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Abstract: Different approaches are being adopted, in practice, for determining models for given time series. 

The approaches can be categorized broadly into three viz., statistical, machine learning and deep learning. 

Since they differ with respect to their theoretical base, their outcomes also differ. Decision making based on 

the values predicted from the time series models seek accuracy of the forecast values.  This paper studies the 

effectiveness of the three approaches by comparing the performance of the autoregressive moving average 

method developed applying statistical principles, Facebook Prophet method developed from Machine Learn-

ing approach and long short-term memory method developed from deep learning.  The study is carried for 

real data of time series of air quality indices. 

 

1. INTRODUCTION 

One of the main applications of time series models is forecasting values with desired level of accuracy 

based on the observations available for the past time periods. This is crucial for decision making in various 

fields, as it allows for the prediction of future trends and patterns and the identification of potential risks and 

opportunities. Buyuksahin and Ertekin (2019) have mentioned that time series models can also be used to 

extract meaningful information from large amount of data and to identify underlying relationships and patterns 

in the data.  In recent years, there has been a significant amount of research on developing methods for time 

series modelling applying machine learning and deep learning approaches. These methods have the ability to 

handle large, complex datasets.  Parmezan et. al., (2019) have pointed out that the models developed from 

these approaches can identify patterns and trends, which may be difficult to discern using conventional 

statistical methods.  

It is well known that the autoregressive moving average / autoregressive integrated moving average 

(ARIMA/ARMA) methods have been developed based on statistical principles (Box et. al., (1970)) and the 
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outcomes of the models possess desirable theoretical properties. Machine learning techniques, such as support 

vector machine (SVM) and random forests have also been shown effective in forecasting time series data. 

Deep learning methods, such as long short-term memory (LSTM) method, have demonstrated the ability to 

handle large amount of data and capture complex relationships in the data (Toharudin et. al.,  (2020)). 

Current research in time series modelling has also focused on improving the accuracy and efficiency of 

forecasting methods. Calvo and Santafe Rodrigo (2016) have mentioned that different time series modelling 

methods can be compared with respect to various features such as seasonality, trend, level, noise, etc., of the 

time series data, ability to handle different types of data, computational complexity of the methods, as well as 

the interpretability of the results and accuracy of the forecast values. 

In recent years, air pollution has become a major concern for cities and communities around the world.  

Increasing levels of toxic substances in the air have caused a wide range of health problems from respiratory 

issues to heart diseases. The most common sources for air pollution include industrial emissions, transportation 

and energy production. As a result, the common public are breathing polluted air every day, leading to a rise 

in respiratory diseases and other illness. Though industrial growth leads to economic development of nation, 

it parallelly returns poor quality air to the humankind.  Hence, there is a considerable amount of consideration 

worldwide for discussing Climate Change. Analysis of information about contents of air, which all human 

beings inhale, is pertinent in view of health of common public. In recent years, several studies have examined 

the use of ARIMA models for forecasting air pollutant concentrations.   

 Samia et. al., (2012) conducted a study to predict the levels of PM10 over 24 hours period in Tunisia. They 

proposed a hybrid method, which combines the ARIMAX and artificial neural network (ANN) models with a 

multilayer perceptron architecture. This model was able to identify both linear and non-linear time series 

patterns effectively, making it a valuable tool for forecasting and early warning systems. Haviluddin et.al., 

(2015) compared the performance of the ARIMA method, Back-Propagation Neural Network (BPNN) and 

genetic algorithms for analysing and predicting short-term time series network traffic activity datasets. They 

experienced that BPNN is efficient in learning a time series data. Naveen and Anu (2017) compared the 

effectiveness of ARIMA and Seasonal ARIMA models for forecasting ambient air quality data in 

Thiruvananthapuram District, Kerala, India, and found that the ARIMA model performed better. Patra (2017) 

used a combination of ARIMA method and artificial intelligence techniques like ANN and SVM to predict the 

concentration of atmospheric pollutants in India, and obtained satisfactory results with the ARIMA model.   

Abhilash et. al., (2018) found that the ARIMA model is effective for short-term forecasting of nitrogen dioxide 

(NO2), PM10 and sulphur dioxide (SO2) for the data pertaining to Bengaluru city. 

 Parmezan et. al.,  (2019) compared the effectiveness of the four algorithms viz., ANN, SVM, kNN-TSPI 

and SARIMA in predicting trends in multi-step-ahead projections with approximate or updated iterations. 

Their results showed that the kNN-TSPI method has notable stability and robust in forecasting as accurately 

as SARIMA and SVM, but with the added advantage of being easier to understand, implement, and modify 

with only two input parameters that can be easily determined based on seasonal patterns in the data. These 

findings suggest that machine learning methods have reached a similar level of maturity to statistical models 

in temporal data modelling. 

In a study by Samal et. al., (2019) the SARIMA and Prophet models were evaluated for predicting 

pollution in Bhubaneswar City using historical data. These methods were found, based on various performance 

measures, to achieve high levels of accuracy. Particularly, the Prophet model with log transformation was 

found to be relatively more effective for forecasting future pollution levels in Bhubaneswar City.   
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In the study by Toharudin et. al., (2020), the LSTM and the Prophet models were used to analyze 

historical data of daily maximum and minimum air temperatures in Bandung. Their findings showed that the 

Prophet model performs relatively better for forecasting maximum air temperature, while the LSTM model 

performs relatively better for forecasting minimum air temperature.  Sanchez-Pozo et. al., (2021) compared 

the accuracy in the forecast values, of Ozone (O3) concentration for assessing air quality of London city, 

obtained from the four forecasting models Facebook Prophet (Prophet), LSTM, Support Vector Regression 

(SVR) and ARIMA. They observed that LSTM model achieved the highest accuracy among the models 

considered. Some works could be found in the literature on studying the quality of air and chemical pollutants 

causing air pollution in Chennai, a metropolitan city in India.  Nadeem et. al.,  (2020), applying the ARIMA 

method, developed nine univariate linear stochastic models for forecasting the concentration levels of the 

chemical pollutants viz., respirable suspended particulate matter, SO2 and NO2 in three areas of Chennai city.  

Ammasi Krishnan et. al., (2020) found that the level of PM2.5 is three times higher than the National Ambient 

Air Quality Standard (NAAQS) of India while other pollutants are within acceptable limits, during Diwali 

days.  

 Angelena et. al., (2021) examined the concentration of PM10 in the four locations Anna Nagar, Adyar, 

Thiyagaraya Nagar and Kilpauk of Chennai city applying a neural network with multilayer feed-forward 

backpropagation method. Whereas, Janarthanan et. al.,  (2021) found that a combination of the deep learning 

model based on LSTM and SVR could accurately predict well the air quality index (AQI) of some locations 

of Chennai.  Mani and Volety (2021), applying the LSTM and ARIMA methods, predicted the levels of air 

pollutants and found that the LSTM model produced relatively precise results than the ARIMA model.    

