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Abstract: Flash floods are among the most dangerous natural disasters, as they cause widespread damage to property and 11 
loss of lives, especially in desert and mountainous areas. This study aims to evaluate Wadi Habban basin to be exposed 12 
to the risk of sudden floods using remote sensing data, geographic information systems (GIS), and the pyramid analysis 13 
methodology (AHP). The spatial distribution of hazardous areas has been evaluated through the weight and reclassifica- 14 
tion of ten main criteria that include: geomorphology, elevation, slope, rainfall, drainage density, distance to watercourse, 15 
land use and cover, soil texture, Topographic Wetness Index (TWI), and Stream Power Index (SPI), were integrated into 16 
a Geographic Information System (GIS) platform. The analysis classified basin into five risk categories: 4.3% (very high), 17 
10.2% (high), 29.4% (medium), 42.2% (low), and 13.7%. (very low). The results revealed that 14.5% of the basin area is 18 
exposed to severe and high floods, which confirms the necessity of protective strategies, such as constructing flood barriers 19 
near vulnerable valleys, enhancing infrastructure and drainage systems. These results provide essential insights for disaster 20 
preparedness and infrastructure development, serving as a significant reference for policymakers and planners to enhance 21 
flood risk management and mitigate susceptibility in analogous settings. 22 
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Flooding, also known as inundation, is a significant hydrological disaster that ranks among the 31 
most destructive natural hazards globally, leading to substantial annual losses (Penki et al. 2023). This 32 
phenomenon can occur rapidly, often within a short period following intense precipitation, and is 33 
sometimes accompanied by secondary disasters such as landslides, mudflows, bridge failures, struc- 34 
tural damage, and casualties (Hammami et al. 2019). Among the various forms of flooding, flash floods 35 
are particularly dangerous. The sudden, high-velocity flows result from intense rainstorms and fre- 36 
quently occur in coastal areas, alluvial fans, and mountainous valleys, inflicting severe damage and 37 
disruption to human activities. Population shifts caused by urbanization and unregulated growth have 38 
exacerbated the flash flood risk, which now affects basins of all sizes on every continent (Al-Areeq et 39 
al. 2023, Alarifi et al. 2022). In terrain conducive to rapid runoff, significant rainfall  often triggers 40 
catastrophic flash floods (Costache et al. 2020). With over 70% of the global population living in 41 
flood-prone areas, the threat posed by flash floods is increasingly alarming (Al-Areeq et al. 2023). 42 
Each year, floods claim between 20 and 300 million lives worldwide and cause an estimated USD 60 43 
million in economic losses. The increasing influence the result of climatic alteration, alterations in land 44 
use land cover, and continuous societal and economic development all suggest that an augmented risk 45 
of flooding will become more frequent and severe in the future. This highlights how critical it is to 46 
have precise flood assessments, techniques for mitigating damage, early warning systems, and efficient 47 
planning (Al-Areeq et al. 2023, Costache et al. 2020). Climate change, combined with urbanization 48 
and inadequate infrastructure, exacerbates the situation, with natural disasters, such as floods and 49 
droughts, becoming more common each year (Hammami et al. 2019). Developing nations, especially 50 
those with large agricultural sectors and limited disaster management capabilities, are particularly vul- 51 
nerable to these disasters (Breisinger et al. 2012). 52 

Yemen is an example of a disaster-prone country, facing numerous natural hazards annually. As 53 
reported by the Emergency Events Database (EM-DAT), more than 100,000 people in Yemen die 54 
annually due to natural disasters, with floods contributing significantly to economic and agricultural 55 
losses. Several climate models predict that increased precipitation will further intensify the frequency 56 
and severity of floods in Yemen (Al-Aizari et al. 2022).  57 

Flooding in Yemen has severe economic repercussions and has considerably deteriorated living 58 
conditions. Floods intensify desertification and land degradation, resulting in agricultural losses, live- 59 
stock fatalities, diminished availability of housing materials, famine, and heightened food insecurity. 60 
Yemen's dependence on agriculture and subsistence farming leaves it highly exposed to climate-related 61 
issues like flash floods. These events hinder food supply chains, raising the risk of famine (Mcfee 62 
2024). Floodwaters often carry industrial waste and oil residues, worsening pollution and damaging 63 
farmland and vegetation (Al-Dailami et al. 2022). Additionally, these conditions increase the likeli- 64 
hood of diseases such as dengue fever, malaria, and cholera (ACAPS 2020, Semenza et al. 2022).    65 

For instance, in October 2008, heavy rainfall led to devastating flooding in Wadi Hadramout. 66 
Rapid population growth, urbanization without proper regulation, and insufficient environmental con- 67 
trols have further heightened Yemen’s vulnerability to natural hazards (Breisinger et al. 2012). Due to 68 
changes of climatic conditions, the likelihood of flooding in the villages situated along the streams 69 
banks in the plains areas has raised significantly (Garg & Ananda Babu 2023). The rising frequency 70 
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and severity of flooding and extreme precipitation events, exacerbated by climate change, are antici- 71 
pated to intensify health and humanitarian issues in Yemen (Khalil & Thompson 2024). 72 

In Shabwah Governorate, particularly in Wadi Habban region, frequent flood due to intense rain- 73 
fall events, combined with geographical and hydrological factors, weak infrastructure, and     limited 74 
its control measures, significantly increase flood risk. The study area has seen numerous flash floods 75 
in the past such as in the 1996 Oman cyclone, also known as (Cyclone 02A) (Maathuis et al. 1999), 76 
flash floods in Yemen in 2008, and Cyclone Chapala in 2015. In 2020, heavy rainfall severely impacted 77 
various governorates, particularly Hadhramaut, Shabwah, and Al Mahrah (UNISDR 2015).  78 

