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Abstract: The aviation industry plays a crucial role in global connectivity and transportation; however, its environmental 
footprint continues to grow alongside the expanding popularity of aviation. By analyzing a decade-long dataset, the nov-
elty of this research lies in delving into the relationship between aircraft age and major aviation emissions, such as hydro-
carbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), during landing and take-off (LTO) operation using 
advanced machine learning algorithms. The analysis of this research comprises three horizons. Firstly, an inventory of 
aircraft emissions was constructed by analyzing aircraft fleet data at Queen Alia International Airport (QAIA) in Jordan. 
Secondly, the correlation between these emissions and aircraft age was rigorously examined. Finally, predictive models 
for aircraft age based on pollutant emission features using advanced machine learning algorithms were developed. The 
findings of the study revealed a discernible impact of aircraft age on emissions, underscoring the importance of consider-
ing the aging factor in assessing the environmental implications of aviation. The machine learning models exhibited a 
capacity to forecast pollutant emissions with a notable degree of accuracy with a Mean Squared Error (MSE) of about 
3.0931. This offers valuable perspectives that can enhance comprehension of aviation's environmental footprint. 

 

 

 

 

 

1. INTRODUCTION 

The aviation industry plays a pivotal role in global connectivity and transportation, yet its environmental 
footprint is a subject of increasing concern (Quadros et al., 2020). As aviation continues to burgeon, it becomes 
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imperative to comprehensively grasp the implications of aircraft emissions on environmental issues, such as 
global warming, and the well-being of affected communities. The impact of aircraft emissions on air quality 
near airports is an acute concern, with potential ramifications for public health. Numerous studies have estab-
lished a correlation between elevated levels of pollutants near airports and adverse health effects among nearby 
residents. For example, fine particulate matter, nitrogen oxides, and other pollutants released during aircraft 
operations can contribute to respiratory issues, cardiovascular problems, and other health concerns (Bendtsen 
et al., 2021; Jonsdottir et al., 2019; Manisalidis et al., 2020).  

Aircraft engine NOx emissions are mostly produced during takeoff at high temperatures and pressures in 
the combustor (Bo et al., 2019; Mahashabde et al., 2011). These emissions have been linked to negative health 
effects, including heightened allergy responses, compromised immune system, and respiratory systems (Arter 
et al., 2022). Surface NOx reacts with hydrocarbons (HC), carbon monoxide (CO), and volatile organic com-
pounds (VOCs) in the presence of heat and sunlight to produce ozone at ground level (Mahashabde et al., 2011). 
This low altitude ground level ozone is a secondary pollutant and a major contributor to smog. Exposure to 
smog can cause respiratory problems, damage to crops, ecosystems, and several health issues (Brunton et al., 
2021; Jonsdottir et al., 2019; Mahashabde et al., 2011; Yim et al., 2015). Furthermore, NOx serves as a building 
blocks for additional oxidized nitrogen compounds, which aid in the production of secondary particulate matter. 
As a result, NOx influences the ecosystem and air quality both directly and indirectly. 

Another pollutant from aircraft operation is hydrocarbons (HC). Elevated concentrations of hydrocarbons, 
often originating from anthropogenic sources such as vehicle emissions, industrial activities, and fuel combus-
tion, can contribute to air pollution. In urban areas, high concentrations of hydrocarbons are associated with 
smog formation and diminished air quality, posing health risks to human populations (Mahashabde et al., 2011). 
Monitoring and controlling harmful emissions concentrations are essential for mitigating environmental pollu-
tion and promoting sustainable practices to minimize adverse effects on both human health and the ecosystem. 

As aircraft age, the confluence of changing engine efficiency, evolving technology, and varied maintenance 
practices may significantly alter the release of pollutants (Behere et al., 2020; Lee, 2010). The ageing of the 
engine is believed to be a major factor that impacts emissions. As engine components, particularly the compres-
sor and turbine, deteriorate, the fuel flow needs to increase in order to achieve the desired power settings. This, 
in turn, influences the emissions. It is estimated that engine ageing lead to an increase in fuel consumption of 
about 4–10% (Patterson et al., 2009; Xu et al., 2020). Only a few studies attempted to correlate aircraft age and 
emissions. For example, Xu et al., (2020) attempted to explore the effect of engine aging on NOx emissions in 
taxi mode. They concluded that there is no significant correlation between aircraft age and emissions. On the 
contrary, (Zaporozhets and Synylo, 2017) investigated the effect of engine age on emission indices for CO and 
NOx. Their results have demonstrated the dependences of the emission indices on engine age. As there is limited 
literature investigating the ageing of aircraft in the context of environmental sustainability in aviation. This 
study seeks to investigate the complex relationships between aircraft aging and environmental impact, specifi-
cally focusing on aviation emissions. 