Varma et. al., (2021) investigated and analysed the concentration of suspended PM and its associated 

health consequences in five locations Alandur, Marina Beach Road, Velachery, Koyambedu and Anna Salai 

of Chennai city. They discovered that out of the five locations, Alandur, Marina Beach Road and Velachery 

have moderate AQI values, while Koyambedu and Anna Salai have poor AQI values. Recently, Gunasekar et. 

al., (2022) proposed a novel and optimised deep learning algorithm, which combines ARIMA and CNN - 

LSTM methods for forecasting the AQI of Chennai with higher level of accuracy. 

Apart from time series analysis, some attempts are also found in literature on model construction for AQI 

of Chennai city. Sumithra et. al., (2022) have discussed Markov modelling for AQI of Velachery locations of 

Chennai. In another work, Loganathan et. al., (2022a) have constructed multiple regression model for the same 

datasets. 

It can be noted, in general, from the above discussions that performance of the approaches or methods 

applied for time series modelling are data dependent. AQI time series is challenging to handle due to its 

inherent complexity, non-stationarity and susceptibility to external factors such as weather conditions, seasonal 

variations and human activities. These factors cause patterns to shift unpredictably, making it difficult to model 

and forecast accurately. Unlike other types of data, air pollution data often exhibits irregular trends, sudden 

spikes, and long-term dependencies, which require specialized techniques to capture and analyze effectivel. 

Addressing these patterns is crucial because accurate forecasting of air pollution levels enables proactive 

measures to mitigate health risks, inform public policy and improve environmental management. 

Hence, it has become essential to identify appropriate approach or method for designing effective 

forecasting models for every location.  The main objective of this work is to identify an effective method for 

forecasting the AQI of Chennai city on comparing the performance of three methods viz., ARIMA, Prophet 

and LSTM evolved respectively from statistical, machine learning and deep learning approaches.  Implements 
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these three distinct methodologies for time series analysis: ARIMA, LSTM and Prophet. Each methodology 

was selected based on unique capabilities in addressing specific aspects of time series analysis and forecasting 

challenges. 

The ARIMA methodology demonstrates proven effectiveness in modeling linear relationships and 

handling datasets with distinct trends and seasonality patterns. This approach combines autoregressive and 

moving average components, utilizing differencing techniques to achieve data stationarity. Through systematic 

parameter tuning and iterative testing processes, the model specifications were established for accurate 

forecasting capabilities. 

For addressing non-linear and complex patterns, the LSTM architecture leverages advanced capabilities 

in modeling long-term dependencies within sequential data. The network architecture incorporates multiple 

layers with carefully configured neurons across input, hidden and output layers. The implementation includes 

optimized hyperparameters and activation functions, ensuring effective information flow and gradient 

management throughout the training process while maintaining computational efficiency and preventing 

model overfitting. 

Facebook Prophet methodology addresses multiple seasonal patterns and irregular events within the time 

series data. This sophisticated approach incorporates automated detection mechanisms for various seasonality 

patterns while effectively managing holiday effects and outlier scenarios. The model's configuration includes 

robust outlier handling mechanisms and flexible seasonality modeling, providing significant advantages over 

traditional forecasting approaches. 

During COVID-19 Lockdown, the air pollution levels were significantly lower. The primary reason for 

this reduction was the drastic decrease in vehicular movement due to strict lockdown measures. With fewer 

vehicles on the road, industrial activity also slowed down, leading to minimal fluctuations in air pollution data. 

Since time series models rely on variations in data to make accurate predictions, the lockdown period, 

characterized by consistently low pollution levels, does not provide meaningful insights for model comparison. 

Instead, we focused on the Before and After COVID-19 Lockdown periods, where pollution levels exhibited 

notable variations due to human and economic activities(Laxmipriya and Narayanan, 2021). 

Performance of the three time series modelling methods is compared based on the AQI data of three 

monitoring stations in Chennai city Velachery, Alandur and Manali. Section 2 presents an overview of the 

study area and statistical descriptions of the data. The methodology followed in the three methods and the 

performance measures considered for comparison are outlined in Section 3. Time series models are constructed 

based on the AQI values collected from each of the three monitoring stations applying the three model building 

methods in Section 4. Performance of the models are also compared for each monitoring station for before and 

after COVID 19 lockdown periods. Section 5 presents the concluding remarks. 

2. STUDY AREA AND DATA DESCRIPTIONS  

2.1 Study Area 

 Chennai is one of the four major metropolitan cities in India and is the capital of Tamil Nadu state. The 

population size of this city is increasing mainly due to the growth of the manufacturing and Information 

Technology industries, which is leading to an influx of people from other cities and neighbouring states.  As 

reported by Tamil Nadu Pollution Control Board, 2021 (Sekar et.al. 2020) the population density of the city is 

26,553 people per square kilometre. The Central Pollution Control Board (CPCB) of India operates three 

continuous ambient air quality monitoring stations in the city at Velachery, Alandur and Manali.  Velachery is 

a commercial and residential area located in the southern part of Chennai, Alandur is a residential area in the 
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southwest of the city and Manali is an industrial area located in the northern part of Chennai.  These stations 

record daily data on levels of pollutants for the respective region such as PM2.5, NO, NO2, NOx, NH3, SO3, O3, 

Benzene and Toluene as well as meteorological factors such as wind speed, direction, relative humidity and 

temperature. In each station, as per the guidelines of CPCB, the sub-indices are computed every day for each 

chemical pollutant and the highest sub-index is determined as the value of AQI of the region. 

2.2 Data Descriptions  

The AQI data was collected from Velachery monitoring station for a period of 813 days from January 1, 

2018 to April 24, 2020; from Alandur monitoring station for a period of 1178 days from January 1, 2017 to 

March 24, 2020; and from Manali monitoring station for a period of 479 days from December 1, 2018 to April 

24, 2020. All these time series contain missing values and outliers.  Occurrence of missing observations in a 

data is not uncommon. It is due to the missing records caused by phenomena, faulty equipment, loss of records 

or a mistake that cannot be rectified. When one or more observations are missing, it may be necessary to 

replace them by suitable estimates. Such replacements can enable to provide better understanding of the nature 

of the data. Some of the standard ways of handling missing data include deleting and imputation (The missing 

values are either left out or replaced with a single substitute). In time series, the temporal dependency is 

essential and deleting values may interrupt this continuity and replacement methods may change the original 

time series, causing reduced statistical power and biased estimations. Missing values in a time series can make 

it difficult to determine correlations with past lag (Huang et. al., (2018)) and presence of outliers in the data 

may lead to biased forecasting result. This can be overcome by replacement of appropriate values in the 

positions of missing observations and by suitable estimates in the positions of outliers. 