The region's topography marked by vast desert plains, steep mountains, and rocky landscapes, 79 
along with human modifications in flood plains and catchments such as the erection of bridges, roads, 80 
and residences significantly leads to accelerated runoff and the occurrence of flash floods (Garg & 81 
Ananda Babu 2023). Natural disasters, being inevitable, require vigilant monitoring and the imple- 82 
mentation of risk and vulnerability mitigation strategies, where the indicator creation tool is considered 83 
an essential element in flood management. Flood risk assessment is divided into three specific catego- 84 
ries: exposure categories, vulnerability categories, and categories flood hazard (Oyebode & Paul 85 
2023). 86 

The accurate assessment of flood risks in Shabwah Governorate especially Wadi Habban basin, 87 
which represents one basins of the most importance for reducing and managing the risks posed by 88 
natural disasters. This study used GIS-based spatial analysis and the Analytical Hierarchy Process 89 
(AHP) to identify flood susceptibility zones in the basin, an area without previous studies on flash 90 
flood risk assessment. By concentrating on this particular basin, this research fills a critical knowledge 91 
gap and provides a methodological framework for addressing flood hazards in arid and semi-arid en- 92 
vironments. This approach is important in its combination of AHP and GIS for the Wadi Habban basin, 93 
providing a replicable and scalable methodology for flood risk assessment in data scarce regions. This 94 
approach provides a comprehensive means to identify flood-prone areas by analyzing various factors, 95 
like rainfall patterns, topography, land use, and drainage networks. Subsequently flood hazard maps 96 
can be developed to inform policy decisions, enhance disaster preparedness, and promote sustainable 97 
land management.  98 

The use of multi-criteria decision analysis (MCDA), geographic information systems (GIS), and 99 
remote sensing has proven effective in mapping flood-affected areas (Abdo et al. 2024, Corvacho- 100 
Ganahín et al. 2023). Remote sensing technology provides essential information about the distribution 101 
and behavior of floods. The proposed method was applied for the first time in Wadi Habban basin. 102 
The scientific outcomes of this research resulted in the creation of a flash flood susceptibility map, 103 
categorized into five levels: very high, high, moderate, low, and very low susceptibility. This map can 104 
assist planners, engineers, and government officials in developing appropriate strategies to prevent and 105 
mitigate future flooding events. 106 

       2. MATERIALS AND METHODS 107 

The methodologies employed in the present study are illustrated in the flowchart in Fig.2.The 108 
fundamental purpose of this work is the identification of flood-prone sites using the GIS environment 109 
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and analytical hierarchy process modeling (Goumrasa et al. 2021). These techniques were first applied 110 
in the Wadi Habban basin. 111 

       2.1. STUDY AREA  112 

Wadi Habban basin is situated in the southeast part of the Shabwah Governorate of Yemen, as 113 
shown in (Fig. 1) between 14° 10′ and 14° 30′ N latitude and 46° 50′ and 47° 30′ E longitude, within 114 
the 38 UTM grid zone, including an area of approximately 1178.84 square kilometers. The elevation 115 
in the research area varies from 514 to 2108 meters above mean sea level (MSL). The study area is 116 
situated in an arid region, where floods frequently occur during the monsoon season as a result of 117 
heavy rainfall. It is this basin in Yemen is among basins those impacted by flash floods. Flash floods 118 
are a major problem in areas adjacent to a stream during the rainy season. The basin features a variety 119 
of terrains, including valleys, plains, mountains, and plateaus. The basin exhibits dendritic to sub- 120 
dendritic drainage patterns, showcasing moderate to high drainage textures. The study area's primary 121 
land use is agricultural, while there is some natural vegetation cover in sections of the basin. Residen- 122 
tial areas are located near both sides of the valley, which may warn of potential flood. The climate of 123 
the region exhibits variability, characterized by hot summers and cold winters, accompanied by sig- 124 
nificant rainfall. The region's geology comprises sedimentary materials, such as sandstone and lime- 125 
stone that cover the middle and lower parts of the basin, while the top part of the basin is characterized 126 
by volcanic rocks, like granite. As well as the presence of steep and gentle slopes. 127 

       2.2. FLOOD INFLUENCING FACTORS 128 

Figure 2 describes the research approach used in this work, which uses GIS and remote sensing 129 
data to identify locations that are prone to flooding. It also includes determining the "Flood Hazard 130 
Index (FHI)" by integrating the Analytic Hierarchy Process (AHP) with Multi-Criteria Decision-Mak- 131 
ing (MCDM) techniques, thereby forming a comprehensive framework for assessing flood risks. The 132 
use of AHP, recognized as one of the most effective methods for evaluating vulnerability to various 133 
natural disasters, is pivotal to the study. Its strength lies in its ability to consider the relative importance 134 
of multiple factors, providing a clear decision-making structure that enables decision-makers to derive 135 
information and effective conclusions.  136 

In the study region, both climates, human and natural factors influence on the flood flow, various 137 
data sources were utilized as satellite imagery, a digital elevation model (DEM), climate data as well 138 
as spatial and geomorphological maps as data sources as shown in (Table 1), and processing using 139 
ArcGIS software, version number (ArcGIS 10.4) and ERDAS software, version number (ERDAS 140 
2014). Furthermore, the research involved the selection of ten critical parameters essential for pin- 141 
pointing flood-prone regions, including landforms, elevation, slope, drainage density, distance to the 142 
stream, land use/land cover (LULC), rainfall, soil texture, topographic wetness index (TWI), and 143 
stream power index (SPI). 144 

