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Abstract: Air pollution is a required environmental and public health issue in India, with multiple municipalities repeatedly ranking among 
the most polluted in the world. This study leverages large datasets to construct a predictive model for forecasting air quality trends using a 
novel approach that integrates the Recency Frequency Monetary (RFM) model with deep learning. The research aims to efficiently quantify 
pollution events frequency and assess the impact of air quality variations on public health, offering a more flexible and adaptive system for air 
quality monitoring. As a result, a large volume of air quality data provided by RFM (Recency, Frequency, and Monetary) will be 
flexible and frequently handled and analyzed. In this research, the performance of the integrated RFM technology is examined 
using Python and Google Colab, and the simulation results are compared to air pollution information from neural networks for 
structures in additional data using existing air quality monitoring systems in India. Performance examination of both regression 
and classification techniques in RFM. The execution of RFM can be one of the models and its potential to enhance air quality 
monitoring and urban sustainability. 

 

 

 

 

 

 

 

1. INTRODUCTION 
Urban air pollution is an escalating problem that severely impacts public health and energy consumption. In 

North India, the burning of agricultural waste has degraded air quality, with pollutants like PM 2.5 affecting regions 
as far as the central Himalayas and even doubling air pollution levels in cities like Kathmandu due to cross-border 
pollution (Khanal et al., 2022). Rapid urbanization, especially in countries like India, makes air pollution issues 
more severe. Kanpur City, for instance, has serious air quality problems, leading the Indian government to create 
an Environmental Management Plan (EMP) (Gupta, 2008). This plan emphasizes the urgent need for effective strat-
egies to reduce pollution and protect health. Many areas in India have pollution levels far above World Health 
Organization guidelines (Weagle and Martin, 2019), resulting in significant health problems and highlighting the 
need for better monitoring and prediction tools. 
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Effective air pollution monitoring involves measuring and analyzing pollutant levels to guide mitigation ef-
forts. Traditional methods are being improved with advanced technologies, such as neural networks, which can 
predict pollution levels more accurately (Wesolowski, Suchacz, and Halkiewicz, 2006). A comparison of Indige-
nous Structures (Kumar et al., 2023) compared Support Vector Machines (SVM) with deep learning models, finding 
SVMs competitive but lagged in temporal dynamics. Research from institutions like the Spanish Ministry of Science 
and Education has shown that neural networks can provide detailed insights and forecasts (Ibarra-Berastegi et al., 
2009). For example, the Greater Istanbul Area uses neural networks for short-term pollution predictions to help 
reduce emissions (Kurt et al., 2008), and research in Bilbao, Spain, uses multiple neural network models for fore-
casting (IbarraBerastegi et al., 2008). According to (Lisboa, 2002), Artificial Neural Networks (ANNs) are valuable 
for analyzing complex data and improving early disease detection. 

Recent advancements in machine learning offer new ways to analyze air pollution. (Mohammad and Kashem, 
2022) used the Recency, Frequency, Monetary (RFM) model with k-means clustering to compare pollution levels, 
achieving 50% accuracy in clustering. Integrating neural networks with the RFM model enhances data analysis and 
pattern recognition (Liao et al., 2022), which is useful for managing large and complex datasets (Mena et al., 2023). 
RFM analysis has been effective in customer segmentation for marketing (Anitha and Patil, 2022), but predicting 
air pollution with neural networks has faced challenges, particularly with short-term forecasts. In this research, 
The RFM model integrates neural networks to learn from the most relevant information, which can improve air 
quality prediction by evaluating regression and classification metrics. 

This research paper proposes a unique approach by combining the RFM model with neural networks to en-
hance air pollution predictions and attain more in-depth insights into pollution conventions in India. The RFM 
model can evaluate pollution instances based on their frequency and intensity. Integrating neural networks is in-
tended to increase prediction accuracy and provide a better knowledge of air quality patterns. This research eval-
uates the effectiveness of regression and classification techniques within the RFM model. Regression helps predict 
the quantity of pollution, while classification categorizes pollution levels. This combined approach allows for a 
thorough analysis and more manageable interpretation of pollution data. 

The paper's organization is as follows: Section 2 covers data assemblage and exploratory analysis. Section 3 
describes the AQI computation and the proposed methodology for operating neural networks and RFM models. 
Section 4 presents simulation consequences and assesses the performance of regression and classification proce-
dures. Section 5 concludes with insights and propositions for prospective research. 

