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Abstract  

Biopesticides have frequently been the focus of attention on a global scale as a safer alternative to 
chemical pest control that may provide less damage to both humans and the environment. The usage of 
biopesticides is rising rapidly worldwide, at 10 per cent a year. With the idea of limited application for 
most significant impact, nanotechnology has produced novel tools for pest management in agriculture, 
including nanopesticides and nanosensors. In contrast to conventional chemical pesticides, 
nanopesticides are formulations of a pesticide's active component in nanoform that have delayed 
degradation, targeted distribution, and controlled release of the active ingredient over longer periods of 
time. In accordance with lots of studies, incorporating certain biological agents in nanoparticulate 
systems increases their effectiveness against pests while lowering losses resulting from physical 
deterioration. The development and evaluation of nanobiopesticides have been the subject of laboratory-
only research to date using techniques like the creation of nanocomposites, nanoengineered biopesticides, 
coating nanoparticles with bio-pesticides etc. The formulation of appropriate, globally acceptable bio-
safety and registration requirements is necessary to enable the effective use of these formulations for pest 
management at the field level. 
 
 

 

 

Introduction  

Nanotechnology is revolutionizing agricultural and food waste in underdeveloped 
countries via sustainable agriculture and circular economy application (Preethi et al. 2024). In 
developing countries, more than 60% of the population relies upon agriculture for their 
livelihood either directly or indirectly. In present days, agricultural scientists are facing 
challenges like climate change, stagnation in crop yields, multi-nutrient deficiencies, low 
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nutrient use efficiency, declining soil organic matter, shrinking arable land and reduced water 
levels and shortage of labour (Elizabath et al. 2019). To counter these issues many agriculturists 
and environmentalists have designed many practices for sustainable development and 
bioformulations are one of them. In all the green practices developed, there were limitations in 
effectively delivering the crop growth requirements (Sahai et al. 2019). These delivery models 
called carriers, these carriers can deliver pesticides, fertilizers, biocontrol agents and so many 
which are required for plants. Nanoparticles are small molecules with a size range of 1–100 nm 
with different physiochemical properties (El-Saadony et al. 2019). Nano-fertilizers have a 
high sorption capability, a large surface area and regulated release kinetics to specific sites, 
making them a better delivery system to provide fertilizers to the plants (Rameshaiah et al. 
2015). Addition of fertilizers to soil may lead to loss of fertilizers and therefore more fertilizer 
should be added to compensate loss (Ombódi and Saigusa 2000), whereas foliar fertilizer 
application is effective but nutrients might fail to penetrate cell wall pores as their size vary 
from 5 to 20 micron (Benzon et al. 2015), while nanoparticles with smaller diameter can easily 
pass through cell wall pores (Moore 2006). The features of nano-fertilizers are delivering the 
appropriate nutrients for enhancing plant growth through soil and foliar applications, they are 
cost effective and sustainable sources for plant nutrients, they help in preventing pollution, they 
have a high fertilization efficiency (Guru et al. 2015).  

Irrational use of pesticides possess threat to ecosystem and human health (Kuhlbusch 
et al. 2018). Nanoencapsulation of pesticide can help in slow and controlled release of pesticide 
for a prolonged time reducing loss of unwanted pesticide (Agrawal and Rathore 2014). 
Nanoparticles were also used against viruses and in managing maturation of fruits (Hawthorne 
et al. 2014). Nanotechnology is used in agriculture and food production as nano sensors for 
monitoring crop growth and pest control by early detection of disease-causing pests in plants 
(Bhagat et al. 2015). Remarkable opportunities were introduced in agriculture by using 
nanotechnology-based delivery systems, resulting in smart controlled slow release of fertilizers 
and agrochemicals required to enhance crop yield (Prasad et al. 2017). Agrochemical industries 
are mainly focusing on increasing crop yields regardless the risk of nano technology, while 
toxic effects of nanotechnology towards environment and human health received little to no 
attention. Therefore, it is necessary to also focus on nanoparticles reactivity, biodegradation 
time, levels of bioaccumulation, retention time, toxicity of waste (Chaud et al. 2021).  

The integration of nanotechnology and agriculture has emerged as a ray of hope in a 
time when concerns about global sustainability are on the rise. This progressive approach might 
address some of the most urgent issues confronting the globe today, like the sustainable 
handling of food and agricultural waste, and encourage the adoption of circular economy 
principles, especially in poor nations. A substantial and frequently underutilized resource that 
is essential to the sustainability of the food supply chain is agricultural and food waste (Manna 
et al., 2023). Taking into account research findings worldwide, we found significant 
improvements with nanotechnology over traditional methods which underscores the practical 
benefits of nanotechnology, including increased crop yields, efficient resource use, and reduced 
environmental footprint. This comprehensive review aims to investigate the association 
between agricultural systems and nanotechnology, emphasizing how it might improve 
resilience, sustainability, and production. 
Nanotechnology in Agriculture 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sorption


Nanoscience is being investigated in the areas of water management, controlled 
applications of agrochemicals, plant hormone administration, seed germination, transfer of 
genes of interest and nano-biosensors (Hayles et al. 2017). Additionally, by conjugation, 
adsorption, or encapsulation, nanoparticles are created to have the appropriate features (size, 
shape, surface area, etc.) for use as a protectant, therapeutant or for the site-specific delivery of 
active substances like fungicides (Khandelwal et al. 2016). Plants can be treated with nano-
based materials through foliar spraying, soil application, seed treatment, and root dip treatment. 
In plants, the metallic oxides, nonmetals, metalloids, polymeric and carbon nanomaterials 
show growth-promoting and disease-suppressive properties (Elmer et al. 2018). The most often 
studied nanoparticles are made of iron, zinc oxide, silver, gold and many more. The use of 
nanoparticles involves three primary mechanisms such as (a) using nanoparticles as biosensors 
(b) using nanoparticles as therapeutics or protectants and (c) using nanoparticles as intelligent 
delivery systems for active ingredients like target genes or fungicides. Against a range of soil-
borne pathogens, such as Fusarium oxysporum, Sclerotium rolfsii, Rhizoctonia solani 
and Sclerotinia sclerotiorum (Abdelrhim et al. 2021), Ralstonia solanacearum (Khairy et al. 
2022), soil-borne viruses, such as Barley yellow mosaic virus (BaYMV) (Aref et al. 2012) etc., 
the nanoparticles may act as protective or therapeutic agents. The primary methods of 
combating microbes are agglutination and rupture of cell membranes, suppression of RNA, 
protein, toxin, and enzyme synthesis, including H+ATPase, as well as obstruction of nutrition 
flow (Dakal et al. 2016). Additionally, nanoparticles serve as carrier molecules, enabling the 
targeted release of active substances into the plant system and lowering the amount of 
chemicals released into the environment. Improved pesticide water solubility, site-specific 
distribution and uptake by target sites, longer shelf life, less impact on non-target 
organisms and residual environmental effects are just a few advantages of the nano-based 
formulations (Hayles et al. 2017). Furthermore, nano-based formulations exhibit higher stability 
and activity in comparison to conventional pesticides, especially in adverse environmental 
circumstances like rainfall and UV exposure. Multifunctional role of nanotechnology showed 
in Fig. 1.  

