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ABSTRACT 

The monsoon system in India plays a pivotal role in shaping the country's climate. Recent 
studies have indicated that the increasing variability of monsoons is attributable to climate 
change, resulting in prolonged periods of drought and excessive rainfall. Understanding, 
analyzing, and forecasting monsoons is crucial for socioeconomic sustainability and 
communities’ overall well-being. Climate forecasts, which project future Earth climates 
typically up to  2100, rely on models such as the Couple Model Intercomparison Project 
(CMIP). However, confidence in these forecasts remains low due to the limitations of global 
climate models, particularly in terms of capturing the intricacies of monsoon dynamics, notably 
from June to September. To address this issue, researchers have examined precipitation 
simulations under various future scenarios using both CMIP5 and the latest CMIP6 models. 
Evaluating the performance of these models from 1979 to 2014, particularly in simulating mean 
precipitation and temperature, has revealed improvements in multi-model ensembles (MME), 
highlighting advancements in monsoon characteristics. By comparing the CMIP5 and CMIP6 
models, researchers have identified the most reliable models for climate downscaling research, 
which can provide more accurate predictions of regional climate changes, thereby offering 
valuable insights for enhancing climate modeling in the Indian subcontinent. 

INTRODUCTION 

    Over the previous century, there have been notable alterations in the temporal and spatial 
distributions of worldwide precipitation, increasing both the frequency and intensity of natural 
calamities (Zhang et al. 2016). Human actions, such as the emission of greenhouse gases and 
modifications in land usage, have brought about a 1°C elevation in the global mean temperature 

Key Words Global climate, Coupled model, Climate change 

DOI https://doi.org/10.46488/NEPT.2024.v24i01.B4215 (DOI will be active only after the final 
publication of the paper) 

Citation of the 
Paper 

Lakshmana Rao Vennapu, Krishna Dora Babu Kotti, Sravani Alanka and Pavan Krishnudu 
Badireddi, 2025. Analysis of CMIP6 Simulations in the Indian Summer Monsoon Period 1979-
2014. Nature Environment and Pollution Technology, Vol. 24, No. 1, B44215. 
https://doi.org/10.46488/NEPT.2024.v24i01.B4215 



                          This is a peer‐reviewed prepublished version of the paper 

 

2 
 

since the pre-industrial era, inducing extreme weather, oceanic warming, acidification, and 
modifications in ecosystems, which are anticipated to endure throughout the 21st century. The 
mean global surface temperature grew by 0.99°C from 1850 to 1900 during the initial two 
decades of the 21st century (IPCC Report 2021). Alterations in land use and land cover (LULC) 
affect the physical characteristics of the Earth’s surface, thereby regulating the transfer of 
moisture, kinetic energy, and heat into the atmosphere, consequently influencing localized or 
regional variations in surface temperatures (Bonan 2008). 

India’s economy is heavily dependent on the agricultural sector, where the Southwest Monsoon 
season contributes to 75% of its total rainfall. Fluctuations in monsoon precipitation have a 
significant impact on various aspects, such as agriculture, the economy, water availability, 
power production, and ecosystems. Analyzing these variations is crucial for minimizing 
negative consequences and anticipating droughts and floods. Alterations in global climate 
patterns and rising global temperatures could influence the circulation of monsoons. Krishnan 
(2012) examined the response of the South Asian monsoon (SAM) system to global climate 
change. Their findings revealed a decline in the strength of the overturning boreal summer 
monsoon circulation and the southwesterly monsoon flow over the last five decades. This 
decline has been linked to a reduction in the number of days with moderate-to-heavy monsoon 
rainfall and upward vertical air movements. If this trend continues, it is projected that by the 
conclusion of the 21st century, there will be a diminished large-scale monsoon flow, weaker 
vertical air velocities will weaken, and orographic precipitation in the Western Ghats 
Mountains will decrease. 

The unpredictability and irregularity of monsoons have led to substantial financial losses, 
damage to individuals and assets, and devastation of agricultural areas and the ecosystem in 
recent years, prompting concerns regarding food insecurity. Consequently, the prediction and 
comprehension of monsoon rainfall patterns have emerged as focal points for many Asian 
nations (Reuter et al. 2013). 