Leveraging machine learning techniques assumes paramount importance in tackling the complexity inher-
ent in this study problem. Machine learning algorithms possess the capability to sift through vast datasets, iden-
tifying nuanced patterns and relationships that might elude traditional analytical methods. In addition, traditional 
methods can be limited in their ability to capture the intricate non-linear relationships between emissions and 
aircraft age, potentially leading to inaccurate predictions. Machine learning algorithms surpass at identifying 
complex patterns and non-linear relationships within data, making them well-suited for the challenging task of 
predicting aircraft age from emission data. Machine learning involves the exploration of computer algorithms 
to enable accurate predictions and intelligent responses in specific situations. Fundamentally, it revolves around 



NEPT 3 of 18 
 

learning to improve future circumstances based on past knowledge. Machines acquire insights from existing 
information and experiences, leading to the development of programs that analyze data from diverse sources. 
These programs select pertinent data and leverage it to predict system behavior in similar or dissimilar scenarios. 
Machine learning also involves the classification of objects and activities to facilitate decision-making in new 
input scenarios. The underlying motivation for machine learning lies in the necessity for additional intelligence 
and learning to address uncertainties (Kulkarni, 2012). 

Moreover, supervised learning primarily seeks to establish a model that captures the relationship between 
inputs and their associated outputs within the provided training data. The objective is to enable the prediction 
of output responses for new data inputs, leveraging the acquired knowledge of the established relationships and 
mappings between inputs and their target outputs. Supervised training methods fall into two main categories, 
namely classification, and regression, depending on the nature of the machine learning problems being ad-
dressed (Rathnayake et al., 2024; Sarkar et al., 2018).  

Machine learning has made substantial inroads into the field of aviation research. It has been employed in 
a multitude of applications. For instance, machine learning models can predict climate change due to CO2 emis-
sions (Askr et el., 2023;Maruhashi et al., 2022). Kayaalp et al., (2021) utilized the Long-Short Term Memory 
(LSTM) to predict emissions. Furthermore, Aygun et al., (2023) predicted the emissions indices for NOx and 
CO and fuel flow during take-off and climb-out phases using a hybrid model combining a convolutional neural 
network (CNN) and LSTM (CNN-LSTM). Wan et al., (2022) predicted emissions and noise impact on air qual-
ity. Dursun et al., (2022) focused on predicting various emission indexes (EIs) including CO, HC, and NOx, as 
well as fuel flow for various commercial aircraft engines during the take-off phase. Two distinct approaches, 
support vector regression (SVR) and LSTM, were employed for this purpose. Han et al., (2022) utilized machine 
learning predictive models to investigate the influence of emissions from a civilian airport on the local air quality 
of nitrogen dioxide (NO2). Tian et al., (2019) introduced a framework that categorizes air quality in airports by 
various supervised learning methods. In addition, machine learning applications in aerodynamics optimization 
enables the development of more fuel-efficient, stable, and easily controllable aircraft. By training machine 
learning models on data collected from wind tunnel tests, flight tests, and simulations, engineers can accurately 
predict and optimize design parameters. These optimized parameters are then used to generate 3D models of 
the aircraft, which are subsequently rigorously tested in a virtual environment to ensure they meet the desired 
aerodynamic performance standards (Jiang et al., 2023; Le Clainche et al., 2023; Sabater et al., 2022). Artificial 
intelligence and machine learning have been also integrated to inform and fortify future aviation safety strategies 
(Demir et al., 2024). Furthermore, machine learning was utilized in optimizing air traffic routes and schedules 
to reduce congestion and fuel consumption (Kim et al., 2022). 

In the context of this research, machine learning serves as a powerful ally in deciphering the multifaceted 
interplay between aircraft age and environmental impact. As we navigate the intricate landscape of aviation 
emissions, the role of machine learning becomes increasingly apparent. The algorithms employed in this re-
search enable the prediction of aircraft age based on pollutant emissions, providing a predictive framework that 
extends beyond mere observation. This proactive approach to understanding the environmental consequences 
of aging aircraft is instrumental in developing targeted and effective strategies for mitigating these impacts. By 
harnessing the power of machine learning, the study aspires to not only understand the current impact of aging 
aircraft on emissions but also to forecast potential trends, facilitating proactive measures for sustainable aviation 
practices. 