  Kihoro et. al.,  (2013)) have suggested that model-based estimation methods can be more statistical, which 

can be followed to determine such values. Here, the LSTM model-based method is applied to determine such 

replacement values and estimates. More details can be found in Loganathan et. al., (2023 b). 

Plot of the AQI data for the three locations - Velachery, Alandur and Manali - are displayed in Figure 1. 

The figure enables to identify patterns and trends in the AQI data over time for each location.  The figure 

reveals that the plot of AQI of Velachery has spikes in June, October and November of 2018, followed by a 

decreasing trend in 2019. The plot of AQI of Alandur exhibits an upward trend in AQI at the end of each year, 

with relatively little fluctuations during other periods. The plot of AQI of Manali shows a moderate downward 

trend in AQI over the years. 

Table 1 presents statistical information about AQI of the three different locations. The levels of AQI in 

Velachery range from 17.50 to 194.09 with a mean value of 63.77 and standard deviation of 29.69. Twenty-

five percent of the values of AQI in Velachery lie below 41.00; half of the information lies below/above the 

median value of 57.05 and remaining twenty-five percent of the values lie above 79.72. From the co-efficient 

of skewness and co-efficient of kurtosis, respectively 1.23 and 1.70, it can be noted that the distribution for 

AQI could be positively skewed and platykurtic. 

The levels of AQI in Alandur range from 19.50 to 378.19 with a mean value of 83.70 and standard 

deviation of 39.01. Twenty-five percent of the values of AQI in Alandur lie below 60.11; half of the 

information lies below/above the median value of 76.02 and remaining twenty-five percent of the values lie 

above 95.07. The co-efficient of skewness and coefficient of kurtosis, respectively 1.55 and 4.15, point out 

that the distribution for AQI could be positively skewed and leptokurtic. 

The levels of AQI in Manali range from 16.54 to 351.61 with a mean value of 117.10 and standard 

deviation of 66.04. Twenty-five percent of the values of AQI in Manali lie below 70.62; half of the information 
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lies below/above the median value of 96.08 and remaining twenty-five percent of the values lie above 145.00. 

The co-efficient of skewness and coefficient of kurtosis are 1.53 and 2.01respectively, which suggest that the 

distribution for AQI in Manali could be positively skewed and leptokurtic.  

The coefficient of variation for AQI of Velachery, Alandur and Manali are 47%, 47% and 56% 

respectively. These indicate that consistency in the time series of AQI of Velachery and Alandur are equal and 

are relatively more consistent than the time series of AQI of Manali.  

According to the categorization of National Air Quality Index consideration range 

(https://app.cpcbccr.com/ccr/#/login), the average air quality in Velachery and Alandur is Satisfactory and in 

Manali is Moderately polluted. 

Table 1: Descriptive Statistical Measures 

Statistical Measure Velachery Alandur Manali 

Minimum 17.50 19.50 16.54 

Maximum 194.09 378.19 351.61 

Mean 63.77 83.70 117.10 

Median 57.05 76.02 96.08 

Standard Deviation 29.69 39.01 66.04 

Quartile 1 41.00 60.11 70.62 

Quartile 3 79.72 95.07 145.00 

Co-efficient of Variation 0.47 0.47 0.56 

Co-efficient of Skewness 1.23 1.55 1.53 

Co-efficient of Kurtosis 1.70 4.15 2.01 

 

https://app.cpcbccr.com/ccr/#/login
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Fig. 1: AQI of Velachery, Alandur and Manali Stations  

3. METHODOLOGY  

3.1 Autoregressive Moving Average Method 

 The ARMA model is estimated for a given time series applying the Box-Jenkins approach to predict the 

values for future time periods (Box et. al., (1970)). The general form of ARMA model is given by 

𝑦𝑡 = 𝛼 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2+. . . +𝛽𝑝𝑦𝑡−𝑝 + 𝑒 + 𝜙1𝜀𝑡−1 + 𝜙2𝜀𝑡−2+. . . +𝜙𝑞𝜀𝑡−𝑞 

where 

 𝑦𝑡 is the observation of time t 

 𝛼 is the intercept 

 𝛽𝑖 is the coefficient of autoregressive (AR) component with lag t-i, i=1, 2, 3, …, p 

 𝜙𝑗  is the coefficient of moving average (MA) component with lag t-j, j= 1, 2, 3, …, q.  

Determination of the coefficients 𝛼, 𝛽𝑖 (i=1, 2, 3, …, p) and 𝜙𝑗  (j= 1, 2, 3, …, q) for the given time series is 

popularly knowns as fitting of the ARMA(p, q) model. Various unit root tests are applied for evaluating the 

stationarity of a given time series statistically, before determining the estimates. Dickey-Fuller test is a 

commonly used test of this type, which tests  

H01: Time series is not stationary  

against 

H11: Time series is stationary.  



NEPT 8 of 25 
 

 

If the value of the test statistic is significant, the series can be considered as stationary. Ljung – Box test is 

applied to determine if there is any significant autocorrelation in the given time series, which tests the 

hypotheses,  

H02: Residuals are independently distributed  

against 

H12: Residuals are not independently distributed. 

Optimal values of p and q for the ARMA model can be determined from the values of AIC and BIC. It is 

generally recommended to choose the combination of p and q corresponding to the relatively lower values of 

AIC or BIC.  Plot of the values of autocorrelation function (ACF) and partial autocorrelation function (PACF) 

are also considered for diagnosing the values of p and q. 

3.2 Facebook Prophet Method 

The Facebook Prophet model decomposes a time series into three components viz., trend, seasonality and 

holidays. The trend component captures the overall direction and level of the time series, while the seasonality 

component captures periodic fluctuations in the data. The holiday component is used to model the effect of 

special events or holidays in the time series data. Together, these three components can be used to model and 

forecast future values of the time series. The general form of the Facebook Prophet model is given by (Taylor 

and Letham, 2018)  

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖𝑡  

where 

  𝑦(𝑡) represents the time dependent response variable,  

 𝑔(𝑡) is the trend function, 

 𝑠(𝑡) is the seasonality component,  

 ℎ(𝑡) represents the holiday effect, and 

𝜖𝑡    is the measure of overall uncertainty in the model. 

By choosing changepoints from the data, a piecewise linear trend automatically finds changes in trends and its 

form is  

𝑔(𝑡) = [(𝑘 + ∑ 𝛿𝑖

𝑖≥𝑡

) 𝑡 + 𝑚 + ∑(−𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑖𝛿𝑖)

𝑖≥𝑡

 ] ∗ 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 

where k is the growth rate, 𝛿 is the rate adjustment, m is the offset parameter and yscaled is the time series data 

that has been scaled (normalized) to have values between 0 and 1. This is done to make the data easier to work 

with and to ensure that the trends and seasonality are not affected by the scale of the data. 

