vegetation elements. The classifier makes incorrect decisions 

because land cover types share similar spectral information and because some pixels contain multiple classes as 

well as cyclic changes in vegetation and water levels. 

 

       2.3.7. Performance Evaluation 

                In our research, we perform a comprehensive accuracy assessment of the classification results through a  

series of steps leveraging both GEE and the scikit-learn library. We use several key metrics such as the classifi-

cation report, accuracy score, class distribution and confusion matrix to evaluate performance. The classifica-

tion report provides recall, precision and F1-score for each class, giving a detailed overview about model’s per-

formance. The accuracy score is the ratio of correctly predicted instances to the total instances, provides a sum-

mary measure of the classifier's accuracy. The class distribution is shown in Table.1. The confusion matrix visu-

ally represents the true versus predicted classifications, highlighting areas of misclassification and allow-

ing us to evaluate the classifier's performance comprehensively.  

The scikit-learn functions classification_report, accuracy_score, and confusion_matrix are used to com-

pute the classification metrics. Seaborn: heatmap to plot the confusion matrix gives intuitive sense of classifier 

performance. By performing these extensive calculations of accuracy, we will ultimately get a well-rounded view 

of just how well our approach in this specific case worked, as well as information on any concrete areas we 

can improve upon. 
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        Table 1: Comparison of Area km2 and Percentage of RF and CART. 

 

 

 

 

 

 

 

 

 

3. RESULTS 

       3.1. CART  

         The CART algorithm was employed to categorize the study area into four major categories: vegetation, 

barren land, built-up area and water bodies. According to the classification results, water 710.07 km2, trees 

1,162.23 km2, grass land 818.87 km2, flooded vegetation 647.74 km2, crops 2,433.10 km2, shrub & scrub 965.40 

km2, built-up area 1,338.98 km2, and bare ground 1,353.42 km2. These results were observed by the Dynamic 

World Cover dataset using stratified sampling over a duration of 6 months. Similarly, good near comparable results 

were observed using the ESA dataset, as illustrated in Fig 3.1.a, 3.1.b, 3.1.c, 3.1.d. 

 

                                                       

 

 

 

 

 

 

 

 

 

 

 

 

Data set Classes RF CART 

  Area km2 Percentage Area km2 Percentage 

 Vegetation 609.96 6.47 775.87 8.23 

Dynamic 

WorldCover 

Built 1.228.10 13.02 1,217.78 12.91 

 Barren 331.56 3.52 512.22 5.43 

 Water 326.79 3.47 559.95 5.94 
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                                                                ESA WorldCover 10m v100/200 2023 

 

      Fig.3.1. a. Spatial distribution of LULC 
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                      Dyanamic World V1 2023                                                                ESA WorldCover 10m v100/200 2023 

                                                Fig.3.1. b. Class distribution for LULC predicted image. 

 

 

 

 

  

 

         

 

 

 

 

 

 

        

 

 

 

Dynamic World V1 2023                              ESA WorldCover 10m v100/200 2023 

                             Fig.3.1. c. Classification Report on LULC data prediction 
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                                                            ESA WorldCover 

10m v100/200 

                                      Fig. 3.1.d. Confusion matrix of LULC data prediction 
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3.2. Random Forest Algorithm 

Fig 3.2.a, 3.2.b, 3.2.c, and 3.2.d depict the outcomes of a Random Forest classifier, utilizing stratified sam-

pling of Dynamic World Cover and ESA data over a 6-month period with monthly classification. The land cover 

distribution in the Brahmani Baitarani basin is as follows: 330.36 km² of wa-

ter, 1,193.78 km² of trees, 795.17 km² of grass, 637.55 km² of flooded vegeta-

tion, 2,908.39 km² of crops, 582.44 km² of shrub and crops, 1,570.72 km² of built-up areas, and 1,411.40 km2 of 

bare ground. Similar results were obtained using ESA dataset. 

                                                                       Dynamic World V1 

                                                              ESA WorldCover 10m v100/200 

                                                       Fig. 3.2.a. Spatial distribution of LULC 
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         Dynamic World V1                               ESA WorldCover 10m v100/200  

    

               Fig.3.2. b. Class distribution for LULC predicted image 

 

 

 

                      Dynamic World V1                                                                                   ESA WorldCover 10m v100/200 

                                                    Fig.3.2. c. Classification Report on LULC data prediction 
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                                                                                        Dynamic World V1 

 

ESA WorldCover 10m v100/200 

Fig. 3.2.d. Confusion matrix of LULC data prediction 
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      3.1. Result Validation 

             For LULC classification, RF is preferred over CART, since RF has more accuracy and robustness than 

CART (Talukdar et al. 2020). In the Brahmani-Baitarani basin, RF outperformed the accuracy of CART. The 