The significance of this research addresses critical issues at the intersection of aviation, environmental 
sustainability, and public health. The novelty of this research comes from the fact that it not only addresses a 
pressing environmental problem but also its relevance on the local and international scales alike. When 
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examining the literature in detail, any studies on correlating and predicting aircraft age based on emissions using 
machine learning have not seen to the best of the author’s knowledge. Therefore, the present study provides the 
first attempt to assess the impact of aircraft age on pollutants emissions. Understanding the influence of aircraft 
age on engine emissions is pivotal for formulating sustainable aviation practices. By identifying the specific 
environmental implications associated with aging aircraft, this research provides empirical evidence to imple-
ment regulations that encourage the adoption of greener technologies and efficient maintenance practices. 

The objectives of this study are: (i) develop an inventory of aircraft emissions, including NOx, CO, and 
HC, during the landing and take-off (LTO) cycle operations in QAIA; (ii) examine rigorously the correlation 
between the age of aircraft and these emissions utilizing a decade-long dataset; (iii) develop predictive models 
for aircraft age based on pollutant emissions by employing advanced machine learning algorithms. This will 
offer insights into the current impact and facilitate the anticipation of potential trends for the implementation of 
proactive measures. 

 

 

2. MATERIALS AND METHODS 
Study Area 

The research area was Queen Alia International Airport (QAIA) in Jordan. QAIA is located about thirty 
kilometers south of Amman, the capital of Jordan. It has a latitude of 31° 43' 12.59" N and a longitude of 35° 
59' 21.59" E (Latitude.to, 2024). It is the largest and busiest airport in Jordan, serving more than 8 million 
passengers annually. The airport serves as a hub for more than 50 carriers and airlines that connect the country 
to various destinations in the Middle East, Asia, Africa, and Europe.  
Data collection and processing  

The required data for developing an inventory of aviation emissions for QAIA were collected. Initially, the 
fleet data spanning from 2013 to 2022 pertaining to QAIA were obtained from the Jordan Civil Aviation Reg-
ulatory Commission and the air transport department. The recorded flight data encompassed details such as 
aircraft engines, registration, country, types, weight, aircraft movements (ACM), total passengers, and cargo. 
An examination to ensure the cleanliness, consistency of the data, and detection of any outliers has been carried 
out. Information about the typical engine combinations on various aircraft types was obtained from the Airfleet 
Aviation website (“Airfleets aviation,” 2023). Engine emission indices were obtained from the ICAO Aircraft 
Engine Emissions Databank (“ICAO,” 2023). 
Aircraft emission calculation  

Aircraft emissions depend on various factors, including the type and number of aircraft, engine type, fuel, 
duration of each operation phase, power settings, and flight distance (Yang et al., 2018). Usually, research on 
aircraft emissions and their effects is typically divided into two categories. The first category is related to aircraft 
pollutant emissions that occur during the LTO phase, which are referred to as local pollutant emissions. The 
second category is the non-LTO flight phase that takes place above 915 meters and at cruise level (Bajgai and 
Shrestha, 2023). The focus of the current study was the aircraft emissions impact on local airport air quality, 
therefore the emissions of aircraft during the LTO phase were only considered. The LTO cycle comprises four 
phases: approach, taxi/idle, take-off, and climb. A schematic diagram of the LTO cycle operation is shown in 
Fig 1. Emissions during a particular phase of the LTO cycle are also proportional to the amount of time spent 
on each mode, main engine index, and engine fuel flow. In this study time in mode and thrust setting on each 
operation phase are taken from the ICAO standard LTO cycle (Table 1).  
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Fig. 1. ICAO Standard Operational flight landing and take-off (LTO) cycle (ICAO,2016)  

 
Table 1. Time in mode and thrust setting on each operating phase during the LTO cycle (ICAO,2016) 

Thrust setting 
(percentage of rated thrust) 

Time-in-mode 
(minutes) 

Operating 
phase 

30 4.0 Approach 

7 26   7.0 (in) 
19.0(out) 