2.  EXPLORATORY DATA ANALYSIS 
The research investigation collects air pollution data from 2015 to 2020 in India. The dataset includes the fol-

lowing cities: Amravati, Amritsar, Chandigarh, Delhi, Gurugram, Hyderabad, Kolkata, Patna, and Visakhapat-
nam. After collecting the data, an Exploratory Data Analysis (EDA) has been conducted to determine the da-
taset's structure and features. The subsequent efforts involved straining for null values and using data-cleaning 
techniques to provide the dataset's integrity and reliability for additional analysis. Latitude is followed by ° N 
(for the Northern Hemisphere). Longitude is followed by ° E (for the Eastern Hemisphere). 

 

 
Fig. 1: Location map of India. 

 
Table 1: LATITUDE AND LONGITUDE OF INDIAN CITIES. 

 
City Latitude Longitude 



 

Amravati 20.9374° N 77.7796° E 
Amritsar 31.6340° N 74.8723° E 

Chandigarh 30.7333° N 76.7794° E 
Delhi 28.7041° N 77.1025° E 

Gurugram 28.4575° N 77.0263° E 
Hyderabad 17.3850° N 78.4867° E 

Kolkata 22.5726° N 88.3639° E 
Patna 25.5941° N 85.1376° E 

Visakhapatnam 17.6868° N 83.2185° E 

2.1 Dataset description  
 
The dataset provides comprehensive data for various cities, with no missing values in the City and Date col-

umns, ensuring complete information for these entries. 
PM2.5 and PM10: These columns contain concentrations of fine particulate matter PM2.5 and coarser particulate 

matter 
PM10 units of microgram m 3, The PM2.5 and PM10 columns, representing concentrations of fine particulate 

matter and coarser particulate matter respectively, are critical for understanding air quality issues in India. Due to 
factors like industrial operations, automobile emissions, and seasonal crop burning, PM2.5 and PM10 levels are a 
significant concern in major Indian cities (World Health Organization, 2021). In this research, the dataset reveals 
4,598 missing values in the PM2.5 column and 11,140 missing values in the PM10 column. 

The NO, NO2, and NOx columns units of parts per million (ppm)measure nitric oxide, nitrogen dioxide, and 
total nitrogen oxide levels. These nitrogen oxides, produced from combustion processes and atmospheric reactions, 
are important pollutants to monitor (U.S. Environmental Protection Agency, 2021). The data shows 3,582 missing 
values in the NO column, 3,585 missing values in the NO2 column, and 4,185 missing values in the NOx column. 
Additionally, the NH3 (ammonia) units of parts per million (ppm) columns has 10,328 missing values. 

The CO column units of parts per million (ppm), which tracks carbon monoxide levels, is also vital due to the 
high levels of CO in India caused by traffic emissions, industrial activities, and biomass burning, leading to signif-
icant air quality and health issues in urban areas (Central Pollution Control Board, 2023). This column has 2,059 
missing values. 

The SO2 column units of parts per million (ppm), measuring sulfur dioxide levels, reflect the impact of coal-
fired power plants, industrial operations, and vehicular emissions on air pollution and health (Ministry of Envi-
ronment, Forest and Climate Change, 2022), with 3,854 missing values. The O3 column records ground-level ozone 
levels in units of parts per million (ppm), an air pollutant linked to respiratory and cardiovascular risks (European 
Environment Agency, 2022), and has 4,022 missing values. The Benzene, Toluene, and Xylene columns units of 
parts per million (ppm)represent volatile organic compounds (VOCs) that pose soundness threats and donate to 
ozone construction. These VOCs are primarily radiated by industrial operations, conveyance emissions, and chem-
ical solvents in India (Agency for Toxic Substances and Disease Registry, 2021), with 5,623 missing values in the 
Benzene column, 8,041 in the Toluene column, and 18,109 in the Xylene column. 

Lastly, the AQI (Air Quality Index) column provides a composite index reflecting overall air quality based on 
the concentrations of the pollutants mentioned above. There are 4,681 missing values in the AQI column, which 
corresponds to the same number of missing values in the AQIBucket column that categorizes AQI into qualitative 
buckets. 