The geomorphological map was created from two geomorphological maps supplied by the De- 145 
partment of Geology and Mineral Exploration in Yemen, after procedure georeferencing to them by 146 
ArcGIS software, version number (ArcGIS 10.4). The topographic gradient (slope), elevation values, 147 
drainage density, distance to stream, topographic wetness index (TWI), stream power index (SPI) were 148 
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extracted from Digital Elevation Model (DEM) data. Utilizing the spatial analysis tools in ArcGIS 149 
software, version number (ArcGIS 10.4). We used monthly rainfall data; the annual mean rainfall was 150 
computed and obtained from the Global Rainfall data website, covering 20-years (from 2000 to 2020) 151 
(CRU TS v4.05 Data Variables, n.d.). Data on land use and land cover (LULC) were acquired from 152 
satellite images Landsat 8 from USGS Earth Explorer  site  and were processed utilizing supervised 153 
classification techniques in ERDAS software, version number (ERDAS 2014).  154 

Created a soil texture from the FAO Digital Soil Map of the World (DSMW) by ArcGIS software, 155 
version number (ArcGIS 10.4). 156 

 157 

 158 

 159 

2.3. ANALYTICAL HIERARCHY PROCESS (AHP) METHOD 160 

       2.3.1. Normalization and factor’s weight evaluation 161 

The method consists of three evaluation stages: constructing hierarchies, establishing priorities, 162 
and conducting evaluation using the consistency index (CI) (Saaty 1980). The AHP process           en- 163 
compasses the following sequential steps: (a) identification of influencing factors as components, (b) 164 
organization of these factors into a hierarchical structure, (c) allocation of numerical values to  assess 165 
the relative significance of each factor, (d) development of a comparison matrix, (e) calculation of 166 
eigenvectors (final score), and (f) prioritization of alternatives (Makonyo & Zahor 2023). This method 167 
is advantageous for flood mapping as it readily identifies inconsistencies in judgment (Mudashiru et 168 
al. 2022). The elements have been standardized based on Saaty’s 1 to 9 scale of relative importance 169 
(Table 2). 170 

      2.3.2. Pairwise Comparison Matrix (PCM) of Influence Factors 171 

The Pairwise Comparison Matrix (PCM) is organized with factors ranked according to their re- 172 
spective impact on flood occurrence. The diagonal values must exert equal influence (equal to 1). The 173 
PCM of the matrix (μ) is computed by (Eq. 1) and as shown in (Table 4). 174 

  µ = (𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛 ∗ 𝑛𝑛 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 𝑎𝑎2𝑛𝑛
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 𝑎𝑎𝑛𝑛𝑛𝑛

�, aii=1, aij=1/aij, aij≠0 ……………………………... (1) 175 

Where, aij is the element at the (i) row and (j) column, (n*n) indicates the size of the square matrix (i.e., 176 

it has n rows and n columns), (aii) this states that all diagonal elements of the matrix are equal to 1, i.e., 177 

the importance of an element compared to itself is always equal to 1. 178 

2.3.3. Calculation of the principal eigenvalue (𝛌𝛌w) 179 
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The λw step helps measure the consistency of assessed weights (Saaty 1980). Appropriate weights 180 
are those with λw equal to or greater than the number of elements and a consistency ratio (CR) below 181 
10% (0.1) (Saaty 1980). The present study found λw to be 10.01, surpassing the number of components 182 
(10).  183 

       2.3.4. Model consistency index (CI) computation 184 

CI computation in the AHP technique evaluates weight assignment judgment. In (Eq. 2), CI is 185 
calculated by dividing λw by the number of elements assessed (n). 186 

CI = λmax−n
n−1

            ……...……..………………………………………………….…. (2) 187 

Whereas,   λw =10.01                         n=10                                CI = 0.001 188 

2.3.5. Calculating consistency ratio (CR) 189 

The computation of CR utilizes the Random Index (RI) values established by Thomas Saaty see 190 
(Table 5). The RI values provide the index values derived from the number of factors assessed in the 191 
model (Saaty 1980). The computation of the CR is conducted as per (Eq.3). 192 

CR = CL
RI

                 ……………………………………………………….... (3) 193 

Whereby, CI =0.001.                   RI=1.49                     Therefore, CR = 0.0007% (Accepted). 194 

2.3.6. Weighted Overlay combination (WOC) analysis 195 

This research included ten factors to accurately assess and define the potential for flood suscepti- 196 
bility, and all parameters are converted to raster format, with the spatial resolution of each layer mod- 197 
ified to a cell size of 30 m x 30 m, then division of each parameter into subclasses and using   reclas- 198 
sification tool to that parameters and allocation of weights, as well as compute the flood hazard index 199 
based on the weights of the parameters by applying (Eq.4). The obtained data is additionally evaluated 200 
utilizing Geographic Information Systems (GIS).  201 

FHI = �𝑊𝑊𝑎𝑎 𝑋𝑋 𝑅𝑅𝑎𝑎
𝑛𝑛

𝑖𝑖=1

     … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … (4) 204 

Where, FHI refer to the flood hazard index, n refers to the number of parameters, Wi refers to the 202 
weighting factors, and Ri indicates the ratings of the factors.  203 