The seasonality component is modelled using the Fourier series as  

𝑠(𝑡) = ∑ (𝑎𝑛𝑐𝑜𝑠 (
2𝜋𝑗𝑡

𝑃
) + 𝑏𝑛𝑠𝑖𝑛 (

2𝜋𝑗𝑡

𝑃
))

𝑛

𝑗=1

 

where P is the regular period determining the periodic fluctuations in the data. A high value of P indicates 

strong seasonality, while a low value indicates weak seasonality.  

The holiday component ℎ(𝑡) refers to specific days of the year that deviate from the normal schedule or routine, 

such as holidays or special events. These days are predictable and they occur at the same time every year.   
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In the general form, 𝜖𝑡  represents the uncertainty or error in the model prediction for time t. It is used to model 

the variability or noise in the data, which the model is trying to predict. It is important to note that the value of 

𝜖𝑡  will vary over time, depending on the data being used and the model performance. Taylor and Letham (2018) 

have mentioned that a low value of 𝜖𝑡  indicates more accurate prediction and high value indicates greater 

uncertainty. 

3.3 Long Short-Term Memory Method 

LSTM method was proposed by Henreireu (1976), which is one of the methods developed applying the 

deep learning approach for fitting linear and non- linear stationary time series models. The LSTM model can 

identify long-range patterns in the time series.  

As described by Van Houdt et. al., (2020), the LSTM method functions with three gates viz., input gate, 

forget gate and output gate.  This method functions in the three gates with a set of equations as explained below: 

The LSTM unit gets the current input sequence, given by xt, and the output from the preceding time step, 

denoted by ht-1. The weighted inputs are added together and then transferred through tanh activation to produce 

𝐶𝑡̃  as 

𝐶𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1  + 𝑏𝑐)                                                                                

 The input gate directs the flow of data into the memory cell, through the sigmoid activation function    

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1  + 𝑏𝑖)                                                                  

The forget gate reads xt and ht-1 and activates weighted inputs with the sigmoid function. The forget gate ft is 

multiplied by the cell state at the preceding time step Ct-1, allowing the memory contents, which are no longer 

considered as forgotten. 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1  + 𝑏𝑓)                                                                                      

The output gate uses sigmoid activation function to regulate the information flows out of the LSTM unit by 

taking the weighted sum of xt and ht-1.  

𝑂𝑡 = 𝜎(𝑊𝑂𝑥𝑡 + 𝑈𝑂ℎ𝑡−1  + 𝑏𝑂)                                                                                   

The current cell state Ct is calculated by ignoring irrelevant information from the preceding time step and 

accepting relevant information from the current input. This is mainly composed of the constant error carousel, 

which has a recurring edge with unit weight.       

 𝐶𝑡 =  𝐶𝑡̃ ∗ 𝑖𝑡 + 𝐶𝑡−1 ∗ 𝑓𝑡                                                                                             

By transferring the cell state Ct through a tanh function and multiplying it with the output gate Ot, the LSTM 

unit output, ht is calculated from  

ℎ𝑡 = tanh(𝐶𝑡) ∗  𝑂𝑡                                                                                                       

where 

𝑥𝑡 ∈ ℝ𝑑  is the input vector for the LSTM unit,  

  𝑓𝑡 ∈ ℝℎ  is the forget gate activation vector, 

𝑖𝑡 ∈ ℝℎ  is the input / update gate activation vector, 

𝑂𝑡 ∈ ℝℎ  is the output gate activation vector, 

ℎ𝑡 ∈ ℝℎ  is the hidden state vector, 

𝐶𝑡̃ ∈ ℝℎ  is the cell input activation vector, 

𝐶𝑡 ∈ ℝℎ  is the cell state vector and  

𝑊 ∈ ℝℎ∗𝑑, 𝑈 ∈ ℝℎ∗ℎ   and 𝑏 ∈ ℝℎ  are respectively the input weight, recurrent weight and bias vector. 

Here, d and h refer to the number of input features and number of hidden units respectively and 𝜎 is the sigmoid 

activation function. 
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 The LSTM network architecture was carefully designed based on our data characteristics and 

experimental validation, with key architectural decisions focused on balancing complexity and efficiency. A 

three-layer structure was implemented, beginning with an input layer of 50 neurons to process initial data, 

followed by a hidden layer of 50 neurons to capture intermediate patterns, and concluding with an output layer 

containing neurons aligned with the prediction horizon. Hyperparameters were rigorously justified to optimize 

performance: the memory cells integrated three sigmoid layers and one tanh layer to regulate information flow, 

while a learning rate of 0.001 ensured stable convergence during training. A batch size of 32 samples was 

selected to balance computational efficiency and gradient stability, and a dropout rate of 0.2 was applied to 

minimize overfitting risks. These design choices collectively aimed to enhance the model’s predictive accuracy 

while maintaining computational practicality. 

3.4 Model Evaluation Measures  

The train - test split of the time series is implemented to assess the model's effectiveness with unseen 

data. By training the model on a portion of the data and evaluating its performance on a separate portion with 

test data part, a better understanding can be gained on how the model will perform for other datasets. If the 

model found performing well on the test data, confidence can be placed on the ability of the model to perform 

well on future data(Briggs et al., 1999).  

 In the present study, the AQI recorded in the three monitoring stations are split into training (95%) and 

test (5%) data. In Velachery monitoring station, the AQI from 01-01-2018 to 11-02-2020 are considered as the 

training data and the AQI from 12-02-2020 to 23-03-2020 are considered as the test data.  For Alandur 

monitoring station, the AQI from 01-01-2017 to 24-02-2020 are considered as the training data and the AQI 

from 25-01-2020 to 23-03-2020 are considered as the test data. For Manali monitoring station, the AQI from 

12-01-2018 to 28-02-2020 are considered as the training data and the AQI from 29-02-2020 to 23-03-2020 

are considered as the test data.  

The 5% test split, though small in proportion, represents over one month of contiguous daily data, 

ensuring sufficient temporal coverage for statistically meaningful evaluation. Forecasting beyond one month 

in daily time series introduces significant challenges due to error accumulation and increased uncertainty, as 

small deviations compound over time, reducing prediction reliability. The test period maintains a balance 

between robust validation and minimizing the risk of error propagation, ensuring the model's performance 

metrics remain interpretable and representative of real-world forecasting scenarios(Briggs et al., 1999). 

Toharudin et al. (2020) have stated that mean absolute error (MAE) root mean squared error (RMSE) and 

mean absolute percentage error(MAPE) are commonly used measures to assess a model's predicting capability. 

These measures are used here to evaluate the model performance and to make model comparison(Zhang et al., 

2013). Values of these measures can be calculated for a given time series using the following formulae. 