 

Fig.1 Versatile role of Nanotechnology in Agriculture (Source: made by authors) 



The Multifaceted Role of Nanotechnology in Sustainable Crop Production and Disease 
Management 

Another important aspect of plant health management is the use of fertilizers. 
Nanofertilizers bear the potential to increase the release and uptake efficacy of nutrients thereby 
boosting plant disease resistance. It has widely been explored in plant/disease systems viz., 
Fusarium wilt in tomato, chrysanthemum, root and crown rot in asparagus, red root rot in tea, 
Verticillium wilt in brinjal (Elmer et al. 2018). 
Nanoparticles 

Nanoparticles are characterized as particles in which at least half have dimensions 
ranging from 1 to 100 nm. Compared to bulk materials, nanoparticles have a substantially 
greater surface-to-mass ratio (Modena et al. 2019). Various types of nanoparticles tabulated in 
Table 1. Nanoparticle characteristics, such as their optical, magnetic and electrical qualities, 
differ greatly from those of traditional materials (Khan et al. 2017). Nanoparticles can be found 
in diverse chemical compositions, spanning from micelles to metal (oxide), synthetic polymers 
to large biomolecules. Each of these materials exhibits distinct chemistry, analysable through 
various methods such as optical spectroscopy, X-ray fluorescence and absorbance, Raman 
spectroscopy, and solid-state NMR (Ma 2016). While they are commonly assumed to be 
spherical, nanoparticles actually exhibit a wide range of geometric and irregular shapes (Li et 
al. 2014). 
 
Table 1. Different types of Nano materials and their applications 

S.N. Types of nano particles Examples Applications 

1. Metal based nanoparticles Copper, 
silver, silicon, 
Titanium oxide, zinc 

Zinc based nanoparticles inhibit fungal 
growth Copper nanoparticles may act as bio-
pesticides and silicon- germanium is used as 
soil supplementation. 

2. Nanoscale polymers Nylon- 
6/montmorillonite 
montmorillonite- 
Alginate 

Mainly used as in catalytic processes and 
moisture removal 

3. Carbon based nano 
materials 

Carbon nanotubes 
[CNT], fullerenes 

Improving plant health and environmental 
cleanup 

4. Nano emulsions Beta-cypermethrin 
methyl laurate, alkyl 
polyglycolides 

Nano emulsions are finding application in 
diverse areas such as drug delivery, food, 
cosmetics, pharmaceuticals, and material 
synthesis 

5. Clay encapsulations Organic layered 
double hydroxides, 
anionic inorganic 

clay tubes are an excellent miniature 
container for encasing chemical agents and 
attractive for applications in drug delivery, 
antimicrobial materials, self- healing 
polymeric composites and regenerative 
medicine 



 
Nanoparticles can be characterized using high-resolution microscopy technologies, 

such as electron and scanning probe microscopy, capable of detecting features with sub-
manometer resolution (Park et al. 2015). The potential to synthesize nanoparticles with porous 
frameworks has significantly broadened the application scope of nanomaterials (Baeza et al. 
2017). The surface-to-volume ratio of the nanoparticles is dramatically increased by porosity, 
exceeding that of solid particles with identical diameters by many orders of magnitude 
(Modena et al. 2019). Various types of nanoparticles exist, including zerovalent metal 
nanoparticles, metal oxide nanoparticles, carbon nanotubes, nanocomposites, quantum dots 
among others. Each of these holds distinct significance in the realm of nanotechnology (Singh 
et al. 2019). Various techniques are employed for synthesizing nanoparticles, including 
biological, chemical, and physical methods. However, chemical and physical approaches are 
not cost-effective and often involve the use of hazardous and toxic compounds. It is widely 
acknowledged that these methods pose risks to human and environmental health due to harmful 
radiation, synthetic reductants in concentrated forms, and stabilizing agents. In contrast, 
biological methods relying on plants and microbes are more efficient, cost-effective, and 
environmentally friendly. They entail a one-step bio reduction process, offering a safer 
alternative with fewer adverse impacts (Ul Haq and Ijaz et al. 2019). 

 
History and Timeline 

In response to the growing difficulties associated with sustainable production and 
ensuring food security, substantial technological progress and creative innovations have 
emerged in the agricultural sector in recent years (Dwivedi et al. 2016; Kou et al. 2018; Xiao 
et al. 2013). Nanotechnology is one such technological advancement which stands out as one 
of the most promising advancements in the 21st century. The concept of nanotechnology was 
first time introduced by an American physicist and Nobel Prize recipient, Richard Feynman in 
1959. He delivered a lecture titled "There’s Plenty of Room at the Bottom" at the annual 
meeting of the American Physical Society, which took place at the California Institute of 
Technology (Caltech) (Bayda et al. 2019). The term 'nanotechnology' was first time used and 
defined by the Japanese scientist Norio Taniguchi, who served as a professor at the Tokyo 
University of Science, in 1974 (Khan and Rizvi 2014). According to him, "nanotechnology 
primarily involves the manipulation, assembly, and alteration of materials at the scale of 
individual atoms or molecules" (Taniguchi et al. 1974). After Feynman's discovery of this new 
field of research, it piqued the interest of many scientists. Invention of scanning tunnelling 
microscope in 1981 and discovery of fullerene/carbon “buckyballs” (C60) in 1985 leads to 

6. Nanogels Polyethyleneimine 
PEG -polyplex 
nanogel 

(N-isopropylacrylamide) (PNIPAM)-based 
nanogels with high deformability structure 
were successfully constructed for smart 
pesticide delivery and effective pest 
Control 

7. Dendromers 
(Nanoparticles) 

poly(L-lysine) (PLL), 
and triazene 

potential applications of dendrimers include 
gene transfection, a catalyst for 
nanostructures, rheology modification 



emergence of nanotechnology (Kroto et al. 1985). In 1986, K. Eric Drexler published the first 
book on nanotechnology, titled "Engines of Creation: The Coming Era of Nanotechnology." 
This publication contributed to the increasing popularity of the concept of "molecular 
engineering" (Drexler 1986). Later on, in 1991, Drexler, Peterson, and Pergamit released 
another book titled "Unbounding the Future: The Nanotechnology Revolution." In this book, 
they introduced the terms "nanobots" and "assemblers" to describe nano processes in the field 
of medicine. It was after this publication that the well-known term "nanomedicine" was first 
coined and used (Drexler et al. 1991). 