These layers are then superimposed using ArcGIS, version number (ArcGIS 10.4) weighted over- 205 
lay of spatial analysis tools, taking into account the effective weight derived from the AHP technique 206 
(Table 6). A database has been created for flash floods in the Wadi Habban basin, resulting in the 207 
created of a flash flood susceptibility map categorized into five levels: very high sensitivity, high sen- 208 
sitivity, moderate sensitivity, low sensitivity, and very low sensitivity. 209 

3. RESULTS AND DISCUSSIONS 210 



NEPT 7 of 26 
 

3.1. FLOOD RISK ASSESSMENT PARAMETERS 211 

3.1.1. Geomorphological Map 212 

Geomorphological analysis is essential for assessing the probability of flash flood events. It is 213 
crucial for managing water resources and assists in planning and development activities such as flood 214 
management and runoff reuse. The research region showcases five significant geomorphic features, as 215 
illustrated in (Fig 3a).  216 

Wadi and floodplains: Very high susceptibility (101.38 km², which represents 8.6%), alluvial 217 
plains: High/moderate vulnerability (270 km², 23%), Plateaus: Low to moderate susceptibility (132.03 218 
km², 11.2%) and Mountains and hills: Very low susceptibility (651.31 km², 55.25%), as shown in 219 
(Table 6). 220 

Integrating geomorphological maps with flood susceptibility maps is a powerful approach to im- 221 
proving our understanding and management of flood risks.  222 

3.1.2. Elevation Map 223 

Elevation is an essential variable in flood risk assessment, directly affecting the flow and buildup 224 
of floodwaters. The low-lying locations are especially susceptible to flooding during inundation oc- 225 
currences due to gravitational forces and topographical depressions, frequently serving as focal places 226 
for water accumulation and thus experiencing an elevated risk of flooding (Abdo et al. 2024). Previous 227 
research has shown that altitude has a significant influence on floods (Tehrany et al. 2019). The created 228 
map has five categories, as shown in (Table 6). 229 

The lower elevations (<800 m) of sea level are very highly susceptible to floods (150.89 km², 230 
12.8%), while High elevation (>1600 m) suggest that the area is very low flood sensitivity (71.56km2) 231 
shown in (Fig.3b). 232 

3.1.3. Slope Map 233 

The generation and redistribution of flooding are substantially affected by topography, with slope 234 
gradient serving as strong an indicator of surface sensitivity to floods (Wałęga et al. 2024). In general, 235 
low-slope areas experience greater flooding, as floodwaters can quickly drain into these regions, mak- 236 
ing them more susceptible to inundation (Alves et al. 2024). The slope map has been classified in a 237 
study area into five categories based on the degree of slope (Table 6). 238 

Very low slopes (0 to 10 °) are very high susceptible to floods, indicating a higher risk, where area 239 
(502.78km2) with percentage (42.7%) of basin, however very high slopes indicate very low susceptible 240 
of flooding (>82 °) covering area (41.4km2) with percentage (3.5%) as shown in (Fig.3c). 241 

 3.1.4. Rainfall Map 242 

The relationship between rainfall and floods has been established by a large number of previous 243 
literature (Burn & Whitfield 2023). It is impossible to predict the exact degree to which rainfall 244 
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increases lead to flooding (Jiang et al. 2023). In all environmental environments, precipitation can be 245 
considered the primary source of floods (Gao et al. 2023).  246 

A mean annual rainfall map was generated using ArcGIS software, (version number (ArcGIS 247 
10.4), and the precipitation scale was classified into five categories, as shown in (Fig. 3d).  248 

The precipitation levels in the study area vary significantly, influencing flood susceptibility. Zones 249 
with precipitation exceeding 346 mm, which constitute 33.3% of the area, categorized as having a very 250 
highly susceptible to floods regions. Furthermore, regions receiving less than 284.4 mm of annual 251 
rainfall, accounting for 6.6% of the total area, experience very low precipitation and are consequently 252 
less affected by flooding, see in (Table 6). 253 

         254 

3.1.5. Drainage Density  255 

Drainage density is a critical factor in flood management, described as the river's length per square 256 
kilometer (km/km²) (Al-Omari et al. 2024). The high drainage density refers to low filtration; con- 257 
versely, high water filtration is indicated by low drainage density(Yang et al. 2022). The drainage 258 
density within the research area's topography exhibits significant variation, characterized by elevated 259 
densities in mid-slope and low elevation regions attributable to water convergence and soil infiltration, 260 
whereas steeper, higher-altitude zones demonstrate reduced drainage density. The drainage density in 261 
the study area is classified into five classes, as illustrated in (Fig. 4a).  262 

The high drainage density (1.45 – 2.29 km/km2), represent a very high flood susceptible regions 263 
covering an area of approximately 108.9 km2, which 9.2% of the total region. Conversely, areas char- 264 
acterized by very low drainage density as mountains, hills, and plateaus, spanning 223 km2 and ac- 265 
counting for 18.9% of the study area, exhibit low drainage densities (ranging from 0 to 0.38) and are 266 
very low flood susceptible, shown in (Table 6). 267 

3.1.6. Distances from Stream 268 

The locations nearest the streams source are those most susceptible to and affected by severe flash 269 
flooding. The flash flood severity will be highest in those areas when water flow exceeds that buffer 270 
zone (Hagos et al. 2022). As a result, the distance from the streams is given significant weight when 271 
establishing the flood potential zone.  272 