MAE = 
1

𝑛
∑ |𝑌𝑡 − 𝑌𝑡̂|𝑛

𝑡=1  

MAPE=
1

𝑛
∑ |

𝑌𝑡−𝑌𝑡̂

𝑌𝑡
|𝑛

𝑡=1  

RMSE = √
1

𝑛
∑(𝑌𝑡 − 𝑌𝑡̂)

2
𝑛

𝑡=1

 

Where,  



NEPT 11 of 25 
 

 

𝑌𝑡  is the actual value at time t. 

𝑌𝑡̂  is the estimated value at time t. 

𝑛 is the number of observation. 

The MAE measures the average magnitude of the errors in a model's predictions, whereas RMSE considers the 

average squared difference between the predicted and actual values. MAPE provides a relative measure, which 

is useful for comparing across datasets with different scales. 

4. TIME SERIES MODELS AND EVALUATION  

4.1   Time Series Models for AQI of Velachery  

4.1.1 ARMA Model for Velachery 

The stationarity of the time series of AQI recorded in Velachery monitoring station is tested applying the 

Dickey-Fuller test. The p-value of the test statistic is computed as 0.0019, which indicates that the time series 

of AQI recorded in Velachery monitoring station can be stationary.  The order of the ARMA model for this 

time series can be diagnosed from the ACF and PACF plots displayed in Figure 2.  

The ACF plot shows that the first 20 lags are significant and the PACF plot indicates that the lags 1, 5 

and 13 are significant. The ARMA models are estimated corresponding to each pair (p, q) with p = (1, 2, 3, 13) 

and q = (1, 2, 3). The values of AIC and BIC are calculated for each ARMA model and are displayed in Table 

2.  

It can be noted from Table 2 that the smallest value of BIC, 159.11, is obtained corresponding to the 

ARMA (2,1) model, whereas the smallest value of AIC, 134.34, is obtained corresponding to the ARMA (3,2) 

model. The p-values calculated for the construction of the ARMA (2,1) model reveal that the model is not 

significant to the time series considered. The results corresponding to the construction of the ARMA (3,2) 

model are presented in Table 3. 

Table 2: AIC and BIC Values for ARMA Models of Velachery Station 

S. No p q AIC BIC 

1 1 1 147.468 166.064 

2 1 2 148.380 171.625 

3 1 3 146.436 174.330 

4 2 1 135.86 159.11 

5 2 2 136.74 164.64 

6 2 3 137.47 170.02 

7 3 1 136.59 164.48 

8 3 2 134.34 166.88 

9 3 3 136.17 173.36 

10 13 1 145.31 219.69 

11 13 2 146.428 225.461 

12 13 3 147.803 231.485 

 

The estimated ARMA model for the time series of AQI recorded in Velachery monitoring station is 

𝑦𝑡 = 4.07 + 2.54 ∗ 𝑦𝑡−1 − 2.19 ∗ 𝑦𝑡−2 + 0.65 ∗ 𝑦𝑡−3 − 1.78𝜀𝑡−1 + 0.83𝜀𝑡−2 
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Value of the Ljung – Box test statistic for lag of 20 is calculated as 14.47 with p value of 0.80. It indicates that 

there is no significant evidence to determine that the residuals are autocorrelated at a lag of 20.  

Table 3: ARMA (3,2) Model for AQI of Velachery 

p-value of Dickey-

Fuller Test 

Fitted Model α β1, β2 and β3 Co-efficients 𝜙1 , 𝜙2 and 𝜙3   
Co-efficients 

0.0019 ARMA (3,2) 4.07 2.54, -2.19 and 0.65 -1.78 and 0.83 

 

   

Fig. 2: ACF and PACF plots of AQI of Velachery station 

4.1.2 Prophet Model for Velachery 

The Prophet model is fitted by considering a linear trend growth and taking into account of forty-eight 

days from Jun 2022 to December 2022 declared as public holidays by the Tamil Nadu Government. The 

maximum change point is set at 0.09. The overall trend in the values of AQI of Velachery station during the 

study period is displayed in Figure 3. The plot also shows the yearly trend, holiday, weekly and yearly 

seasonality in the values of AQI. Pattern of trend in the values of the AQI shows a decreasing tendency over 

the period mentioned above. Weekly trend is almost zero in all the days, except Tuesday. The weekly trend 

increases from Sundays and reaches a peak on Tuesdays, which gradually falls from Wednesdays. Thursdays 

and Fridays show a shallow increase from Wednesdays and rise higher on Saturdays. Analysis of the yearly 

trend shows the highest levels of AQI during the end of June and the lowest levels during October. Spikes can 

be noted on holidays, which point out the influence in the values during the respective holidays.    

The estimated trend function of the Prophet model for the AQI of Velachery station is  

𝑔(𝑡) = [(−0.14 + ∑ 𝛿𝑖

𝑖≥𝑡

) + 0.40 + ∑(−𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑖  ∗ 𝛿𝑖)

𝑖≥𝑡

 ] ∗ 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 
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Fig. 3: Yearly, Weekly trends and Holiday effects fitted for Velachery 

4.1.3 LSTM Model for Velachery  

Determination of the LSTM model for the time series of AQI of Velachery station shall be treated as a 

supervised learning problem applying the Min - Max scaling to reduce the influence of outliers. As there is no 

definite method for determining the appropriate number of neurons in a neural network, in this study, the model, 

with five hidden layers containing 50 neurons each is employed. The batch size, or the number of inputs 

processed at one time, is set to 100, and the model is run for 100 epochs. Thus, orders of the parameters of the 

input gate, forget gate, cell state and output gate of the LSTM network are 

𝑊𝑖,𝑓,𝑐,𝑜  is a vector of order 1×50, 

 𝑈𝑖,𝑓,𝑐,𝑜 is a matrix of order 50× 50,  

𝑏𝑖,𝑓,𝑐,𝑜  is a vector of order 1×50.  

Here, the subscripts i, f, c and o represent respectively input gate, forget gate, cell state and output gate. Also, 

the weights and biases are used to control the flow of information into the LSTM unit and are updated during 

the training process.  

4.1.4 Evaluation of Time Series Models for AQI of Velachery Station 

Values of the performance evaluation measures, MAE, MAPE and RMSE are computed for the estimated 

ARMA, Prophet and LSTM models based on the test data of AQI of Velachery station. The values are 

presented in Table 4 under the column head “Before COVID 19 Lockdown”. Values of the evaluation measures 

show that among the three models, the LSTM model has the lowest error rate with MAE of 10.26 and RMSE 

of 13.05. Difference between the error rates of Prophet and ARMA models is very marginal.  