Observations of the Indian summer monsoon in central India have revealed a declining trend 
in rainfall during the latter half of the 20th century (Ramanathan et al. 2005, Bollasina et al. 
2011, Mishra et al. 2012, 2014, Jin & Wang 2017). The diminishing pattern of the Indian 
monsoon is linked to greenhouse gas-induced warming of the sea surface of the Indian Ocean, 
while simultaneous warming across the Indian subcontinent has been mitigated by aerosols and 
alterations in land cover (Deser et al. 2010). 

Recent studies utilizing global coupled models generally agree that the Indian monsoon 
precipitation is projected to rise as a result of climate change throughout the 21st century 
(Chaturvedi et al. 2012, Menon et al. 2013, Lee & Wang 2014, Asharaf & Ahrens 2015, Mei 
et al. 2015, Sharmila et al. 2015). The sixth phase of the Coupled Model Intercomparison 
Project (CMIP6) has introduced enhanced global climate models (GCMs) that aim to overcome 
the limitations of CMIP5 by incorporating advanced physical algorithms. These updated 
models now incorporate "Shared Socioeconomic Pathways" (SSPs), aligning future radiative 
forcing scenarios with socioeconomic storylines (Song et al. 2020, Si et al. 2020). It is crucial 
to comprehend the advantages of the CMIP6 model over the CMIP5 model and assess their 
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accuracy before using their climate predictions in decision-making and policy formulation. In 
the present work, we evaluate the performance of two generations of climate models, CMIP5 
and CMIP6, by comparing their ability to simulate mean precipitation and temperature over 
the historical period from 1979 to 2014.  

Our objective was also to analyze the improvements in the multi-model ensemble (MME) from 
CMIP6 for monsoon characteristics. Spatial and temporal, we studied the mean precipitation 
changes interannual and spatially in both generations of the models (CMPI 5 and CMIP 6). 
This study aimed to assess the enhancements in the CMIP6 MME of monsoon characteristics, 
focusing on mean precipitation. Apart from this, the study compares projections from seven 
CMIP5 models and eight CMIP6 models for various atmospheric parameters, such as 
precipitation, winds, and pressure, especially during the 36-year Southwest Monsoon period 
over 36 years (1979-2014), both spatially and temporally. Various statistical skill scores, such 
as Tylor and interannual variability scores, were used for both temporal and spatial analyses of 
the atmospheric parameters. We specifically compared the ensemble model mean precipitation 
patterns with the IMD-observed precipitation in the past and present. The major objective of 
this study was to evaluate the valuation of the performance of two generations of climate 
models: CMIP5 and CMIP6. For all models in the two generations, mean precipitation 
overestimated the observed interannual spatial variance. 

DATA AND METHODOLOGY 

In the present study, the monthly data of 7 CMIP5 and 8 CMIP6 models were taken for a period 
of 36 years from 1979 to 2014 with a horizontal resolution of 2.50° × 2.50°. For validation of 
the model simulations, the IMD gridded data were used for evaluation of atmospheric variables 
temperature and precipitation, while ECMWF reanalysis datasets were used to evaluate the 
Mean Sea Level Pressure (MSLP) and winds at 850 hPa. Gridded climate data for temperature 
and precipitation (Pai et al. 2014) is obtained from the India Meteorological Department (IMD). 
Gridded precipitation dataset from IMD is available at a much finer spatial resolution, i.e., 
0.25° × 0.25° (Pai et al. 2014) for the period 1979-2014 are used for analysis. Precipitation data 
from Pai et al. 2014 is used for mapping observed precipitation bias over India for the period 
1979-2014. IMD provides gridded temperature data at a resolution of 1° × 1° for the period 
1951 to 2019. Recently, IMD has also introduced a new temperature data product at 0.5° × 0.5° 
resolution for the limited period of 1980-2019, which roughly translates into 50 Km in length 
and 50 km in width (Srivastava et al. 2009), which is used for observation. 

ERA5 is the fifth generation of ECMWF atmospheric reanalysis of the global climate. ERA5 
Climate reanalysis gives a numerical description of the recent climate, produced by combining 
models with observations. ERA5 combines vast amounts of historical observations into global 
estimates using advanced modeling and data assimilation systems. ERA-Interim (Dee et al. 
2011) monthly datasets are used for pressure at mean sea level and meridional and zonal winds 
during the June-September period of 1979-2014 with a spatial resolution of 1×1.CMIP-5 
models and CMIP-6 models used for the study are shown in Tables 1 and 2, respectively. 