The study area was divided into five zones based on proximity to streams using the buffer zone 273 
tool in ArcGIS, software (version 10.4) see in (Table 6).  274 

The distance from stream (<100m) is classified as a very high flood risk zone, covering approxi- 275 
mately 35.4 km², which is 3% of the all area, while the distance from stream (>800m) is classified as 276 
a very low flood risk zone, covering an area of 925.4 km², accounting for 78.5% of the region as shown 277 
in (Fig. 4b). 278 

 279 
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 280 

3.1.7. Land Use Land Cover (LULC) 281 

Land use is important element in affecting areas susceptible to flooding plays a crucial role in 282 
water percolation, infiltration rate, and groundwater recharge (Xiao et al. 2024). Alterations in land 283 
use and land cover (LULC) can profoundly impact hydrological processes. The proliferation of     im- 284 
permeable surfaces in urban environments results in elevated surface runoff which increases the flow 285 
of flood activity there and diminished infiltration (Nwokeabia & Odinye 2024). With the expansion of 286 
the built area, the cover of the wetlands increases, while the cover of the plants diminishes, increasing 287 
the flow of water (Arya & Singh 2021, Hagos et al. 2022) 288 

The classification of land use and land cover within Wadi Habban basin has been into seven cat- 289 
egories, reflecting their potential impact on flood rates, as illustrated in (fig. 4c).  290 

The study observed that the water bodies, closeness of infrastructure, built up expansion, and ag- 291 
ricultural land near streams significantly increase the flood sensitivity, designating these locations as 292 
having a very high flood risk. In contrast, arid environments, such as highlands and hilly areas, are 293 
classified as having a very low flood risk (Table 6). 294 

3.1.8. Soil Texture  295 

In actuality, soil features such as structure and texture can significantly affect how permeable it is 296 
and, how much water storage is crucial in flood mapping (Costache et al. 2020).The three types of soil 297 
texture were produced (Table6). 298 

Loam soil (medium texture), high susceptibility flood it’s a cover area of about (783.9km2), while 299 
sandy loam (moderate coarse texture), represent low susceptibility flood has a cover area of (87.2km2) 300 
as shown in (Fig 4d). 301 

 302 

 303 

 304 

3.1.9. Topographic Wetness Index  305 

The topographic wetness index (TWI) measures the flow accumulation at each point within a drain- 306 
age basin and the capacity of water to flow down a slope due to gravity (Fig. 4e). This feature refers to 307 
the condition of soil moisture (Selvam & Antony Jebamalai 2023), that has influenced runoff generation. 308 
The formula for TWI is typically represented as:  309 

TWI = ln � 𝐀𝐀
𝐭𝐭𝐭𝐭𝐭𝐭(𝐁𝐁)�      ...……………………………………………………………..….. (5) 310 

Where A represents the upstream contributing area and B is the slope of the terrain. 311 
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The potential for high index values to accumulate a significant amount of water is a result of the 312 
low slope, and the reverse is also true. Consequently, regions with elevated topographic wetness index 313 
(TWI) are at a greater risk of inundation. The topographic wetness index (TWI) map divides the basin 314 
into five distinct classes, as presented in (Fig. 4e).  315 

Areas with a topographic wetness index (TWI) value (> 14) are classified as having a very high 316 
flood risk, covering approximately 20.28 km2. In contrast, regions with a topographic wetness index 317 
value (< 5) are categorized as having a very low flood risk, covering an area of 259.3 km2, as shown 318 
in (Table 6). 319 

3.1.10. Stream Power Index (SPI) 320 

It is possible to evaluate the potential for river erosion at a particular topographical area using the 321 
stream power index (SPI), which describes the relationship between the force of water flow and erosion 322 
(Jebur et al. 2014). In the field of research, elevated stream power index values indicate channels and 323 
steep gradients where erosion of the stream may occur, than the stream become able of transporting 324 
larger amounts of sediments during floods, this can lead to enhanced sediment deposition downstream 325 
or in floodplain areas, affecting flood water flow patterns and increasing flood risk. The classified of 326 
stream power index (SPI) into five categories, shown in (Table 6).  327 

The negative low stream power index values indicate to high flood risk region, conversely the 328 
positive high stream power index (SPI) values indicate to low flood risk region as shown in (Fig 4f).  329 

3.2. Flood Hazard Index (FHI) 330 

The reclassify tool in ArcGIS software, version number (ArcGIS 10.4), was employed to reclas- 331 
sify the raster files (Figs. 3,4) in accordance with AHP classifications (Table 6) This process involved 332 
assigning weights and ranking each parameter and subclass. The Flood Hazard Susceptibility Index 333 
was calculated using the weighted overlay spatial analysis tool in ArcGIS 10.4 software, as outlined 334 
below: 335 

𝐹𝐹𝐹𝐹𝐹𝐹 = �𝑊𝑊𝑎𝑎 𝑥𝑥 𝑅𝑅𝑎𝑎            … … … … … … … … … … … … … … … … … … … … … … … … … (6) 
𝑛𝑛

𝑖𝑖=1

 336 

Where, n represents the number of parameters, Wi indicates the weight of each parameter, and Ri 337 
signifies the factor rating. 338 

 According to (Elkhrachy 2015), the flooding probability rate is assessed by the FHI and can be 339 
calculated using the subsequent equation: 340 

FHI = 0.12(Geomorphological) + 0.13(Elevation) + 0.11(Slope) + 0.10(Rainfall) + 0.11 (Drainage den- 341 
sity) + 0.12(Distance from stream) + 0.09(LULC) + 0.05(Soil texture) + 0.12(TWI) + 0.05(SPI). 342 