Taxi /idle 

100 0.7 Take-off 

85 2.2 Climb 

 
The emissions for a specific pollutant i of a particular aircraft type j are calculated by the following equa-

tion: 
 𝐸𝐸𝐸𝐸𝑗𝑗 = ∑�𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 ∗ 60� ∗ (𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗) ∗ (𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗𝑗𝑗) ∗ (𝑁𝑁𝑁𝑁𝑗𝑗)                                  (1) 

 
Where Eij= total emissions of pollutant i (e.g. NOx, CO or HC), in grams produced by aircraft type j for 

one LTO cycle; Eiijk = emission index for pollutant i, in grams pollutant per kilogram of fuel (g/kg of fuel), in 
mode k (e.g. take-off, climb-out, idle and approach) for each engine used on aircraft type j; FFjk = fuel flow for 
mode k, in kilograms per second (kg/s), for each engine used on aircraft type j; TIMjk = time-in-mode for mode 
k, in minutes, for aircraft type j; Nej = the number of engines used on aircraft type j. 
 
Machine Learning and Artificial Neural Network 

An artificial neural network (ANN) is a model inspired by the human brain's structure and functioning, 
with nodes and interconnections resembling neurons. In a standard ANN, there are typically input and output 
layers, with at least one hidden layer in between as shown in Fig 2. The network comprises specific link patterns, 
layer connections, connection weights, and neuron activation functions mapping inputs to outputs. During train-
ing, weights are adjusted using the backpropagation algorithm, involving propagation and weight update stages. 
Input data sample vectors are forwarded through the neural network to generate output values. The produced 
output vector is compared with the desired output vector. Performance is evaluated using mean square error 
(MSE) that measures the average squared difference between the actual values (𝑌𝑌𝑖𝑖  ) and the predicted values (𝑌𝑌𝚤𝚤�  

) generated by a model and is computed according to the following equation: 

𝑇𝑇𝑀𝑀𝐸𝐸 = 1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1                                                                              (2) 
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The node weights can then be adjusted based on corrections that minimize the error in the entire output for 
the 𝑛𝑛th data point, given by the following equations:  

𝜀𝜀(𝑛𝑛) = 1
2
∑ 𝑁𝑁𝑗𝑗2𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛 𝑗𝑗 (𝑛𝑛).                                                                  (3) 

Using gradient descent, the change in each weight ∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) is 

∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑛𝑛) = −𝜂𝜂 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝑣𝑣𝑗𝑗(𝑛𝑛)

𝑦𝑦𝑖𝑖(𝑛𝑛)                                                                          (4)  

where 𝑦𝑦𝑖𝑖(𝑛𝑛) is the output of the previous neuron 𝐸𝐸, and 𝜂𝜂 is the learning rate, which is selected to ensure 

that the weights quickly converge to a response, without oscillations. In the previous expression, 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝑣𝑣𝑗𝑗(𝑛𝑛) denotes 

the partial derivate of the error 𝜀𝜀(𝑛𝑛) with respect to the weighted sum 𝑣𝑣𝑗𝑗(𝑛𝑛) of the input connections of neuron 
𝐸𝐸. 

These stages are repeated through multiple iterations (epochs) until reliable results are obtained. A multi-
layer perceptron (MLP) is a fully connected feedforward artificial neural network with at least three layers. 
Backpropagation can train MLPs and even deep neural networks with multiple layers (Sarkar et al., 2018). 

 

 
Fig. 2. Architecture of Neural Network 

 

The data has been preprocessed to handle any missing values or outliers. Techniques like imputation and 
standardization have been employed. Missing values in the dataset were addressed using an imputation strategy. 
Continuous features were filled using the mean value of the respective feature, ensuring the data's central ten-
dency was preserved. Outliers were identified through visual inspection of plots for each numerical feature and 
data points that deviated significantly from the general distribution of values were flagged as potential outliers. 
Consequently, each flagged data point was evaluated in the context of domain knowledge. For instance, unusu-
ally high emissions for certain aircraft types were cross-verified against aircraft specifications and operational 
anomalies. However, outliers deemed to be errors or non-representative of typical conditions were either re-
moved or corrected based on corroborating evidence from the dataset. Finally, after handling outliers, the data 
distribution was re-evaluated to ensure that adjustments preserved the overall trends and relationships in the 
dataset. All numerical features were standardized to a mean of 0 and a standard deviation of 1 to ensure that 
each feature contributed equally to the model training process. These preprocessing steps were implemented 
systematically using the scikit-learn library, and the codebase ensures reproducibility by following a docu-
mented workflow. 
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The correlation between aircraft age and various emission characteristics has been assessed to identify 
which emissions exhibit a significant correlation with age. The neural network architecture has been initially 
configured and fine-tuned based on the specific features that show meaningful correlations with age. The nor-
malized dataset was divided into two datasets 80% training and 20% testing. To measure the model's generali-
zation performance, MSE was applied to the test dataset.  