MATERIALS AND METHODS 
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We used the Taylor diagram metric(Taylor 2001) to assess the overall performance of each 
model against the observational performance. Bias correction and panel plotting were 
performed to compare the model and observations. These were performed using GRADS and 
FERRET software. Recently, many studies have demonstrated that the Taylor diagram can be 
used to summarize the relative merits of a collection of different models (Taylor 2001). This 
study also estimated the required statistical scores for the observed and model data and 
displayed them using a Taylor diagram. This shows the relative skill of test fields simulated by 
different models to match the observation in terms of correlation, standard deviation, and 
centered root-mean-square differences. Ranking CMIP6 models based on their performance in 
simulating multiple variables over different timeframes is a challenging task because a GCM 
may show various degrees of accuracy for different variables and timeframes. Taylor Score, 
root mean square error, and interannual variability scores in the spatial domain are estimated 
and displayed in bar diagrams. 

RESULTS AND DISCUSSION 

Several studies have highlighted the shortcomings of CMIP5 models in consistently 
overestimating or underestimating monsoon characteristics over South Asia and the Indian 
subcontinent, depending on different precipitation indices. This inconsistency reduces 
confidence in future projections. Over the past decade, various statistical and dynamic 
downscaling approaches (Kannan & Ghosh 2013, Salvi  2013) have been proposed to improve 
local-scale simulations. However, these approaches have not consistently resulted in significant 
improvements and sometimes even worse results (Sharma 2018). 

Comparative Evaluation of Temperature in the CMIP5 and CMIP6 Models 

Fig. 1 shows a Taylor diagram illustrating the ability of global climate models to simulate 
monthly mean precipitation during the Indian summer monsoon. Eight models were analyzed, 
with the blue contours representing the root mean square error and the radial distance from the 
origin representing the standard deviation. Models close to the observation point have high 
correlation and low RMS errors, whereas models directly at the observation point have the 
correct standard deviation. 

All models overestimated the observed interannual spatial variance. The temperatures of GISS-
E2.1-G (CMIP6), GISS-E2-R (CMIP5), and CESM-1 (CMIP5) were very close to the 
observations, whereas all other models were far from the observation values. Ensembles of 
both CMIP5 and CMIP6 models showed a high correlation with observations, which is a good 
representation for modeling. The Taylor Score shows the relative performance of the model. 
The score is relatively skillful and simulates both the amplitude and pattern of variability 
(RMSE and Correlation).  

From Fig. 2 and Table 3, the Taylor score of GISS-E2.1-G, HAD-GEM-GC3.1, MPI-ESM-
1.2 of the CMIP6 models, and ACCESS-CM1 and CESM1 of the CMIP5 models have the 
highest skill scores, while the other models have low skill scores. A key measure of a 
climate model’s effectiveness is its ability to realistically simulate interannual variability. 
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The Interannual Variability Skill (IVS) metric is used to evaluate this performance. A 
smaller IVS value indicates that the model is better at capturing interannual variability. 

In Fig. 3, the IVS for GISS-E2.1-G of the CMIP6 and GISS-E2-R models and the 
CESM1 of the CMIP5 models show the highest skill (low values) compared to the other 
models. 

Comparative Evaluation of Precipitation in the CMIP5 and CMIP6 Models  

    In Fig. 4 and Table 4, the CMIP5 and CMIP6 models show low correlation values for 
precipitation compared to the temperatures (Fig. 1).  Of all the models, the GISS-E2.1-G, 
CESM-2 of the CMIP6, and MIROC5 of the CMIP5 model simulations are coming closer to 
the observations, which indicates better performance compared to the other models. 

In Fig. 5, the Taylor scores of ACCESS-CM-1, MIROC5 of CMIP5, and GISS-E2.1-G of the CMIP6 
models are shown as having the highest skill (high values), while the rest of the models have low skill 

(low values). In Fig. 6, the Interannual Variability Score of MIROC5 of the CMIP5 models and 
GISS-E2.1-G CESM-2 of the CMIP6 models show high IVS skill scores (low values) 
compared with the rest of the models. 

Evaluation of the CMIP6 Model Skill During the Indian Summer Monsoon 

Evaluation of temperature in CMIP6 models: Fig. 7 shows the spatial distribution of 
temperature (0K) in the CMIP6 models compared to the IMD temperature during 1979-2014. 
From this Fig., it can be seen that the IITM-ESM, CESM-2, MIROC6, and MPI-ESM-LR 
models fare better than the other models in terms of temperature distribution. From bias plots 
of temperature (Fig. 8) models, ACCESS, CESM2, GISS-E2-G, and MIROC-6 models 
overestimated the temperature up to 5-70C, and IITM-ESM, IPSL-CM6A-LR, and MIP models 
underestimated the temperature up to 30°C. All the models are underestimating the temperature 
in Jammu and Kashmir, some parts of the northeastern state region, up to 150°C. 