3.3. The Flood Susceptibility Map 343 
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The ten maps were reclassified using ArcGIS software, version number (10.4), and then used the 344 
weighting approach and Analytic Hierarchy Process (AHP) to calculate weights. They were combined 345 
and superimposed in a GIS environment by  spatial analysis tools then weighted overlay  to find zones 346 
prone to floods (Mann & Gupta 2023). The final flood map obtained from the AHP approach divided 347 
the area into five categories, depending on the potential for flash floods from very high to very low, as 348 
shown in (Figs. 5, 6). According to the study area, 13.7% represents very low susceptibility, covering 349 
an area of 161.2 km2, 42.4% represents low susceptibility, covering 500 km2, 29.4% represents mod- 350 
erate susceptibility, covering 346.81 km2, 10.2% represents high susceptibility, covering 119.2 km2; 351 
and 4.3% represents very high susceptibility, covering 51.2 km2, as shown in (Table 7).   352 

Our analysis indicates that zones categorized as having high and very high susceptibility are at 353 
significant risk of flash flooding. The research area is characterized by high drainage density and low 354 
soil permeability, largely attributed to its topography of gentle slopes and low elevation. Additionally, 355 
the dendritic drainage pattern of the basin channels substantial water flow during heavy rainfalls, ex- 356 
acerbated by a high Topographic Wetness Index (TWI) and low Stream Power Index (SPI). Increased 357 
human activity in adjacent areas to wadi channel exacerbates flood risk, as infrastructure in the valley 358 
periphery obstructs natural water flow pathways. These factors align with the findings of previous 359 
studies that emphasized the importance of such indicators in flood mapping using the AHP approach 360 
by (Shawky & Hassan 2023,  Radwan et al. 2019). 361 

Precipitation in the elevated western, northwestern, and southwestern zones of the basin contrib- 362 
utes significantly to runoff accumulation. These zones, characterized by steep slopes, rugged terrains, 363 
and substantial elevation differences, generate high runoff volumes that flow downstream into the 364 
Wadi Habban Basin, as illustrated in (Fig. 3a, b, and c). The presence of impermeable surfaces in these 365 
regions (Fig. 4d) further intensifies flood risks by preventing water infiltration and increasing surface 366 
runoff. 367 

This interplay of factors underscores the importance of integrating topographic, hydrological, and 368 
anthropogenic parameters in flood susceptibility modeling, consistent with the approaches recom- 369 
mended in previous regional flood studies (Hagos et al. 2022). 370 

These findings demonstrate the utility of AHP-based flood susceptibility mapping for identifying 371 
and mitigating flood-prone areas. In line with previous studies, our results emphasize the necessity of 372 
incorporating both natural and human-induced factors to develop effective flood risk management 373 
strategies tailored to the unique characteristics of the study region. 374 

 375 

 376 

 377 

3.4. Figures, Tables and Schemes 378 
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 379 

              Fig. 1: (A) Yemen Country map, (B) Shabwah Governorate location map, (C) Wadi Habban Basin 380 

 381 

 382 

 383 

Fig. 2: The flow chart illustrates the methodology for the creation of maps of flood vulnerability maps in the 384 
research area. 385 
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 386 

                                                   a)                                                                                            b) 387 

 388 

   c)                                                d) 389 

Fig. 3: a) Geomorphological map; b) Elevation map; c) Slope map; d) Rainfall map. 390 

 391 
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 392 

                                                a)                                                                                               b) 393 

 394 

 395 

                                               c)                                          d) 396 
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 397 

                                                 e)                                                       f) 398 

Fig.4: a) Drainage density map; b) Distance from stream map; c) LULC map; d) Soil texture map; e) TWI map;           399 
f) stream power index (SPI) map. 400 

 401 

 402 
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Fig.5: Flash flood hazard susceptibility map. 403 

 404 

 405 

 406 

 407 

Fig.6: Distribution of flash flood susceptibility percentages 408 

 409 

 410 

 411 

 412 

Table 1: Data sources for flood conditioning factors 413 

Data Type Source Resolution
/scale 

Format Purpose 

Maps serial 
number of map 
(D38, D39) 

Department of Geology and 
Mineral Exploration in 
Yemen 

1:200000 Shapefile Geomorphological 
map 

Digital Elevation 
Model (DEM) 

USGS Earth  Explorer (SRTM) 
https://earthexplorer.usgs.gov 

 

 
30m 

 
TIFF 

 
Extracting: slope, 
elevation, drainage 
density, distance to 
stream, TWI, SPI  

https://earthexplorer.usgs.gov/
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Landsat 8 Imagery 

(05/10/2020) 

USGS Earth Explorer  

https://earthexplorer.usgs.gov 
 

30m TIFF Land use/land cover 
classification  

Global Rainfall 
data website  

Climatic Research Unit 
(CRU). 

https://crudata.uea.ac.uk/cru/d
ata/hrg/ 

 

°0.5°×0.5° 

(~50 km) 
TIFF Rainfall distribution 

analysis. 

Soil Data 

FAO Soil Grids 

https://www.fao.org/soilsporta
l/data. 