The architecture of the MLPRegressor model, consisting of two hidden layers with 100 and 50 neurons 
respectively, was chosen after performing hyperparameter tuning experiments. These experiments tested vari-
ous configurations to balance model complexity and computational efficiency. The first hidden layer with 100 
neurons captures complex relationships within the dataset, while the second layer with 50 neurons further refines 
the feature interactions. This structure ensures that the model effectively handles the nonlinearities inherent in 
the relationship between emissions and aircraft age. The rectified linear unit (ReLU) was used as the default 
activation function for Multilayer-Perceptron Regression (MLPRegressor) in scikit-learn. The output layer con-
tains a single variable – predicted age in this case.  

3. RESULTS AND DISCUSSIONS 

3.1. LTO emission estimation  
The LTO emissions in QAIA were analyzed for temporal variations flights from 2013 to 2022. Fig. 3 shows 

the number of aircraft movements over the investigated period. There was a gradual increase in the number of 
flights with time between 2013 to 2019. In 2020, there was a significant drop in the number of aircraft movements 
due to the impact of the COVID-19 pandemic, which resulted in widespread travel restrictions and reduced air 
travel. There was a partial recovery in the number of flights in 2021 compared to 2020, but it doesn't reach the 
levels seen in the pre-pandemic years. In 2022, there was a notable increase in the number of flights, possibly 
indicating a continued recovery of air travel.  

The estimated LTO emissions followed a similar trend to the number of aircraft movements as illustrated in 
Fig. 4. The emissions are generally increasing up to 2019, where peak emissions of 25, 256, and 549 tonnes were 
recorded for HC, CO, and NOx, respectively. The average LTO emissions of HC, CO, and NOx, were estimated 
to be around (21. 3 ± 4.8), (207.1 ± 44.9), and (440.6 ± 99.9) tonnes per year respectively. NOx emission has the 
highest contribution to LTO cycles, followed by CO and HC in QAIA. The significant drop in the three emissions 
in 2020 is a clear reflection of the impact of the COVID-19 pandemic. This emphasizes the direct relationship 
between aviation activity and environmental emissions. The recovery in 2021 and 2022, seen in both the number 
of flights and pollutants releases, may suggest a return to pre-pandemic levels of air travel and associated environ-
mental impact. This recovery trend raises questions about sustainable practices and the need for continued efforts 
to reduce emissions. 
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Fig. 3. Total aircraft movements at Queen Alia International Airport (QAIA) from 2013 to 2022 

 
Fig. 4. Estimated total LTO cycle emission in QAIA 

3.2. Emissions distribution in different aircraft operation modes 

The results revealed that taxi/idle mode has the largest contribution of 35.9% to LTO emissions, while 
emissions during approach, take-off, and climb phases accounted for 10.8%, 18.5%, and 34.9% of the total 
emissions, respectively. By analyzing the distribution of each pollutant in different aircraft operation phases of 
the LTO cycle including take-off, climb, taxi/idle, and approach, it was found that there were significant dis-
crepancies in the emission rates of various pollutants in each mode. Fig. 5 and Fig. 6 show that HC and CO 
were significantly emitted in the taxi/idle phase, accounting for 92.3% and 91.6% of the total emissions. Similar 
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trend were observed by other researchers (Bajgai and Shrestha, 2023). The emission indices of HC and CO 
decreased with increasing thrust (Stettler et al., 2011; Yang et al., 2018). So, when the aircraft is on the ground 
and in taxi/idle mode, it operates at a low power setting where the pressure and temperature are relatively low. 
This can cause incomplete combustion of fuel and result in increased emissions of CO and HC. The emissions 
during the taxi/idle phase contribute consistently to the total. Identifying factors influencing emissions during 
this phase and implementing measures to reduce emissions may have a substantial impact. This can provide 
insights into changing operational practices, technological advancements, or regulatory influences. 