Synthesis of Nano-bioformulations 
Biological Synthesis of Nanoparticles by Microorganisms 

Since the beginning of life on earth, biological beings and inorganic materials have been 
in constant contact with one another. With a well-organized mineral deposit, life may exist on 
this planet because of this regular contact. The relationship between inorganic molecules and 
living species has attracted the curiosity of scientists more and more recently. Numerous 
bacteria can create inorganic nanoparticles through extracellular or intracellular pathways, 
according to investigations. The synthesis of different nanoparticles using biological methods 
is covered in this section. The mechanism involved in synthesis of microbial nanoparticles 
showed in Fig. 2. The categories of nanoparticles covered are metallic (such as gold, silver and 
other metal nanoparticles), oxide (which includes both magnetic and nonmagnetic oxide 
nanoparticles), sulphide and other miscellaneous. 
Gold Nanoparticles 

The use of gold nanoparticles or AuNPs for elegant glass staining dates back to the 
Roman era and their history in chemistry is extensive. AuNPs have been utilized for ages to 
treat a variety of diseases. Michael Faraday, who may have been the first to notice that the 
properties of colloidal gold solutions differ from those of bulk gold is credited with starting the 
present age of AuNP synthesis more than 150 years ago (Hayat 1989). 



 
Fig. 2. Depicting various steps involved in synthesis of microbial nanoparticles 

(Source: made by authors) 
The growing need to develop environmentally benign technologies in materials 

synthesis has brought biosynthesis of nanoparticles—the nexus of nanotechnology and 
biotechnology—to significant attention (Subbarayudu and Kubendiran 2024). The 
extracellular production of gold nanoparticles by the actinomycete Thermomonospora sp. and 
the fungus Fusarium oxysporum has been reported by Ahmad et al. (2003). Additionally, they 
found that the fungus Verticillium sp. was able to synthesise gold nanoparticles inside of cells 
(Mukherjee et al. 2001). Bacterial cells can easily precipitate gold particles with nanoscale 
dimensions when they are incubated with Au3+ ions (Southam and Beveridge 1996). 
 
Silver Nanoparticles 

Similar to its bulk counterpart, silver nanoparticles have potent antibacterial activity 
against both Gram-positive and Gram-negative bacteria including strains of the latter that are 
extremely multi-resistant, like methicillin-resistant Staphylococcus aureus (Panáček et al. 2006). 
The creation of biomimetic methods for the formation of sophisticated nanomaterials is a result 
of the secrets found in nature (Gareev et al. 2022). Scientists have recently been working to 
employ microbes as potentially environmentally benign nanofactories for the manufacture of 
silver nanoparticles. It is known that a variety of bacteria can decrease the Ag+ ions to produce 
silver nanoparticles, the majority of which are spherical in shape (Fayaz et al. 2010). The 
bacterium Pseudomonas stutzeri AG259, isolated from a silver mine was shown by Klaus and 
colleagues to play a significant role in the reduction of Ag+ ions and the development of distinct 
sized and topographically defined AgNPs within the periplasmic space of the bacteria when it 
was placed in a concentrated aqueous solution of silver nitrate (Klaus et al. 1999). When 



fungus, Verticillium, Fusarium oxysporum or Aspergillus flavus were used, AgNPs were 
created as a film in solution or deposited on the cell's surface (Jain et al. 2011). 
 
Oxide Nanoparticles 

Over the past ten years, there has been a sharp increase in the industrial use of metallic 
oxide nanoparticles in a wide range of applications. These applications involve the utilisation 
of metallic oxide nanoparticles such as silicon, titanium, iron and others, increasing the 
sensitivity of humans and other animals to these nanoparticles through occupational and 
environmental exposure (Lai et al. 2007). However, because regulatory oversight has not 
focused on the environmental impact of metallic oxide nanoparticles, the health implications 
of exposure to these particles in humans and other species have not been thoroughly studied 
(Lai et al. 2007). One significant class of microbial nanoparticles produced by microorganisms 
is the oxide nanoparticle. The process of biogenesis of oxide nanoparticles in this section. The 
majority of the biological systems and magnetotactic bacteria utilized to produce magnetic 
oxide nanoparticles and nonmagnetic oxide nanoparticles (Li et al. 2011). 

 
Copper Oxide (CuO) Nanoparticles 

Copper has been shown in multiple investigations conducted over the past two years to 
have exceptional antibacterial activity at the nanoscale (Cuevas et al. 2015). Copper as a metal 
or copper oxides exhibit broad-spectrum biocidal activity. Since copper is a necessary metal 
for all living things, it may find use in biomedical applications unlike silver 
nanoparticles which have been the subject of substantial research for their antibacterial 
properties (Rubilar et al. 2013). It's vital to remember that copper is currently around ten times 
less expensive on the market than silver so a process that makes use of copper would end up 
being quite economical. However, it has been noted that compared to silver nanoparticles, 
copper nanoparticles are less hazardous (Bondarenko et al. 2013). Under ambient conditions, 
microorganisms like Fusarium oxysporum can extract copper from integrated circuits found on 
electronic boards (Cuevas et al. 2015). No significant polydispersity was found in the pH range 
of 5–9 in the investigation of the biogenic synthesis of copper oxides from CuSO4 by 
Penicillium aurantiogriseum, P. citrinum, P. waksmanii, and F. oxysporum (Honary 2012; 
Hosseini et al. 2012). Only a few numbers of research evaluating various fungal strains for 
copper nanoparticle production have been published. It has been observed that certain strains 
of F. oxysporum and Penicillium sp. are capable of biosynthesizing Cu2S and copper oxide 
nanoparticles (Honary et al. 2012; Hosseini et al. 2012). In the presence of three different copper 
salts. Ability to synthesise copper and copper oxide nanoparticles using a mycelium-free 
extract made by the white-rot fungus Stereum hirsutum (Cuevas et al. 2015). They also assessed 
the ability to characterise and evaluate the role of proteins in the formation of the nanoparticles. 
Bioformulations 