250m GeoTIFF Soil texture 
classification  

 414 

 415 

Table 2: Shows Saaty's 1-9 scale for AHP (1980). 416 

Level of preference Preference  scale Inverse 

Extremely significance 9 1/9 

Very significant to extremely strongly 8 1/8 

Very strongly Significantly 7 1/7 

Strongly significant to very strongly 6 1/6 

Strongly significant 5 1/5 

Moderately significant to strongly 4 1/4 

Moderately significant 3 1/3 

Equally significant to moderately 2 1/2 

Equally significant 1 1 

 417 

Table 3: Random inconsistency index (RI) 418 

https://earthexplorer.usgs.gov/
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
https://www.fao.org/soilsportal/data
https://www.fao.org/soilsportal/data
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n 3 4 5 6 7 8 9 10 

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

 419 

Table 4: Pairwise Comparison Matrix (PCM) of Influence Factors 420 

Parameters GE EL SL RF DD DS LULC ST TWI SPI 

GE 1.00  1.00  1.00  1.00  1.00  1.00  2.00  3.00  1.00  2.00  

EL 1.00  1.00  1.00  2.00  1.00  1.00  2.00  3.00  1.00  2.00  

SL 1.00  1.00  1.00  1.00  1.00  1.00  1.00  2.00  1.00  2.00  

RF 1.00  1.00  0.50  1.00  1.00  1.00  1.00  2.00  1.00  2.00  

DD 1.00  1.00  1.00  1.00  1.00  1.00  1.00  2.00  1.00  2.00  

DS 1.00  1.00  1.00  1.00  1.00  1.00  1.00  3.00  1.00  3.00  

LULC 0.50  1.00  0.50  1.00  1.00  1.00  1.00  2.00  0.50  2.00  

ST 0.33  0.50  0.33  0.50  0.50  0.33  0.50  1.00  0.33  1.00  

TWI 1.00  1.00  1.00  1.00  1.00  1.00  2.00  3.00  1.00  2.00  

SPI 0.50  0.50  0.50  0.50  0.50  0.33  0.50  1.00  0.50  1.00  

GE Geomorphological, EL Elevation, SL Slope, RF Rainfall, DD Drainage density, DS distance to stream, LULC Land use land 421 
cover, St Soil texture, TWI Topographic wetness index,  SPI Stream power index. 422 

 423 

Table 5: Normalized matrix with weights, to consistency ratio (CR) computation 424 

Parameters GE EL SL RF DD DS LULC ST TWI SPI criteria 
weight Ratio 

GE 0.015 0.015 0.014 0.010 0.012 0.014 0.015 0.006 0.015 0.006 0.12 0.99 

EL 0.015 0.015 0.014 0.020 0.012 0.014 0.015 0.006 0.015 0.006 0.13 0.99 

SL 0.015 0.015 0.014 0.010 0.012 0.014 0.008 0.004 0.015 0.006 0.11 1.02 

RF 0.015 0.015 0.007 0.010 0.012 0.014 0.008 0.004 0.015 0.006 0.10 1.02 

DD 0.015 0.015 0.014 0.010 0.012 0.014 0.008 0.004 0.015 0.006 0.11 1.02 

DS 0.015 0.015 0.014 0.010 0.012 0.014 0.008 0.006 0.015 0.008 0.12 0.98 
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LULC 0.007 0.015 0.007 0.010 0.012 0.014 0.008 0.004 0.007 0.006 0.09 0.99 

ST 0.005 0.007 0.005 0.005 0.006 0.005 0.004 0.002 0.005 0.003 0.05 0.99 

TWI 0.015 0.015 0.014 0.010 0.012 0.014 0.015 0.006 0.015 0.006 0.12 0.99 

SPI 0.007 0.007 0.007 0.005 0.006 0.005 0.004 0.002 0.007 0.003 0.05 1.01 

GE Geomorphological, EL Elevation, SL Slope, RF Rainfall, DD Drainage density, DS distance to stream, LULC Land use land 425 
cover, St Soil texture, TWI Topographic wetness index,  SPI Stream power index. 426 

 427 

 428 

Table 6: Criteria and subcategories of factors with associated weights 429 

Flood causative 
criterion 

Classes Area 

Km2 

Percentage 

% 

Flood 
influence 

Rating Classes 

weight 

Criteria 
weight 

 

 

 

Geomorphology 

Mountains and hills 651.3 55.25 Very low 1 0.12  

 

 

12 

Plains 270 23 High 7 0.84 

Wadi channel, flood plains 101.38 8.6 Very high 9 1.08 

Proluival fan 24.16 2.05 Moderate 5 0.60 

 Plateaus 132.03 11.2 Low 3 0.36  

 

 

 

Elevation (m) 

< 800 150.89 12.8 Very low 7 0.91  

 

 

13 

800 - 1200 460.34 39.05 Low 5 0.65 

1200 - 1400 283.51 24.05 Moderate 3 0.39 

1400 - 1600 212.54 18.03 High 2 0.26 

> 1600 71.56 6.07 Very high 1 0.13 

 

 

 

Slope degree 

0 - 10 502.78 42.65 Very low 7 0.77  

 

 

11 

10 - 20 315.93 26.8 Low 5 0.55 

20 - 30 211.95 17.98 Moderate 3 0.33 

30 - 40 106.8 9.06 High 2 0.22 

40 - 75.09 41.38 3.51 Very high 1 0.11 
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Rainfall (mm) 

< 284 75.68 6.42 Very low 1 0.1  

 

 

10 

285 - 305 124.49 10.56 Low 2 0.2 

306 - 322 538.49 45.68 Moderate 3 0.3 

323 - 346 298.13 25.29 High 4 0.4 

> 347 142.05 12.05 Very high 5 0.5 

 