 

 

Fig. 5. HC emissions of different LTO operation modes 
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Fig. 6. CO emissions of different LTO operation modes 

 

On the other hand, the highest contribution for NOx was in the climb phase with 51.6 %. While it accounted 
for 27.6%, 13%, and 7.5 % in take-off, approach, and taxi/idle phases, respectively (Fig. 7). The NOx emissions 
indices for all aircraft engines are positively correlated to thrust setting. Thus, the highest emission rates of NOx 
were in the high thrust operation mode of the aircraft during the phases of climb and take-off. Moreover, NOx 
emissions during take-off show an increasing trend over the years, reaching the highest level in the last few 
years. This suggests a potential need for optimizing engine performance during the take-off phase. Climb NOx 
emissions also exhibit a general upward trend, indicating a possible correlation with increased air traffic or 
changes in flight profiles. Efficient climb-out procedures may be explored to mitigate these emissions. Observ-
ing yearly fluctuations in NOx emissions highlights the dynamic nature of aviation emissions. Identifying the 
reasons behind these fluctuations can aid in implementing targeted measures for emission reduction. Under-
standing the environmental impact of NOx emissions during different flight phases is crucial for developing 
strategies to minimize the overall contribution of aviation to air pollution. These strategies include optimizing 
flight procedures (minimizing ground idling, implementing continuous descent approaches, and optimizing 
climb profiles), improving infrastructure, encouraging the use of sustainable aviation fuels, investing in research 
and development of new technologies, and implementing regulatory measures such as emissions trading 
schemes, performance-based standards, and environmental charges. 
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Fig. 7. NO emissions of different LTO operation modes 

3.3. Correlation between aircraft age and pollutant emissions 

In order to investigate the effect of aircraft age on emissions, the aircraft were grouped in five years old 
period. Fig. 8 illustrates how emissions of HC, CO, and NOx change across different aircraft age groups. 
The average HC, CO, and NOx emissions show a notable increase from age 5 to 40, indicating a correlation 
between age and emissions. The magnitudes of emissions vary significantly between different age groups. 
Age 40 appears to be a notable peak for all three types of emissions. This may indicate that the engine 
deteriorates with age besides other factors related to this age group which contribute to higher emissions. 
Linear fit analysis of each pollutant emissions with aircraft age shows a positive correlation with a coeffi-
cient of determination (R2) equal 0.5183, 0.4767, and 0.6078 for HC, CO, and NOx, respectively. A similar 
positive correlation was obtained by other researchers when they correlated engine age with emission in-
dices in idle phase only for CO and NOx (Zaporozhets and Synylo, 2017). Conversely, trends where ob-
served by (Xu et al., 2020)  who stated that there was no significant correlation was detected between the 
age of the aircraft and NOx emissions in taxi mode. Also, emissions are influenced by other factors in 
addition to age, including aircraft type, engine efficiency, maintenance practices, operational methods, 
among others. These additional elements contribute to the complexity of the study.  
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Fig. 8. The 5-year age group with emissions of HC, CO, and NOx 

3.4. Machine Learning Predictions for Age 

In this section, we embarked on a detailed exploration of a regression task employing the MLPregressor 
model. The foundation of this analysis lies in a dataset containing pertinent features, with the aim of predicting 
the variable 'age'. To perform a detailed analysis of the results based on the provided features, correlation coef-
ficients were calculated between the 'age' variable and various features in our dataset as shown in Table 2. These 
coefficients provide insights into the linear relationships between age and various emissions characteristics. 
Table 2 shows that the correlation coefficients between age and different features span the range of – 0.30 to 
about 0.55. This indicates that some variables have a negative inverse relationship, such as NOx EI with a 
correlation coefficient of – 0.30, and the others have positive, like NOx Dp/Foo Characteristic (which is the 
mass of NOx emitted during the reference landing and take-off cycle, divided by the rated output of the engine). 
While some variables have strong linear relationships, others have weak correlations. This gives an insight about 
this correlation. Positive correlations indicate that as the age of the aircraft increases, the corresponding feature 
also tends to increase, and vice versa for negative correlations.  
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Table 2. Correlation coefficients between the 'age' variable and various features in our dataset. 
Features  Correlation 

Coefficient   

HC T/O (g) (takeoff), HC C/O (g) 
(climb out) 

0.30 

HC App (g) (approach), HC Idle (g), 
HC TOT (total in g) 

0.22 

CO T/O (g) takeoff  0.36 
CO C/O (g) climb out 0.32 

HC Dp/Foo Characteristic (g/kN) 
 