The IITM ESM model shows slightly low temperatures over central India and very low 
temperatures over the Jammu and Kashmir regions as compared with the models. In Fig. 9, the 
Taylor diagram of the monthly mean temperatures of the models shows that the GISS and 
IITM-ESM models are close to the observation, and the IITM-ESM and Had GEM models are 
strongly correlated with the model. The ensemble of the models has an excellent correlation 
with the observation. 

Precipitation in CMIP6 Models: Fig. 10 shows the spatial distribution of precipitation 
(mm/day)of  CMIP6 models compared to the IMD precipitation during 1979-2014. From this 
Fig., it can be seen that the IITM, CESM, GISS, MIROC, IPSL, MIROC, and MPI models fare 
better than the other models in terms of rainfall distribution.  

From the Bias plots (Fig. 11), CESM, HADGEM, IITM-ESM, and MPI models underestimate 
the precipitation up to 3-6mm/day, and ACCESS, GISS, IPSL, MIROC models are 
overestimating (0-3mm.day-1) over the south peninsular parts of India. IITM model is slightly 
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overestimating in the Jammu and Kashmir regions and underestimating in the western Ghats 
regions.  

CMIP-6 models are simulating the precipitation with low(Positive and Negative) biases, which 
is a good indication in modeling. Fig. 12 shows the Taylor diagram of the monthly mean 
precipitation of models, shows that CESM and GISS models are close to the observation but 
have low correlation, and IITM-ESM shows a higher correlation than all other models. 

Pressure at mean sea level in CMIP6 models: The models CESM, GISS, IPSL, and MIROC 
are performing good simulations when compared with the observation; models IITM, HAD, 
ACCESS, and MPI are not performing good simulations when compared with the observation 
obtained from ERA. 

Fig. 14 shows the Taylor diagram of monthly mean pressure at mean sea level for the models, 
showing that CESM, GISS, IPSL, and MIROC are close to the observation.  

Wind patterns in CMIP6 models, zonal and meridional: Fig. 15 shows that the models 
ACCESS, HAD, and IPSL perform better simulations compared with the observation taken 
from the ERA reanalysis. Figs. 16a & 16b shows the Taylor diagram of U Wind AND V Wind, 
which shows that all the models’ correlation is very low. ACCESS is close to the observation 
in U-Wind, and ACCESS GISS CESM MIROC MPI is very close to the observation in V-
Wind. 

CONCLUSION 

The Indian summer monsoon was analyzed using coupled climatological models from 1979 to 
2014. Data from the CMIP5 and CMIP6 model datasets, each containing seven models, were 
downloaded and studied. The IITM-ESM model was also compared with the CMIP-6 model. 
The main results showed that the CESM1 (CAM5), GISS-E2.1-G, and CMIP5 models showed 
low correlation values for precipitation and temperatures compared to observations.  

The GISS-E2.1-G, CESM-2, and MIROC5 models showed better performance compared to 
the other models. The Taylor score of the ACCESS-CM-1, MIROC5, and GISS-E2.1-G models 
had the highest skill level, whereas the Interannual Variability Score of the MIROC5 and GISS-
E2.1-G CESM-2 models had the highest IVS skill level. The IITM-ESM, CESM-2, MIROC6, 
and MPI-ESM-LR models outperformed the other models in terms of temperature distribution. 
However, the models ACCESS, CESM2, GISS-E2-G, and MIROC-6 overestimate 
temperatures up to 5-70 C and underestimate temperatures up to 30°C. The IITM ESM model 
revealed slightly low temperatures in central India and very low temperatures in the Jammu 
and Kashmir regions. The models performed better in simulations than in observation, with 
CESM, GISS, IPSL, and MIROC performing better than the IITM, HAD, ACCESS, and MPI 
models.  

The wind patterns in the CMIP6 models were also close to the observations. We found that 
only a slight improvement occurred in the CMIP6 models but not substantial in the simulation 
of temperature and precipitation. Upon analyzing the CESM-2 model results, it was found that 
the model performs better simulations of temperature than the other CMIP-6 models. GISS-
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E2.1-G is the model that is performing better simulations of precipitation in CMIP6 models. 
CESM, GISS, IPSL, and MIROC models are performing better simulations of pressure at mean 
sea level pressure in CMIP-6 models. ACCESS model is performing better simulations of zonal 
and meridional winds.    