Bioformulation is a green practice developed by environmentalists and agriculturists to 
address issues related to biomagnification and chemical toxicity in the environment (Sahai et 
al. 2019). Any biologically active chemicals generated from microbial biomass or products 
containing microorganisms and their metabolites that might be utilized to promote plant 
development, acquire nutrients, and manage disease in an environmentally acceptable way are 
referred to as bioformulations. Essentially, a bioformulation is a blend of an active ingredient 



within a formulated product composed of inert (inactive) substances (Aamir et al. 2020). 
Bioformulation is a ready-to-use formulation that contains living cells or their metabolites (of 
one or more strains), supported by nontoxic and inert compounds called carriers to sustain the 
viability and efficiency of cells or metabolites and to lengthen their shelf life (Usta 2013). For 
promoting plant development, controlling phytopathogens, preserving soil fertility, and 
preventing disease, bio formulated solutions provide environmentally friendly substitutes to 
commonly used chemical fertilizers and pesticides (Arora and Mishra 2016; Khatri and 
Bhateria 2023). A bioformulation is a preparation of microorganisms or their active gradient 
that can be used in place of chemical fertilizers/pesticides. However, for the formulation to be 
successful, a true bio-formulated product needs to have an active component and be made of 
living microbes, spores, or their derivatives. Talc, Peat, carboxymethylcellulose, vermiculite, 
and polymers, particularly xanthan gum and diatomaceous earth are some of the most popular 
inert active materials. The antagonistic microbial cells have been discovered to be more 
effectively incorporated into the plant system and rhizosphere by using inert carrier-based 
bioformulations, which could be applied both foliarly and topically (Aamir et al. 2020). Starch, 
methyl cellulose, silica gel and gum are a few additives that help bioformulated products 
withstand the extreme weather conditions while also enhancing their physical, chemical, and 
nutritional qualities (Schisler et al. 2004). Some of the microorganism that are used in 
bioformulation are the strains of Trichoderma spp., Rhizobium, Bacillus, Glomus, 
Lactobacillus, Azospirillum, Burkholderia, Rhodococcus, Pseudomonas fluorescens, Bacillus 
subtilis, Azotobacter, Pseudomonas spp., Actinobacteria, Bradyrhizobium, Acetobacter, 
Paenibacillus, Serratia, Herbaspirillum, Blue green algae, Paenibacillus elgii, Pseudomonas 
putida, mycorrhizal fungi etc (Bidyarani et al. 2022). 
 
Various nano-bioformulations 
Nano-bioformulation as a nano-biofertilizer 

Nano-biofertilizer refers to a product comprising nano-scale materials paired with a 
particular microbial inoculant. Its nanoscale properties influence its application method, 
allowing for precise and timely nutrient delivery to field crops. Simultaneously, it enhances the 
functional advantages of the bio-fertilizer component within the formulation. Bio-fertilizers 
encompass crucial root-associated microorganisms, such as fungal mycorrhizae, Azospirillum, 
blue-green algae (BGA) and Bacillus species (Shanware and Taiwade 2022). The utilization of 
nano-biofertilizers has reduced the indiscriminate use of agrochemicals and contributed to 
substantiating integrated nutrient management practices for the consistent productivity of crops 
(Mir et al. 2015). The surface area of nutrients is increased through the process of making nano-
biofertilizers, which involves coating the surface of bio-fertilizers with nanoparticles. This 
improves both their stability and the efficiency with which soil nutrients are taken up (Mala et 
al. 2017). This approach entails the live formulation of microorganisms that stimulate bacterial 
activity for improved plant growth. This formulation is then coated with a nanoscale polymer, 
a method commonly known as nanoencapsulation (Shebl et al. 2019). One of the notable 
advantages of nanoencapsulation technology lies in its flexibility, particularly in protecting the 
components of bio-fertilizers containing PGPR (plant growth-promoting rhizobacteria). This 
innovation has resulted in an extended shelf life and has also enabled precise control over the 
release of PGPR mechanisms (Gouda et al. 2018). Silicon, zinc, copper, iron, and silver are 



among the most frequently employed nanoparticles in the formulation of nanobiofertilizers 
(Akhtar et al. 2022). Three crucial steps are involved in the creation of nanobiofertilizers: (1) 
the growth of the biofertilizer culture; (2) its encapsulation with nanoparticles; and (3) the 
assessment of its efficacy, quality, purity and shelf life (Panichikkal et al. 2021). Various 
formulations have been developed to improve crop production, such as the combination of 
nano-Zn and biofertilizer, which has been shown to enhance the physiochemical properties of 
sugarbeet plants. Additionally, the application of a combination of nanopharmax and humic 
acid in black cumin may boost the nutritional content of cumin (Shanware and Taiwade 2022). 
The application of Nano-biofertilizer containing specific bio-inoculants, such as Azotobacter 
strain, Pseudomonas putida, and Pantoea agglomerans strain P5, has been studied. This 
application has been found to raise nutrient concentrations and increase pigment content. 
Moreover, it enhances various plant parameters including photosynthetic productivity, leaf 
area, sucrose content, and other factors on different parts of the plants. 
Nanobioformulation as a nanobiopesticide 

Despite their pesticidal effectiveness, biopesticides have some drawbacks. Innovative 
formulations have been created to increase their efficacy and fix current problems (Ayilara et 
al. 2023). This includes nanoformulations with a smaller amount of the active ingredient that 
are appropriate for diverse crop protection applications. Management of plant pathogens by 
use of various nanoparticles depicted in Fig. 3. 

 
                   Fig. 3 Management of plant pathogens by use of various nanoparticles 

(Source: made by authors) 
The resulting biopesticidal nanoformulations can be used directly as pesticides when 

nanomaterials are stabilized with biopesticides and nanobiopesticides are incorporated. By 
gaining efficiency at lower dosages of active components, these nanobiopesticides aid in 
successful pest management (Vimala Devi et al. 2019). 
 