0.16 

HC Dp/Foo Characteristic (% of 
Reg limit) 

 

0.18 

HC LTO Total mass (g) 
 

0.22 

CO Dp/Foo Characteristic (g/kN) 
  

0.24 

CO Dp/Foo Characteristic (% of Reg 
limit) 

0.26 

NOx Dp/Foo Characteristic (g/kN) 0.24 
NOx Dp/Foo Characteristic (% of 
original standard) 

0.52 

NOx Dp/Foo Characteristic (% of 
CAEP/2 standard) 

0.52 

NOx Dp/Foo Characteristic (% of 
CAEP/4 standard)  

0.55 

NOx Dp/Foo Characteristic (% of 
CAEP/6 standard) 

0.55 

NOx Dp/Foo Characteristic (% of 
CAEP/8 standard) 

0.55 

NOx EI T/O (g/kg) -0.17 
NOx EI App (g/kg) -0.12 
NOx EI Idle (g/kg) -0.30 
NOx TO, NOx APP, NOx TOT, NOx 
IDLE, NOx LTO Total mass 

<-0.01 

 

The predicted age values can be visualized against the actual age values in a scatter plot to realize how well 
the model is capturing the relationships. Fig. 9 shows a scatter plot where the horizontal axis represents the 
actual age values, and the vertical axis represents the predicted age values. Points closer to the diagonal line 
indicate accurate predictions, while deviations from the line suggest errors in the predictions. The findings 
showed the MSE value of 3.0931. In this case, since the target variable is age, the estimated MSE is considered 
reasonable based on the specific context and requirements of our study. More details about model performance 
are shown in the residuals’ plot (Fig. 10). It highlights the areas where the model was able to capture the under-
lying patterns in the data.  

The analysis of emissions across different aircraft types revealed a nuanced relationship with age. While 
there were general trends of increasing emissions with age, the patterns were diverse and specific to each aircraft 
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model. Peaks and drops in emission levels within certain age groups suggest that age was indeed a factor influ-
encing emissions. Evidence indicates that older aircraft generally exhibited higher emissions, aligning with in-
dustry expectations. However, this impact was not uniform across all aircraft types, emphasizing the uniqueness 
of each model. This variable has not been thoroughly examined in this study; further investigation is required. 

 

 

Fig. 9 The predicted age values against the actual age values in a scatter plot 

 

 

Fig. 10. The residuals plot between the actual and predicted age values. 

 

4. CONCLUSIONS 
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The rise in aircraft flights and subsequent increase in emissions has raised global concerns. This research 
is crucial because it addresses vital challenges at the nexus of aviation, environmental sustainability, and public 
health. This study provided significant contributions at both the local and international scales. Firstly, for the 
first time, the overall emission of the LTO cycle in QAIA in Jordan was estimated in the period from 2013 to 
2022. Secondly, it assessed the relationship between aircraft age and major engine emissions, such as HC, CO 
and NOx. Such investigations were relatively not covered fully in open literature. Thirdly and most importantly, 
upon detailed examination of the literature, any studies on correlating aircraft age with emissions features using 
machine learning have not seen to the best of the authors’ knowledge. So, the novelty of this paper is the use of 
this advanced machine learning tools to uncover the complex relationship between different emission features 
and aircraft age. As understanding how aircraft age influences engine emissions is crucial for developing sus-
tainable aviation operations, this research makes significant contributions by identifying the specific emission 
features associated with aging aircraft. This can be translated into actionable insights for the development of 
targeted strategies aimed at minimizing the aviation environmental footprint. This may include implementing 
age-based maintenance programs, investing in fuel-efficient aircraft by replacing older aircraft with newer, and 
more environmentally friendly models, investigating and adopting advanced technologies like biofuels, electric 
propulsion, and hydrogen-powered aircraft to reduce emissions across their fleet, incentivizing sustainable avi-
ation practices, and promote the use of sustainable ground operations. 

Future research activities include expanding the investigation to assess the emissions from other pollutants, 
such as CO2 and particulate matter, and to seek applying this methodology to other airports in the region. Finally, 
challenges encountered in this research include variability in the quality of the available records, some aircraft 
types have limited number of flights prevent thorough investigation, and difficulties to obtain measured emis-
sions. In addition, a limitation of the used dataset lies in the potential variability of engine types and maintenance 
practices across the aircraft fleet. Differences in engine models, their age, and maintenance histories can signif-
icantly influence emission profiles. 
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