The MAE and RMSE of the Prophet model are respectively 13.30 and 17.11, whereas the MAE and the 

RMSE of the estimated ARMA model are respectively 13.88 and 18.81. These values indicate that among the 

three models, accuracy level in the forecast values obtained from the estimated LSTM is relatively more. Also, 

there could be a margin of difference in the accuracy level of the predicted values given by the ARMA and 

Prophet models.  
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MAPE indicates that, the LSTM model achieves the highest accuracy, with the lowest error of 0.24. In 

comparison, the ARMA model exhibits a MAPE of 0.41, representing a 70.83% increase relative to the LSTM 

model, while the Prophet model shows a MAPE of 0.31. The ARMA model's error is 32.26% higher than that 

of the Prophet model and 70.83% higher than that of the LSTM model. These findings demonstrate that the 

LSTM model outperforms both the ARMA and Prophet models, establishing it as the most reliable approach, 

whereas the ARMA model exhibits the highest error among the three. 

Table 4: MAE and RMSE Values of Time Series Models for Velachery Station  

 Before COVID19 Lockdown Post COVID19 Lockdown 

Performance Measure ARMA  Prophet LSTM ARMA Prophet LSTM 

MAE 13.88 13.30 10.26 19.01 18.67 13.52 

RMSE 18.81 17.11 13.05 24.46 23.97 16.92 

MAPE 0.41 0.31 0.24 0.25 0.25 0.21 

 

The observed and the estimated values of the test data of AQI of Velachery station for “Before COVID19 

Lockdown” period i.e., from 12-02-2020 to 23-03-2020 are plotted in Figure 4. The observed values are 

depicted by solid blue line; the estimated AQI values from the ARMA model by dashed red line; the estimated 

AQI values from the Prophet model by dash-dot -dash green line; and the estimated AQI values from the 

LSTM model by dotted magenta line. It can be noticed from Figure 4, the estimated values from the ARMA 

and Prophet models deviate much from the respective observed values. The estimated values from the LSTM 

model are relatively close to the observed values. 

 

Fig. 4: Observed and Estimated Values of AQI from ARMA, Prophet and LSTM Models for Velachery Station 

(Before COVID19 Lockdown)  

Similar analysis is carried out for “After COVID19 Lockdown” period training data from June 1, 2022 to 

November 07-2022 and test data from November 08, 2022 to December 05, 2022. Values of MAE and RMSE 

calculated from the estimated ARMA, Prophet and LSTM models are presented in Table 4 under the column 

head “Post COVID19 Lockdown”. Tendency in the error rates of the three models is similar to that of “Before 

COVID19 Lockdown” period. The MAE and RMSE for the LSTM model are 13.52 and 16.92, respectively, 

which are smaller than the corresponding MAE and RMSE for the ARMA and Prophet models. The observed 

and the estimated values plotted in Figure 5 also exhibit this fact.   

The LSTM model continues to demonstrate the highest accuracy, with the lowest MAPE of 0.21. In 

comparison, both the ARMA and Prophet models exhibit a MAPE of 0.25, which represents a 19.05% increase 

in error relative to the LSTM model. It can be inferred, from all these facts, that the LSTM method of 
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constructing time series model can provide relatively more appropriate time series model for the AQI of 

Velachery monitoring station.  

 

Fig. 5: Observed and Estimated Values of AQI from ARMA, Prophet and LSTM Models for Velachery Station 

(Post COVID19 Lockdown)  

4.2 Time Series Modelling for AQI of Alandur 

4.2.1 ARMA Model for Alandur  

The stationarity of the time series of AQI recorded in Alandur monitoring station is tested applying the 

Dickey-Fuller test.   The p-value of the test statistic is computed as 0.0, which indicates that the time series of 

AQI recorded in Alandur monitoring station can be stationary.   

The order of the ARMA model for this time series can be diagnosed from the ACF and PACF plots 

displayed in Figure 6. The ACF plot indicated that all lags are significant and the PACF plot indicate that lags 

1, 2, 3, and 5 are significant. The ARMA models are estimated corresponding to each pair (p, q) with p = (1, 

2, 3, 5) and q = (1, 2, 3). The values of AIC and BIC are calculated for each ARMA model and are displayed 

in Table 6. It can be noted from Table 5 that the smallest values of AIC 905.663 and BIC 935.784, is obtained 

corresponding to the ARMA model (3, 1) are presented Table 6. The estimated ARMA model for the time 

series of AQI recorded in Alandur monitoring station is 

𝑦𝑡 = 4.34 + 1.32 ∗ 𝑦𝑡−1 − 0.24 ∗ 𝑦𝑡−2 − 0.09𝑦𝑡−3 − 0.92𝜀𝑡−1 

Value of the Ljung – Box test statistic for lag of 20 is calculated as 14.48 with p value of 0.81. It indicates that 

there is no significant evidence to determine that the residuals are autocorrelated at a lag of 20. 

Table 5: AIC and BIC Values for ARMA Models of Alandur Station 

S. 

No 

p q AIC BIC 

1 1 1 921.91 941.998 

2 1 2 916.187 941.28 

3 1 3 912.845 942.966 

4 2 1 909.872 934.973 

5 2 2 911.572 936.975 

6 2 3 909.872 934.973 

7 3 1 905.663 935.784 

8 3 2 906.764 937.642 

9 3 3 906.985 936.224 

 

Table 6: ARMA (3, 1) Model for AQI of Alandur 

ADF test p value Fitted Model Constant 𝛽 − Coefficient 𝛷 −Coefficient 
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0.0  ARMA (3,1) 4.34 1.32, -0.24 and -0.09 -0.92 

 

    

Fig. 6: Alandur ACF and PACF plot of AQI of Alandur station 

4.2.2 FB Prophet Model for Alandur 

The Prophet model is fitted by considering a linear trend and taking into account of seventy-four days 

from January 2017 to March 2020 declared as public holidays by the Tamil Nadu Government. The maximum 

change point was set at 0.09. the overall trend in the values of AQI of Alandur station during the study period 

is displayed in Figure 7.  

The plot also shows the yearly tend, holiday, weekly and yearly seasonality in the values of AQI. The 

pattern of trend in the values of AQI shows a decreasing tendency over the period mentioned above. The spikes 

can be point out the influence in the values during the respective holidays. The weekly trend increases from 

Thursdays and reaches peak on Friday, which gradually falls from Saturdays.  Analysis of the yearly 

seasonality indicates the highest level of AQI during the beginning of January and end of October, and the 

lowest levels during March.  

The estimated trend component of the Prophet model for the AQI of Alandur station is 

𝑇𝑟𝑒𝑛𝑑 𝑔(𝑡) = [(−0.095 + ∑ 𝛿𝑖

𝑖≥𝑡

) + 0.206 + ∑(−𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑖  ∗ 𝛿𝑖)

𝑖≥𝑡

 ] ∗ 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 
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Figure 7 yearly, monthly, weekly trends and holiday plot for Alandur 

 

4.2.3 LSTM model for Alandur 

Determination of the LSTM model for the time series of AQI of Alandur station shall be treated as a 

supervised learning problem applying the Min - Max scaling to reduce the influence of outliers. The model 

with five hidden layers containing 70 neurons each is employed. The batch size, or the number of inputs 

processed at one time, is set to 100, and the model is run for 100 epochs. Thus, orders of the parameters of the 

input gate, forget gate, cell state and output gate of the LSTM network are 

𝑊𝑖,𝑓,𝑐,𝑜  is a vector of order 1×70, 

 𝑈𝑖,𝑓,𝑐,𝑜 is a matrix of order 70× 70,  

𝑏𝑖,𝑓,𝑐,𝑜  is a vector of order 1×70.  