Examples of various nano bioformulations as nanobiopesticides 
 Silver nanoparticles were developed and capped with the leaf extract of Aristolochia 

indica (Siva and Santhosh Kumar 2015). Management of various plant diseases by using 
different nanoparticles tabulated in Table 2. The resulting nanoparticles exhibited toxicity 
against the larva of Helicoverpa armigera. In field conditions within a cotton crop, it was 
observed that the combination of silver nanoparticles with the pyrethroid compound bifenthrin, 
extracted from Chrysanthemum, demonstrated greater toxicity to Lygus hesperus compared to 
Acheta domesticus. Essential oils were extracted from Zanthoxylum rhoifolium leaves 
(Christofoli et al. 2015). Subsequently, nanospheres were developed with these oils using 
nanoprecipitation, resulting in a notably high encapsulation efficiency of 96 per cent. The 
effectiveness against adult Tribolium castaneum (Herbst) was examined by utilizing 
polyethylene glycol nanoparticles as carriers for garlic essential oil. The eco-friendly 
production of silver nanoparticles and lead nanoparticles, utilizing extracts from Euphorbia 
prostrate and Avicennia marina (a mangrove plant), demonstrated pesticidal activity against 
Sitophilus oryzae. The outcomes revealed a 100% mortality rate after a 4-day treatment period 
(Vimala et al. 2019). Coating derived from cashew gum was applied to an insecticide extract 
obtained from Moringa seeds. This coating led to a notable enhancement in entrapment 
efficiency, rising from 39% to 60%. Remarkably, the released insecticide remained effective 
for up to 55 days following application (Paula et al. 2012). Chitosan nanoparticles (ChNPs) 
loaded with silver metal ions exhibit heightened antibacterial efficacy, demonstrating a low 
minimum inhibiting concentration (MIC) of 3 μg/ml against Escherichia coli and 6 μg/ml 
against Staphylococcus aureus (Du et al. 2008). Titanium dioxide nanoparticles (TDNPs), 
synthesized through T. viride, were evaluated for their bioefficacy against larvae and pupae of 
Helicoverpa armigera. The TDNPs exhibited remarkable effectiveness, causing 100 per cent 
mortality in first, second and third instar larvae of H. armigera at a concentration of 100 ppm 
(Kamaraj et al. 2018). Extracellular synthesis of silver nanoparticles (AgNPs) utilizing the 
bacterium Serratia sp. BHU-S4 revealed an inhibitory impact on the fungus Bipolaris 
sorokiniana. The AgNPs produced through biogenic means displayed complete inhibition of 
conidial germination, both on the growth medium and on wheat leaves artificially inoculated 
with fungal conidia (Mishra et al. 2014). Nanoemulsions formulated with neem and citronella 
essential oils demonstrated potent antifungal activity against Rhizoctonia solani and Sclerotium 
rolfsii (Ali et al. 2017). Conyza dioscoridis, Melia azedarach, and Moringa oleifera extracts 
were used to make silver nanoparticles (Ag-NPs), which showed increased nematocidal action 
against eggs and young of the root-knot nematode M. incognita (Abbassy et al. 2017). The 
prospective use of mycogenic zinc oxide nanoparticles (ZnONPs) as a preventative measure 
against potato late blight looks promising (Singh et al. 2022). Silver and gold nanoparticles were 
biosynthesized using Trichoderma atroviride, demonstrating potential for biological control of 
Phomopsis canker disease in tea plants. The nanoparticles exhibited antagonistic activity 
against the pathogen (Ponmurugan 2017). 
Bacillus based nanobiopesticide for disease and pest reduction 

Due to its great entomopathogenic potential, the genus Bacillus is frequently used as a 
biocontrol agent for managing both diseases and insects (Mampallil et al. 2017). The Bacillus 
group of bacteria is found in a diverse range of environments and is renowned for its ability to 
produce numerous antimicrobial compounds with diverse structures. Approximately 5–8% of 



its genome is dedicated to the synthesis of secondary metabolites (Fira et al. 2018). The creation 
of a nano-formulation using Bt relies on top-down methods of micronization, including ball 
and jet milling, as well as high-pressure homogenization. These processes are employed to 
convert coarse powder into fine particles within the size range of 2–5 μm (Vimala Devi et al. 
2019). A nanobioformulation, functioning as a nanobiopesticide is a composite of 
nanoparticles and microbial biocontrol agents (such as Bacillus sp.) (Padmakumar et al. 2023). 
This combination capitalizes on the higher surface area/volume ratio of nanoparticles, leading 
to enhanced effectiveness, reduced toxicity, increased solubility, durability and versatility. 
Various types of nanoparticles, including Ag, Al, Au, MnO, ZnO etc., can be integrated with 
different Bacillus species like B. thuringiensis, B. subtilis, B. licheniformis, etc. This integration 
aims to create an effective, efficient and environmentally friendly nanobiopesticide capable of 
suppressing the growth of diseases and pests (Kumar et al. 2021). Strains of B. subtilis have 
been identified for their ability to inhibit the growth of various plant pathogens, including 
Phomopsis, Colletotrichum truncatum, Rhizoctonia solani, Macrophomina phaseolina, 
Sclerotinia sclerotiorum, Colletotrichum gloeosporioides, Phytophthora infestans and others 
(Widnyana and Javandira 2016). 
 