 

Drainage 
density 
(Km/Km2) 

0 – 0.38 223.04 18.92 Very low 1 0.11  

 

11 

0.38 – 0.74 286.1 24.27 Low 2 0.22 

0.74 – 1.08 300.84 25.52 Moderate 3 0.33 

1.08 – 1.45 259.94 22.05 High  5 0.55 

1.45 – 2.29 108.92 9.24 Very high 7 0.77 

 

 

Distance from   
stream (m) 

0 - 100 35.36 3 Very high  9 1.08  

 

 

12 

100 - 200 35.36 3 High 7 0.84 

200 - 400 64.84 5.5 Moderate 5 0.60 

400 - 800 117.88 10 Low 3 0.36 

> 800 925.4 78.5 Very low 1 0.12 

 

 

 

LULC 

Vegetation area 20.16 1.71 Very low 1 0.09  

 

 

9 

Agriculture land 25 2.12 Moderate 5 0.45 

Built-up area 34.3 2.91 High 7 0.63 

Barren land 1030.43 87.41 Low 2 0.18 

Fallow land 26.41 2.24 Moderate 5 0.45 

Water body 4.95 0.42 Very high 9 0.81 

Flood sands 37.49 3.18 High 7 0.63 

 

Soil texture 

Sandy loam 87.23 7.4 Very low 1 0.05  

 

5 

Loam 783.9 66.5 High 3 0.15 

Loamy sand 307.7 26.1 Low 2 0.1 

 < 5 259.34 22 Very low 1 0.12  



NEPT 21 of 26 
 

 

 

TWI 

5 - 8 726.87 61.66 Low 3 0.36  

 

12 

8 - 11 123.78 10.5 Moderate 5 0.60 

11 - 14 48.57 4.12 High 7 0.84 

> 14 20.28 1.72 Very high 9 1.08 

 

 

 

SPI 

3.13 – 12.2 40.79 3.46 Very high 9 0.45  

 

 

5 

0.36 – 3.12 167.75 14.23 High 7 0.35 

-1.57 - 0.36 360.96 30.62 Moderate 5 0.25 

-6.26 - -1.58 205 17.39 Low 3 0.15 

-13.8 - -6.27 449354 34.3 Very low 1 0.05 

 430 

Table 7: Classification of food susceptibility and their spatial distribution 431 

NO. Flood susceptibility classification Area covered (Sq.km) Percentage% 

1 Very low susceptibility 161.2 13.7 % 

2 Low susceptibility 500 42.4% 

3 Moderate susceptibility 346.81 29.4% 

4 High susceptibility 119.8 10.2% 

5 Very high susceptibility 51.2 4.3% 

4. CONCLUSIONS 432 

The assessment of flood hazard zones is a crucial element of a flood control strategy; the suggested 433 
methodology was implemented in Wadi Habban basin for the purpose of mapping the flash flood, the 434 
integration of geographic information systems (GIS) with multi criteria spatial assessment and the 435 
analytic hierarchy process (AHP) has proven to be highly effective in supporting decision-making 436 
processes, as this approach takes into account the significant impact of multiple  factors contributing 437 
to occurrence flooding in the region. Ten distinct input maps have been generated, including geomor- 438 
phological, elevation, slope, drainage density, distance to the stream, land use/land cover (LULC), 439 
rainfall, soil texture, topographic wetness index (TWI), and stream power index (SPI). The research 440 
found that topography (elevations, slopes, and valleys), proximity to stream, topographic wetness in- 441 
dex (TWI), heavy rainfall, drainage density and land use are the primary    factors contributing signif- 442 
icantly to flood occurrence in the region, whereas soil texture and stream power index (SPI) had a 443 
lesser influence. 444 
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Based on flood sensitivity, which ranges from very low to very high, the flash flood susceptibility 445 
maps of the Wadi Habban Basin were classified into five major categories: 13.7% (very low), 42.4% 446 
(low), 29.4% (moderate), 10.2% (high), and 4.3% (very high), as shown in (Fig.5), (Table 7). The 447 
study concluded that several residential areas near the valley course are at risk of flash floods if the 448 
valley cannot absorb the water during heavy rain seasons. These areas include the Al-Said region, 449 
Habban, parts of Lahiya, Al-Ghil, Lamatir, and sections of Azzan City. 450 

The final findings enhance our understanding of the relationship between topographic, hydrolog- 451 
ical, geological, and climatic factors and flash flood conditions. The research demonstrated that the 452 
technologies employed, as remote sensing and geographic information systems (GIS) were reliable 453 
and effective. These technologies will help planners identify dangerous areas, protect local residents, 454 
and improve disaster response after heavy rains.  455 

To reduce flash flood risks in the Wadi Habban basin, authorities and international organizations 456 
should use Geographic Information Systems (GIS) to create detailed flood hazard maps, identifying 457 
the most vulnerable areas. These maps can guide key measures such as implementing early warning 458 
systems, constructing check dams, and improving drainage infrastructure. Collaboration with inter- 459 
national experts can provide the technical and financial support needed for sustainable solutions that 460 
also address climate change impacts. Future studies should incorporate real-time hydrological data, 461 
examine long-term climatic trends, and utilize machine learning to effective flood risk management in 462 
the region. Social and economic data collection will enhance vulnerability assessments, while interac- 463 
tive risk maps and 3D simulations can improve planning. These efforts will provide comprehensive 464 
tools for effective flood risk management in the region. 465 
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