Here, the subscripts i, f, c and o represent respectively input gate, forget gate, cell state and output gate. Also, 

the weights and biases are used to control the flow of information into the LSTM unit and are updated during 

the training process.   
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4.2.4 Model evaluation for Alandur Time Series 

Values of the performance evaluation measures, MAE and RMSE are computed for the estimated ARMA, 

Prophet and LSTM models based on the test data of AQI of Alandur station are presented in Table 7. The 

values are presented in Table 7 under the column head “Before COVID 19 Lockdown”. Vales of the evaluation 

measures show that among the three models, the LSTM model has the lowest error rate with MAE of 12.58 

and RMSE of 17.58. The ARMA model has the highest error rate with MAE of 16.23 and RMSE of 22.90. 

The MAE and RMSE of estimated Prophet model are smaller than the respective values of the estimated 

ARMA model. The MAE and RMSE of the Prophet model are respectively 13.60 and 18.17, which is lower 

than the ARMA model, but higher than the LSTM model. Difference between the error rates of LSTM and 

ARMA model is relatively high. The LSTM and Prophet models demonstrated comparable accuracy, both 

achieving the lowest MAPE values of 0.25. In contrast, the ARMA model exhibited the highest error, with a 

MAPE of 0.36, which is 44% higher than that of the LSTM and Prophet models. 

These values indicate that among the three models, accuracy level in the forecast values obtained from 

the estimated LSTM is relatively more.  Also, there could be a margin of difference in the accuracy level of 

the predicted values given by the LSTM and Prophet models. 

The observed and the estimated values of the test data of AQI of Alandur station for “Before COVID19 

Lockdown” period i.e., from 24-01-2020 to 23-03-2020 are plotted in Figure 8. The observed values are 

depicted by solid blue line; the estimated AQI values from the ARMA model by dashed red line; the estimated 

AQI values from the Prophet model by dash-dot -dash green line; and the estimated AQI values from the 

LSTM model by dotted magenta line. It can be noticed from Figure 8, the estimated values from the ARMA 

and Prophet models deviate much from the respective observed values.  The estimated values from the LSTM 

model are relatively close to the observed values. 

Table 7: MAE and RMSE for Alandur Time Series 

  Before COVID 19 Lockdown Post COVID 19 Lockdown 

Station/ 

Model 

Error 

Measures 

ARMA Prophet LSTM ARMA Prophet LSTM 

Alandur MAE 16.23 13.60 12.58 30.72 33.79 27.66 

RMSE 22.90 18.17 17.58 37.84 38.59 37.14 

 MAPE 0.36 0.25 0.25 0.32 0.37 0.26 

 

 

Fig. 8: Observed and Estimated values of AQI from ARMA, Prophet and LSTM Models for Alandur station 
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(Before COVID 19 Lockdown) 

 

Fig. 9: Observed and Estimated values of AQI from ARMA, Prophet and LSTM Models for Alandur station 

(Post COVID 19 Lockdown) 

Similar analysis is carried out for “After COVID19 Lockdown” period with training data from June 1, 2022 

to November 07-2022 and test data from November 08, 2022 to December 05, 2022. 

Values of MAE and RMSE calculated from the estimated ARMA, Prophet and LSTM models are presented 

in Table 7 under the column head “Post COVID19 Lockdown”.  Tendency in the error rates of the three models 

is similar to that of “Before COVID19 Lockdown” period. 

The MAE and RMSE for the LSTM model are 27.66 and 37.14, respectively, which are smaller than the 

corresponding MAE and RMSE for the ARMA and Prophet models. The observed and the estimated values 

plotted in Figure 9 also exhibit this fact. 

The MAE and RMSE for the LSTM model are 27.66 and 37.14, respectively, which is smaller than the 

MAE and RMSE for the ARMA and Prophet models.  The LSTM model maintained its consistency 

performance, achieving the lowest MAPE of 0.26. However, the Prophet model's error increased significantly 

to 0.37, making it the least accurate among the three models. The ARMA model showed a slight improvement, 

with its MAPE decreasing to 0.32, but it still exhibited a 23.08% higher error compared to the LSTM model. 

It can be inferred, from all these facts, that the LSTM method of constructing time series model can 

provide relatively more appropriate time series model for the AQI of Alandur monitoring station.  

4.3 Time Series Modelling for AQI of Manali 

4.3.1 ARMA Model for Manali 

The stationarity of the time series of AQI recorded in Velachery monitoring station is tested applying the 

Dickey-Fuller test. The p-value of the test statistic is computed as 0.0003, which is indicates that the time series 

of AQI recorded in Manali monitoring station can be stationary. The order of the ARMA model for this time 

series can be diagnosed from the ACF and PACF plot displayed in Figure 10.  

The ACF plot indicated that lags 1 and 2 are significant and the PACF plot showed that lags 1 and 2 are 

significant. The ARMA models are estimated corresponding to each pair (p, q) with p = (1, 2) and q= (1, 2). 

The values of AIC and BIC are calculated for each ARMA model and are displayed in Table 8. 

 It can be noted from the Table 8 that the smallest value of AIC and BIC is obtained corresponding to the 

ARMA (1, 2) are presented in Table 9, which are respectively 528.38 and 544.86.  

The estimated ARMA model for the time series of AQI recorded in Manali monitoring station is 

𝑦𝑡 = 0.18 + 0.99 ∗ 𝑦𝑡−1 − 0.49𝜀𝑡−1 − 0.21 𝜀𝑡−2 
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Value of the Ljung – Box test statistic for lag of 20 is calculated as 23.842 with p value of 0.24. It indicates 

that there is no significant evidence to determine that the residuals are autocorrelated at a lag of 20. 

 

   

Fig. 10: ACF and PACF plot for Manali 

Table 8: AIC and BIC Values for ARMA Model of Manali Station 

S. No p q AIC BIC 

1 1 1 544.892 557.253 

2 1 2 528.378 544.860 

4 2 1 507.393 507.393 

5 2 2 503.755 524.356 

Table 9: ARMA (1, 2) Model for AQI of Manali 

Time Series ADF test p-value Fitted Model Constant β- Coefficient 𝛷 −Coefficient 

Manali 0.0003 ARMA (1,2) 0.18 0.99 -0.49 and -0.22 

 

4.3.2 FB Prophet for Manali 

The Prophet model is fitted by considering a linear trend growth and taking into account twenty-eight 

days from December 2018 to April 2020 declared as public holidays by the Tamil Nadu Government. The 

maximum change point is set at 0.09. The overall trend in the values of AQI of Manali station during the study 

period is displayed in Figure 11. The plot also shows the yearly trend, weekly, holiday and yearly seasonality 

in the values of AQI. 