Table 2. Management of soil borne plant pathogenic organisms by using various 
Nanoparticles 

Nanomaterial Type of 
pathogen 

Target pathogen Crop Effect Reference 

AgNPs 
 

Fungi Macrophomina phseolina, 
Fusarium fujikuroi and 
Rhizoctonia solani 

Cotton 
(Gossypium 
herbaceum) 

Reduction in mycelial 
growth and disease of 
cotton seedlings 

 (Zaki et al 
2022) 

MgONPs Fungi Phytophthora infestans Potato 
(Solanum 
tuberosum) 

Inhibition of 
Phytophthora infestans 
by cell membrane 
distortion, oxidative 
stress, disruption of 
metabolic pathways and 
membrane transport 
activity with no harmful 
effect on potato 

(Wang et 
al. 2022) 

Copper oxide 
nanoparticles 
(CuONPs) 

Fungi Phytophthora nicotianae Tobacco 
(Nicotiana 
tabacum) 

33.69% increase in 
control efficacy and 
tobacco black shank 
disease suppression 
without inducing 
phytotoxicity at 100 mg 
L−1 of CuO NPs 
treatment 

 (Juan et al. 
2022) 



Capped AgNPs Fungi Sclerotinia sclerotiorum Vegetables Inhibition of mycelial 
growth and sclerotia 
germination 

 (Guilger et 
al. 2021) 

Chitosan NPs Fungi Fusarium oxysporum, 
Rhizoctonia solani, Sclerotium 
rolfsii 

Cereals, 
Vegetables 

Reduction in mycelial 
growth 

 (Boruah 
and Dutta 
2021) 

Carboxymethyl 
cellulose coated 
core/shell 
SiO2@Cu 
nanoparticles 

Fungi Phytophthora capsici 
Host: Black pepper 

Black pepper 
(Piper nigrum) 

Antifungal activity 
against P. capsici with 
MIC 75 ppm 

 (Hai et al. 
2021) 

Zinc oxide 
(ZnO), Iron 
oxide (FeO) and 
Copper oxide 
(CuO) 
nanoparticles 

Bacteria Ralstonia solanacearum 
Host: Tomato 

Tomato 
(Solanum 
lycopersicum) 

Reduced incidence of 
tomato bacterial wilt 
disease 

 (Jiang et 
al. 2021) 

AgNPs Fungi Sclerotinia sclerotiorum Mustard 
(Brassica 
juncea) 

Inhibition of hyphal 
growth, sclerotial 
formation and 
myceliogenic 
germination of sclerotia 

 (Tomah et 
al. 2020) 

Magnesium 
oxide 
nanoparticles 
(MgONPs) 

Fungi Phytophthora nicotianae and 
Thielaviopsis basicola 

Tobacco 
(Nicotiana 
tabacum) 

Inhibition of fungal 
growth, spore 
germination and 
impediment of 
sporangium development 

 (Chen et 
al. 2020) 

AgNPs Nematodes Meloidogyne javanica Tomato 
(Solanum 
lycopersicum) 

Nematicidal activity on 
egg hatchability and 
juvenile mortality. 
Reduction in number of 
galls, egg masses, 
number of females per 
root/plant and mortality 
of juveniles. 

 (Ghareeb 
et al. 2020) 

Silver 
Nanoparticles 
(AgNPs) 

Fungi Sclerotium rolfsii, Rhizoctonia 
solani, Sclerotinia sclerotiorum 
and Fusarium oxysporum 

Cereals, 
Pulses and 
vegetables 

Mycelial growth 
inhibition at 100 ppm 
AgNP 

 (Kaman 
and Dutta 
2019) 

Copper/Iron 
NPs 

Nematodes Meloidogyne incognita 
and M. javanica 

Tomato 
(Solanum 
lycopersicum) 

Nematicidal activity such 
as paralysis, biological 
cycle arrest, reduction in 
number of galls with 
lowest EC50 value as 

 
(Gkanatsio
u et al. 
2019) 



compared to commercial 
nematicides 

AgNPs Fungi Fusarium solani and 
Macrophomina phaseolina 

Strawberry 
(Fragaria 
ananassa) 

The nanoparticle showed 
broad spectrum 
antagonism against M 
phaseolina (67.05%) and 
F. solani (83.05%) 

(Ruiz-
Romero et 
al. 2018) 

Gold 
nanoparticles 
(AuNPs) 

Virus Barley yellow dwarf virus 
(BaYDV) 

Barley 
(Hordeum 
vulgare) 

A high yield of ruined 
virus like particles 
(VLPs) were also 
observed 

 (Alkubaisi 
and Arif  
2017) 

AgNPs Fungi Phomopsis sp. Host: Soybean 
seeds 

Soybean 
(Glycine max) 

Absolute inhibition of 
the pathogen was 
observed 270 and 540 
ppm concentration 

 (Mendes et 
al. 2014) 

 

Mode of action of nanobioformulation: 

When beneficial bacteria are introduced into the soil as biofertilizers, they colonize and 
multiply quickly. This microbial activity plays a crucial role in converting typically insoluble 
and organic nutrients into soluble forms, making it easier for plants to absorb them. 
Biofertilizers that include nitrogen-fixing bacteria like Rhizobium, Frankia, Xanthomonas, and 
others have the capability to produce the nitrogenase enzyme.  

 
Fig.4. Illustrating various mode of action of bionanoformulation 

(Source: made by authors) 
Unveiling the Mechanisms: Diverse Modes of Action of Bionanoformulations in 

Enhancing Agricultural Productivity and Disease Control 



This enzyme, in turn, facilitates the conversion of nitrogen into ammonia (Patel et al. 
2023). Phosphate-solubilizing microorganisms like Bacillus, Aspergillus, and Pseudomonas 
produce enzymes or organic acids that play a catalytic role in converting insoluble phosphate 
complexes, such as aluminum and tricalcium phosphates, into soluble forms that plants can 
readily absorb (Tian et al. 2021). These microorganisms, known as Plant Growth-Promoting 
Rhizobacteria (PGPR), also release substances like iron, vitamins, and hormones that are 
essential for plant growth. Additionally, the relationship between PGPR and plants is 
strengthened through cellular communication methods, such as quorum sensing. This serves as 
a signalling mechanism through which microorganisms assess their environment and 
coordinate their activities within the rhizosphere (Sarbani and Yahaya 2022). 
 