The model showed a good response to temperature and precipitation simulations, although 
there are slight biases that need to be enhanced. However, most studies have focused on the 
simulation ability of the study region and have overlooked the influence of topography on 
model performance. The topography of Asia is complex and significant, making it unscientific 
to ignore regional differences and discuss model applicability. Both equal-weight and non-
equal-weight methods were used to average multi-model ensembles and analyze individual 
models' performance in extreme precipitation regions. 

Using the CMIP 6 multi-model ensembles downscaled to the scale at which the crop and 
livestock would be useful for adaptation planning and investment. Crop and livestock models 
were run on a site-specific basis to simulate the effects of climate change on relative yield 
distribution in the farm population. These models can be used to evaluate how system 
adaptation can alter the impacts of climate change. Changes in planting dates, fertilizer 
application rates, and irrigation use can be modified in crop models. 
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Table 1: List of CMIP5 models used for the study. 

Model ID Institute  Country Horizontal 
resolution 

Temporal 
resolution 

GISS-E2-R The National Aeronautics and Space 
Administration 

USA 2.500× 2.500 1979-2014 

MPI-ESM-LR Max Plank Institute For 
Meteorology 

GERMANY 2.500× 2.500 1979-2014 

ACCESS-1-0 CSIRO Climate Science Centre AUSTRALIA 2.500× 2.500 1979-2014 

IPSL-CM5A-LR Institute for Pierre-Simon Laplace FRANCE 2.500× 2.500 1979-2014 

NCAR-CESM2 National Center for Atmospheric 
Research 

USA 2.500× 2.500 1979-2014 

Had GEM-2-ES Met Office Hadley Center UK 2.500× 2.500 1979-2014 
MIROC 5 University of Tokyo, National 

Institute for Environmental Studies, 
and Japan Agency for Marine-Earth 
Science and Technology (MIROC) 

JAPAN 2.500× 2.500 1979-2014 

 

Table 2: List of CMIP6 models used for the study. 
Model  ID Institute  Country Horizontal 

resolution 
Temporal 
resolution 

IITM-ESM Indian Institute of Tropical 
Meteorology, Pune 

INDIA 2.500× 2.500 1979-2014 

GISS-E2.1-G The National Aeronautics and 
Space Administration 

USA 2.500× 2.500 1979-2014 

MPI-ESM-1.2-HAM Max Plank Institute For 
Meteorology 

GERMANY 2.500× 2.500 1979-2014 

ACCESS-CM2 CSIRO Climate Science 
Centre 

AUSTRALIA 2.500× 2.500 1979-2014 

IPSL-CM6A-LR Institute for Pierre-Simon 
Laplace 

FRANCE 2.500× 2.500 1979-2014 

NCAR-CESM2 National Center for 
Atmospheric Research 

USA 2.500× 2.500 1979-2014 

Had GEM3-GC3.1 Met Office Hadley Center UK 2.500× 2.500 1979-2014 
MIROC 6 University of Tokyo JAPAN 2.500× 2.500 1979-2014 

 
 
Table 3: Table showing the skill scores of fourteen CMIP5 and CMIP6 models estimates of the 
monthly mean temperatures during the Indian summer monsoon. 

MODEL Taylor-score Interannual Variability Score 

ACCESS 1-0 0.3609 0.1114 

CESM1-CAM5 0.2892 0.3247 

ENS OF CMIP5 0.2052 3.985 

GISS-E2-R 0.1442 3.539 

HadGEM2-ES 0.3201 0.5404 

IPSL-CM5A-LR 0.2399 1.126 

MIROC-5 0.3434 0.0018 
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MPI-ESM-LR 0.2582 1.302 

ACCESS-CM2 0.2428 1.322 

CESM2-CAM6 0.3184 0.01962 

ENS-CMIP5 0.2248 2.797 

GISS-E2.1-G 0.338 0.04993 

HadGEM3-GC3.1 0.3227 0.1932 

IPSL-CM6A-LR 0.3114 0.562 

MIROC-6 0.3082 0.1224 

MPI-ESM-1.2-HAM 0.2453 1.203 

 
 
Table 4: Table showing skill scores of fourteen model estimates of the monthly mean 
precipitation during Indian summer monsoon. 
 