The yearly trend indicates, pattern of trend in the values of the AQI shows a decreasing tendency over 

the period of mentioned above. The weekly trend showed that AQI values increases from Sunday and reaches 

a peak on Thursday. The yearly seasonality revealed that the highest levels of AQI during the first half of 

October and November, and the lowest levels of AQI during the end of March and April. Spikes can be noted 

on holidays, which indicate the influence in the values during the respective holidays. 

The estimated trend function of the Prophet model for the AQI of Manali station is  

𝑇𝑟𝑒𝑛𝑑 𝑔(𝑡) = [(−0.14186748 + ∑ 𝛿𝑖

𝑖≥𝑡

) + 0.40382178 + ∑(−𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑖  ∗ 𝛿𝑖)

𝑖≥𝑡

 ] ∗ 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 
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Fig. 11: Yearly, weekly trends and holiday effects fitted for Manali 

4.3.3 LSTM Model for Manali 

This study, the model is employed multiple hidden layers, with five hidden layers containing 50 neurons 

each. The batch size, or the number of inputs processed at one time, is set to 50, and the model is run for 63 

epochs. Thus, orders of the parameters of the input gate, forget gate, cell state and output gate of the LSTM 

network are 

𝑊𝑖,𝑓,𝑐,𝑜 is a vector of order 1×50, 

 𝑈𝑖,𝑓,𝑐,𝑜 is a matrix of order 50× 50,  

𝑏𝑖,𝑓,𝑐,𝑜  is a vector of order 1×50.  

Here, the subscripts i, f, c and o represent respectively input gate, forget gate, cell state and output gate. Also, 

the weights and biases are used to control the flow of information into the LSTM unit and are updated during 

the training process. The input gate, forget gate, cell state and output gate weights are listed below 

4.3.4 Evaluation of Time Series Model for AQI of Manali Station 

Values of the performance evaluation measures, MAE and RMSE are computed for the estimated ARMA, 

Prophet and LSTM models based on the test data of AQI of Manali station. The values are presented in Table 

10 under the column head “Before COVID 19 Lockdown”. 

Values of the evaluation measures show that among the three models, the LSTM model has the lowest error 

rate with MAE of 11.75 and RMSE of 13.68. Difference between the error rates of Prophet and ARMA models 

is marginal. The MAE and RMSE of the Prophet model are respectively 24.83 and 28.62, whereas the MAE 

and the RMSE of the estimated ARMA model are respectively 21.79 and 25.25. These values indicate that 

among the three models, accuracy level in the forecast values obtained from the estimated LSTM is relatively 

more. Also, there could be a margin of difference in the accuracy level of the predicted values given by the 

ARMA and Prophet models.  
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 The LSTM model has the lowest error rate with MAPE of 0.15. In contrast, the Prophet model had the 

highest error, with a MAPE of 0.33, followed by the ARMA model with a MAPE of 0.30.These findings 

indicate that while the LSTM model was the most reliable before the COVID-19 lockdown period. 

Table 10: MAE and RMSE Values of Time Series for Manali Station 

  Before COVID 19 Lockdown Post COVID 19 Lockdown 

Station/ 

Model 

Error 

Measures 

ARMA Prophet LSTM ARMA Prophet LSTM 

Manali MAE 21.79 24.83 11.75 17.33 15.09 14.95 

RMSE 25.25 28.62 13.68 24.25 21.53 21.65 

MAPE 0.30 0.33 0.15 0.18 0.15 0.16 

 

The observed and the estimated values of the test data of AQI of Manali station for “Before COVID19 

Lockdown” period i.e., from 29-02-2020 to 23-03-2020 are plotted in Figure 12. The observed values are 

depicted by solid blue line; the estimated AQI values from the ARMA model by dashed red line; the estimated 

AQI values from the Prophet model by dash-dot -dash green line; and the estimated AQI values from the 

LSTM model by dotted magenta line. It can be noticed from Figure 12, the estimated values from the ARMA 

and Prophet models much from the respective observed values. The estimated values from the LSTM model 

are relatively close to the observed values. 

 

Fig.12: Observed and Estimated Values of AQI from ARMA, Prophet and LSTM Models for Velachery Station 

(Before COVID19 Lockdown)  

Similar analysis is carried out for “After COVID 19 Lockdown” period with training data from June 

1,2022 to November 07-2022 and test data from November 08, 2022 to December 05, 2022. Values of MAE 

and RMSE calculated from the estimated ARMA, Prophet and LSTM models are presented in Table 10 under 

the column head “Post COVID19 Lockdown”. Tendency in the error rates of the three models is similar to that 

of “Before COVID19 Lockdown” period.  

The MAE and RMSE for the LSTM model are 17.33 and 24.25, respectively, which is smaller than the 

corresponding MAE and RMSE for the ARMA and Prophet models. The observed and the estimated values 

plotted in Figure 13 also exhibit this fact. The difference between the error rates of LSTM and Prophet model 

is marginal. In the post-lockdown period, all models demonstrated improved accuracy. The Prophet model 

achieved the lowest MAPE of 0.15, followed closely by the LSTM model with 0.16, while the ARMA model 
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recorded a MAPE of 0.18. Compared to the pre-lockdown period, the ARMA and Prophet models showed 

notable improvements, while the LSTM model's error slightly increased. 

It can be inferred, from all these facts, that the LSTM method of constructing time series model can 

provide relatively more appropriate time series model for the AQI of Manali monitoring station. 

 

Fig. 13: Observed and Estimated Values of AQI from ARMA, Prophet and LSTM Models for Velachery station (Post 

COVID19 Lockdown) 

5. CONCLUDING REMARKS 

Time series models have special feature of forecasting the observation for future time period. They play 

vital role in many fields, particularly in forecasting economy, demography and environment of a country. 

Several methods have been developed with different approaches and performance of the methods are found to 

vary with respect to the data.  

An empirical study is carried out in this work to compare the performance of the ARMA method 

developed in the statistical approach, the Prophet method developed employing Machine Learning procedure 

and the long short-term memory method developed employing Deep Learning methodology. Time series 

models are constructed for daily air quality indices observed during before and after COVID 19 lockdown 

periods of three locations of Chennai city. Among the three methods, the long short-term memory method 

performs relatively better than the other two methods for the three time series with respect to measures of 

accuracy in forecast values. Performance of the ARMA method and the Prophet method depend upon the data 

set. Results do not differ, except numerical values, for pre and post COVID 19 lockdown periods. 
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