Advantages and disadvantages of nanobioformulations 
Advantages: 

Nanobioformulations is the combination of biofertilizers with nanonutrient particles. 
These nanobioformulations may incorporate one or more beneficial microorganisms that 
enhance soil productivity, including nitrogen-fixing bacteria, phosphate-
solubilizing/mobilizing organisms, and plant growth-promoting stimulators (Tarafdar 2022). 
Compared to traditional pesticides, nanopesticides offer superior performance and are better 
suited for widespread use in the global context of climate change and resource scarcity (Wang 
et al. 2022). Nanoformulations stand out as a vital component in contemporary agricultural 
technology (Sahu et al. 2021). Nanoformulations encompass the process of coating, 
encapsulating, adsorbing, or entrapping fertilizers, pesticides, and nutrient supplements within 
the voids, pockets, or pores of nanomaterials (Bhardwaj et al. 2022). There are various 
advantages of using nanobioformulation instead of conventional chemical fertilizer. The 
inoculation of plants with NBFs improves plant development and resistance to stress, utilizing 
nanobiofertilizer formulations can contribute to the advancement of sustainable agriculture 
development (Garg et al. 2023). The application of nanobioformulations in agriculture presents 
an opportunity to enhance global food production sustainability. The significant advantages of 
nanofertilizers over traditional chemical fertilizers revolve around their nutrient delivery 
systems (Yadav et al. 2023). For instance, nanofertilizers can release nutrients gradually over 
a period of 45 to 50 days, in contrast to the 5 to 10 days typical of conventional fertilizers. This 
extended release improves nutrient use efficiency up to 20 times, reducing nutrient 
requirements and cutting down on transportation and application costs. Nanoparticles are 
considered effective carriers for delivering nutrients to specific locations through methods such 
as encapsulation or creating nanoscale emulsions. Interestingly, the surface coating of 
nanomaterials on fertilizer particles offers better adhesion due to their higher surface tension 
compared to conventional surfaces. This improved adhesion facilitates controlled nutrient 
release (Brady and Weil 1999; DeRosa et al. 2010; Bhattacharyya et al. 2016). 
Nanobioformulations possess a great advantage over conventional fertilizers as they exhibit 
specificity, reduced toxicity, and gradual release of nutrients (Cui et al. 2010). Another 
advantage of using nano biofertilizers is it prevents soil from becoming excessively loaded 
with salts, a common issue associated with the over-application of conventional fertilizers 
(Tarafdar 2022). Moreover, the application of nanotechnology in agriculture counteracts the 



problems such as crop yield, food security, climate change, and sustainability (Mishra et al., 
2014). 

Disadvantages: 

Although the future of nanopesticides in agriculture development appears promising, the 
human exposure to dangerous agrochemicals able to cross biological barriers (e.g., blood-brain 
barrier, blood-placental barrier, and blood-retinal barrier) is a significant concern as it can cause 
irreversible damage to vital organs. The risks posed by the exposure to hazardous 
nanopesticides, which are able to induce toxic and genotoxic events, are currently receiving 
great attention by studying the effect not only on the chemical composition of the bulk material 
but also on the physicochemical properties of nanopesticides such as size, electrical charge, 
and surface properties (Grillo et al. 2012; Zielinska et al. 2020). 

According to studies, nanoparticles may have negative impact on soil, plant and 
animal’s health. Nanoparticles have the potential to alter the composition and structure of soil, 
potentially leading to reduced water retention and nutrient accessibility. Moreover, there is a 
possibility that plants may absorb these nanoparticles, which could impact food chains and 
affect plant growth (Ahmed et al. 2021). Nanomaterials may enter in aquatic habitat, potentially 
affects aquatic ecosystems and may become part of the aquatic food chain. Nanoparticles can 
easily enter into the biological systems which is not possible for the larger particles. The ability 
of nanoparticles to cross cell membranes depends on their size. In situations where farm 
workers are spraying nanoparticles, there is a potential risk of inhalation, which could allow 
these nanoparticles to enter the bloodstream and potentially reach various target sites within 
the body, including the brain, liver, or heart (Suppan 2017). These nanoparticles might affect 
the regulatory mechanisms of enzymes and other proteins (Saptarshi et al. 2013). There is a 
possibility of nanoparticles entering food chains, with potential implications for human health. 
Therefore, it is crucial to prioritize the development of a skilled workforce that comprehends 
the intricacies of agricultural production systems, enabling the successful integration of 
nanotechnology applications in agriculture (Siddhartha 2014). However, the exact 
consequences of their presence on human health and aquatic ecosystems remain uncertain at 
this time (Li et al. 2014). It may adversely affect biodiversity and ecosystem health as even 
small changes may upset sensitive balances, there are worries about how long-term usage of 
nano-materials will affect biodiversity and ecosystem dynamics (Ahmed et al. 2021). 

Nanopesticides, which are nano-formulated pesticides, offer innovative solutions to 
pest and disease management. Their effectiveness, however, depends on formulation, target 
pests, and environmental interactions. Below are the pros and cons of different nano-pesticides 
with references to specific case studies: 

Type of Nano-
pesticide Pros Cons References 

Nano-Encapsulation  Controlled release reduces 
application frequency and 
enhances efficacy. 

 High cost of nano - carrier 
synthesis. 

Arratia-Quijada et 
al. 2024; Dinh et 
al. 2024 



 Enhanced targeting 
minimizes non-target 
exposure. 

 Protects active ingredients 
from degradation. 

 Potential residue 
persistence of 
encapsulation materials. 

 Limited biodegradability. 
 

Case Study: 

Nano-encapsulated carbendazim effectively controlled Fusarium 
oxysporum with 50% lower doses. Phytotoxicity evaluation of 
nanoformulated fungicide confirmed that the nanoformulated 
carbendazim is safer for germination and root growth of the seeds 
of Cucumis sativa, Zea mays, and Lycopersicum esculantum. 

Sandhya 2024 

Nano-Emulsions  Improved solubility of 
hydrophobic pesticides, 
enhancing efficacy. 

 Uniform distribution leads 
to better plant coverage. 

 Reduces environmental 
impact by lowering active 
ingredient runoff. 

 Stability issues like phase 
separation during storage. 

 Energy-intensive 
production processes (e.g., 
ultrasonication). 

Mustafa and 
Hussein 2020 

Case Study: Citronella-oil (1%) and biosilica (2%) nanoemulsion, and neem 
oil formulas (1%) effectively suppressed nematode populations 
(99.33% and 97.65%, and 99.66%, respectively), increasing the 
sinensetin content/production in comparison with control; and 
could be evaluated further in the plantation in the field. 

Djiwanti et al. 
2022 

Nano-Metal Oxides 

(e.g., CuO, ZnO) 

- Broad-spectrum activity with 
antifungal, antibacterial, and 
insecticidal properties. 
- Low chance of resistance 
development due to multiple 
action modes. 

- Potential phytotoxicity and 
bioaccumulation risks. 
- Expensive and energy-
intensive to produce at scale. 

Saqib et al. 2019 

Case Study: CuO nanoparticles inhibited Pseudomonas syringae in tomato 
plants effectively. Another study reported that Pseudomonas 
syringae was inhibited after exposure to 200 mgL−1 of Cu-based 
NPs without any negative effect on other microbes indicating its 
selective effect. 