MODELS TS IVS 
ACCESS-CM-1 0.3609 0.1114 
CESM-1 0.2892 0.3247 
ENS-CMIP5 0.2052 3.985 
GISS-E2.1-G 0.1442 3.539 
HAD-GEM-ES2 0.3201 0.5404 
IPSL-CM5A-LR 0.2399 1.126 
MIROC-5 0.3434 0.001795 
MPI-ESM-1.2 0.2582 1.302 
ACCESS-CM-2 0.2428 1.322 
CESM-2 0.3184 0.01962 
ENS-CMIP6 0.2248 2.797 
GISS-E2.1 0.338 0.04993 
HAD-GEM-GC3.1 0.3227 0.1932 
IPSL-CM6A 0.3114 0.562 
MIROC-6 0.3082 0.1224 
MPI-ESM-1.2 0.2453 1.203 
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Fig. 1: Taylor diagram displaying a statistical comparison of fourteen CMIP model estimates of the monthly mean 
surface temperature with observations during the Indian summer monsoon. 
 
 

 
 
Fig. 2: Taylor score of 14 CMIP5 and CMIP6 models for monthly mean temperatures(1979-
2014) compared with IMD temperature (X-axis). 
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Fig. 3: Interannual variability score (IVS) of CMIP5 and CMIP6 models for monthly mean temperatures (1979-
2014) compared with IMD temperature (X-axis). 
 

 
Fig. 4: Taylor diagram displaying a statistical comparison of CMIP5 and CMIP6 model 
estimates of the monthly mean precipitation with observations during the Indian summer 
monsoon. 

 
 
 
Fig. 5: Taylor scores of 14 CMIP5 and CMIP6 models for monthly mean precipitation (1979-2014) compared 
with IMD gridded rainfall (X-axis). 
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Fig. 6: Interannual variability score (IVS) of CMIP5 and CMIP6 models for monthly mean 
precipitation (1979-2014) compared with IMD gridded rainfall (X-axis). 
 
 

 
Fig. 7: Spatial distribution of temperature (0K) of 8 CMIP-6 models(a-h) compared to the IMD 
temperature during 1979-2014. 
 

          ACCESS –CM2                CESM‐2              GISS‐E2.1‐G            HadGEM3‐GC3.1 
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               IITM‐ESM            IPSL‐CM6A‐LR                MIROC‐6                                MIP 

 
Fig. 8: Temperature biases from observation (IMD) and 8 CMIP-6 models.  
 

 
 
Fig. 9: Taylor diagram of monthly mean temperature variance  (JJAS) for observation and 8 
CMIP-6 models, the standard deviation is represented by radial distance from the origin, the 
correlation coefficient is represented by the azimuthal position, and the distance of the test field 
from observation represents centered root mean square deviation. 
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Fig. 10: Spatial distribution of precipitation of 8 CMIP-6 models(a-h) compared to the IMD precipitation during 
1979-2014. 
 
 

 

ACCESS-CM2 CESM-2 GISS-E2.1-G HadGEM-GC3.1 
 

 
IITM-ESM IPSL-CM6A-LR MIROC-6 MIP-ESM2.1-HAM 

 
Fig. 11: Precipitation biases from observation (IMD) and 8 CMIP-6 models  
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Fig. 12: Taylor diagram of monthly mean precipitation variance  (JJAS) for observation(IMD) 
and 8 CMIP-6 models, the standard deviation is represented by radial distance from the origin, 
the correlation coefficient is represented by the azimuthal position and distance of the test field 
from observation represent centered root mean square deviation. 
 

 
Fig. 13: Panel Plots of monthly means of pressure at mean sea level of observation and 8 CMIP‐6 models (a‐
h). 
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Fig. 14: Taylor diagram of monthly(JJAS)means of pressure at mean sea level (PSL) variance for 
observation(ERA)and 8 CMIP-6 models; standard deviation is represented by radial distance from the origin, 
the correlation coefficient is represented by the azimuthal position and distance of the test field from 
observation represent centered root mean square deviation. 
 

 
 

Fig. 15: Plots of  Mean Zonal and Meridional winds of observation (ERA) and 8 CMIP-6 
models.  
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U-WIND                                                                                      V-WIND 
 
 
Fig. 16: Taylor diagram for a variance of (a) zonal wind and (b) meridional wind from 8 CMIP6 models. 
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