Dynamic World Cover dataset classified 559 km² of water, 2,522 km² of crops and 1,217 km² of built-up areas 

with RF staying consistent over a six-month period. This ensemble method mitigates overfitting by averaging 

predictions over many decision trees, yielding more stable classifications, particularly in high-dimensional da-

tasets like satellite imagery (Ren et al. 2024). The CART algorithm provided a satisfying accuracy, yet in our 

research, it displayed limitations common to decision trees, including susceptibility to small changes in the train-

ing data and overfitting. RF, on the contrary, showed ability to cope with noisy data and classified more complex 

land covers such as flooded vegetation and shrub area (trees 1397 km², flooded vegetation 775.87 km²) with higher 

accuracy. The performance of CART was limited by its lack of ensemble learning, which potentially renders RF 

a valid algorithm for mapping in our study area's land-use/land-cover (LULC). These findings demonstrate the 

significant benefits of employing RF for more accurate and consistent LULC classification, especially for di-

verse types of land. 

 

4. DISCUSSION 

The outcome of this research study demonstrates that Random Forest (RF) and Classification and Regression 

Trees (CART) which are ML algorithms, they exceed in achieving precise LULC classification. RF demon-

strated robustness in classification in case of accuracy. The reasonable performance of CART was overshadowed 

by its propensity for overfitting which damaged the classification accuracy results. The research used Sentinel-2 

together with Landsat 8/9 datasets alongside Dynamic WorldCover and ESA WorldCover which proven effective 

for classification purposes. The utilization of Google Earth Engine (GEE) simplified data analysis by providing 

smooth nonlinear processing for large-scale remote sensing image data. The preprocessing stage that involved 

cloud masking alongside geo-metric corrections and spectral index calculations of NDVI, NDWI and NDBI 

proved vital for achieving superior classification results.  

The main result of this research demonstrates RF-based LULC classification can serve practical environmental 

objectives including environmental monitoring alongside urban planning and flood risk assessment and sustaina-

ble land management. Water resource management and disaster preparedness decisions benefit from precise 

LULC classification within the Brahmani-Baitarani River Basin because the region undergoes several land cover 

changes through monsoon-driven flooding. Aside from this, RF can offer government more effective zoning reg-

ulation, deforestation and agricultural land use tracking. Scientists can address issues of habitat destruction and 

loss of biodiversity by using data collected via RF-based classifications, as urban planners can integrate the in-

formation to implement infrastructure that is resilient and encourage green spaces. 

A comparison with other studies proves that RF achieves better performance than CART in LULC, corroborating 

similar findings in Sentinel and Landsat studies. The classification accuracy of our study is fairly close to that has 

been reported previously which reinforces that RF is a robust algorithm for large-scale mapping. The performance 
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difference observed is primarily due to RF’s capability for dealing with high-dimensional data while reducing 

variance through ensemble learning and the singularity of a CART tree that becomes much more sensitive to 

noise. Nevertheless, one of the drawbacks of Random Forest is its dependency on high-quality training data and 

sensitivity towards class imbalance, making it a better algorithm to use with continuous improvement of the dataset 

as well as hybrid modeling for better reliability. 

 

5. CONCLUSIONS 

       The investigation carried out in the Brahmani Baitarani area emphasizes the necessity of combining higher 

order remote sensing approaches for the assessment of LULC classes. Our research demonstrated the effectiveness 

of categorizing the heterogeneous landscape using Landsat and Sentinel-2 satellite images, providing a better un-

derstanding of vegetation extent, built up areas, water bodies, and barren land in the study area. The findings 

therefore show that Random Forest has performed much better than the CART algorithm. This superiority could 

be attributed to the fact that RF uses an ensemble method of classifying features that helps it avoid overfitting, 

while at the same time improving the level of classification accuracy, especially in diverse and disaggregate land 

cover class. The classification report, confusion matrix, and other measures used in this chapter also give more 

refined accuracy estimation than the overall accuracy measure which confirms the ability of RF to handle high-

dimensional data like the satellite imagery data.  

In conclusion, this study provides a sound platform for environmental monitoring of the region as well as the 

application of sustainable land management practices in the Brahmani Baitarani area. 
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ESA: European Space Agency 

GEE: Google Earth Engine 

LULC: Land Use Land Cover 

MD: Mahalanobis Distance 

ML: Machine Learning 

MLC: Maximum Likelihood Classifier 

MLP: Multilayer Perceptron 

NB: Naive Bayes 

NBR: Normalized Burn Ratio 

NDBI: Normalized Difference Built-up Index 

NDVI: Normalized Difference Vegetation Index 

NDWI: Normalized Difference Water Index 

NIR: Near Infrared Reflectance 

RBF: Radial Basis Function 

RED: Red Band 

RF: Random Forest 

RS: Remote Sensing 

SAM: Spectral Angle Mapper 

SVM: Support Vector Machine 

 

 

 

 

 

 

 

 

 

 

 

 

 