Banik and Pérez-
de-Luque 2017; 
Tortella et al. 2024  

Nano-Clays 

 Economical and readily 
available materials. 

 Reduces pesticide leaching 
and improves soil 
retention. 

  Environmentally benign. 

 Limited compatibility with 
certain active ingredients. 

 Farmers’ unfamiliarity 
with application 
techniques. 

Margal et al. 2023; 
Rana et al. 2024 

Case Study: 
Clay-composite nano-formulations reduced herbicide leaching by 
40% in field trials. 

 



Nanosilver 

 Highly effective against a 
wide range of pathogens 
like bacteria, fungi and 
some viruses. 

 Compatible with 
biocontrol agents. 

 Long-lasting efficacy. 

 Risk of toxicity to 
beneficial microorganisms 
and aquatic ecosystems. 

 Expensive production and 
regulatory challenges. 

Zahoor et al. 2021; 
More et al. 2023 

Case Study:  Silver nanoparticles controlled Alternaria solani causes early 
blight on potatoes more effectively than conventional fungicides. 
Lower concentrations of silver nanoparticles increased phenolics, 
PO, PPO, and PAL production. These defensive mechanisms 
clearly demonstrate the fungicidal potential of AgNPs and 
recommend their utilization in different crop protection programs. 

Ansari et al. 2023 

 

Future Directions 

Research into nanotechnology applications for use in agriculture especially in the field of crop 
protection has become increasingly popular over the past decade. This analysis of the latest 
research trends provides a useful basis for identifying research gaps and future priorities.  The 
development of novel plant-protection products has received greater attention than other 
applications, such as those related to nanosensors or fertilizers. Remarkable opportunities to 
renew agriculture practices have been introduced by using nanotechnology-based delivery 
systems, attributed to the smart controlled release profile of fertilizers and agrichemicals 
require to enhance crop productivity (Prasad et al. 2017). Such systems play a critical role in 
agriculture, improving fertilizers and agrochemicals performances (Fraceto et al. 2016). 
Presently, numerous research initiatives of nanopesticides prioritize performance optimization, 
including enhancing activity (Li et al. 2022), targeted deposition (Su et al. 2023), improved 
safety (Gao et al. 2018), and controlled release (Xiao et al. 2022).  

However, some nanopesticides might be designed without initial consideration for 
specific application scenarios or are limited to traditional spraying methods. This research idea 
contradicts the needs of pesticide application in future diversified agriculture. Furthermore, 
there is a scarcity of review covering existing nanopesticides developed for diverse agricultural 
scenarios. It should be noted that the plant cultivation environment is diverse,125 and future 
application scenarios for pesticides might be more extensive, such as cities, oceans, and even 
deserts. This is crucial information that developers and manufacturers of nanopesticides must 
not overlook. As agricultural mechanization advances, pesticide application methods are also 
evolving. Therefore, this review focuses on ‘Scenario-oriented Nanopesticides', highlighting 
the importance of prioritizing practical and specific application scenarios in the future 
development of nanopesticides to enhance sustainable development potential and resource 
utilization. 

In addition to the application methods, experimental research targeting specific 
scenarios should consider environmental conditions when pests and diseases occur (such as 



temperature, humidity, and pH) as well as microenvironmental changes within the plant (such 
as enzymes, ROS and hormones). More importantly, these products need to be validated in the 
field to bridge the gap between the scientific and industrial circles and provide the public with 
a more objective and realistic understanding. In addition, it is crucial to consider the 
environmental impact and biosafety of nanopesticides. Manufactured nanopesticides require a 
comprehensive evaluation system.126 Scenario-oriented nanopesticides can more accurately 
target actual production needs and accelerate the industrialization process. In the context of 
sustainable agriculture, this concept is expected to lead the future development of 
nanopesticides. 

Conclusion 

Plant diseases that are carried by the soil, such as fungi, bacteria, viruses, and nematodes, can 
damage a plant's root system and collar, resulting in significant financial loss. Because 
chemical pesticides are unable to penetrate the soil system and do significant harm to the 
environment and soil, managing such diseases with traditional methods is challenging. One 
possible management approach to lessen the threat of soil-borne plant diseases is 
nanobiotechnology. Because of their many antibacterial characteristics, such as the production 
of reactive oxygen species (ROS), toxicity from nanoparticles, and destabilization of cell 
membranes, organelles, and other macromolecules, nanomaterials can be used to control soil-
borne diseases. Because of their smaller size and higher surface area to volume ratio, 
nanoparticles have a higher potential for penetration and better interactions with bacteria that 
live in soil, which increases the effectiveness of their control. In order to lessen the amount of 
chemicals that are released into the environment, nanomaterials can also be employed as 
intelligent pesticide, fungicide, and fertilizer delivery systems. In addition to validating these 
technologies against current technologies, more study is required to ascertain the viability, 
sustainability, efficiency, application and releasability of goods based on nanotechnology in 
real-world. 

Nanopesticides, as a promising technology, bring scientific and technological impetus to 
sustainable development and green revolution of agriculture. The excellent physicochemical 
properties, beneficial biological effects, and functional potential of nanopesticides have 
significantly contributed to improving utilization rates of pesticides, enhancing pest and disease 
management, and alleviating stresses. In conclusion, the development and production of 
nanopesticides will necessarily lead to an increased amount of nanopesticides applied in 
agriculture. A reliable and comprehensive risk assessment before widespread application is the 
first line of defense to ensure environmental safety and human health. There have been serious 
environmental issues, like DDT or neonicotinoids in human history, which were allowed to 
occur due to lack of a comprehensive assessment of environmental risk in advance. For 
nanopesticides, we should learn the lesson and avoid a similar outcome in the future. 
Unexpected risk of nanopesticides comes from their possible toxicity to nontarget organisms, 
transportation, and bioaccumulation, and from interactions with other pollutants in the 
environment. These processes should be the focus of the regulatory framework for 
nanopesticide risk assessment.  In order to lessen the amount of chemicals that are released into 
the environment, nanomaterials can also be employed as intelligent pesticide, fungicide, and 



fertilizer delivery systems. In addition to validating these technologies against current 
technologies, more study is required to ascertain the viability, sustainability, efficiency, 
application and releasability of goods based on nanotechnology in real-world. 
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