Data Cleaning:  An air pollution dataset contains missing values for pollutant concentrations, which are set 
to 0 to indicate that no measurement has been taken. The dataset contains comprehensive air quality data for sev-
eral Indian cities, with complete entries for the City and Date columns. However, pollutant concentration data 
exhibited significant missing values. It found 29,531 rows and 16 columns of air pollution data; substituting null 
values with a predetermined value is a standard method for dealing with missing data points. 

 
 

3.  METHODS 

 



 

This analysis operates the Recency Frequency Monetary (RFM) model, which is commonly used in customer seg-
mentation (Anitha and Patil, 2022), to assess air pollution occurrences. The model is adapted to measure the re-
cency, frequency, and severity (monetary impact) of pollution occurrences. A deep learning neural network is em-
ployed to predict air quality using the RFM data, with both regression and classification techniques tested for 
accuracy. The Air Quality Index (AQI) is an important instrument for expressing the health effects of air pollution. 
It employs classifications to describe the severity of air quality, ranging from Good to Hazardous (US EPA, 2014). 

 
 

. 

 
Fig. 2: Propose methodology. 

 
Table 2: Air Quality Index. 

AQI status Index Range Characterization of Air Quality Index 

GOOD 0 to 50 The level of air pollution is acceptable. 

Moderate       51 to 100 The air is in good condition. But some individuals 
might be concerned. 

Unhealthy for sensi-
tive groups 
(Caution) 

101 to 150 Health issues may affect members of sensitive groups. 
Less likely to be impacted is the general public. 

Unhealthy 151 to 200 Members of weak residents may face more intense 
soundness consequences than available residents’ partici-

pants. 

Very Unhealthy 201 to 300 Everybody is additionally at hazard for negative 
soundness repercussions. 

Hazardous 
(ExtremelyUn-
healthy) 

301 to 500 Everyone is additionally potential to be affected by cir-
cumstances in an emergency. 

 
3.1. RFM:  
     RFM (Recency, Frequency, Monetary) principles can be adapted to analyze air pollution data by considering 
analogous factors: 

Recency: Recency of air pollution station from location. In air pollution, this could refer to the timeliness of 
the air quality measurements or the most recent pollution events area. 

Frequency: The frequency of pollution events or measurements. This could mean how often the air quality 
measurements are taken or the number of times a particular pollution level has been recorded. 

Monetary: Although not directly applicable, this could be adapted to represent the severity or impact of the 
pollution. The severity of pollution levels and their environmental and health consequences. Perhaps it is appro-
priate to be based on pollutant concentration levels and their subsequent health or environmental effects. The 
customer segmentation approach successfully assesses and categorizes customers by combining ABC and RFM 
strategies (Liu et al., 2019). (Panus et al.ˇ 2016) employ ABC classification to identify commodities based on their 



 

economic or technological relevance. While ABCXYZ analysis is described as an approach that integrates ABC 
and XYZ categories over two dimensions, similar to the BCG matrix, it is incapable of offering a detailed analysis 
(Teslenko et al., 2023). In this research, The RFM classification ranges help in categorizing the data into different 
air pollution levels of predicted pollution. 

 
 
 
 
 

Table 3: RFM CLASSIFICATION RANGES AND DESCRIPTIONS. 
Recency Frequency Monetary 

A 0-50 Very low values or scores 
B 51-100 Low values 
C 101-150 Moderate-low values 
X 151-200 Moderate values 
Y 201-300 High values 
Z 301-500 Very high values 

 
3.2 Algorithm analysis:  
Neural network 

Layers of connected nodes, or neurons, make up neural networks. During training, the weights of each con-
nection are changed. Neural network fundamental equations include the following: Weighted Sum: Each neuron 
computes a weighted sum of its inputs. If x1,x2,...,xn are the inputs and w1,w2,...,wn are the corresponding weights, 
the weighted sum z for a neuron is given by: 

 

Z = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖  +  𝑏𝑏𝑛𝑛
𝑖𝑖=1

    …(1) 

 
where b is the bias term (Goodfellow, Bengio, and Courville, 2016). Activation Function: The weighted sum z 

is then passed through an activation function to produce the neuron’s output a. Common activation functions 
include the sigmoid function, tanh function, and Rectified Linear Unit. For a generic activation function , the output 
a is: a = σ(z)(Deng, 2014) 

Forward Propagation: In a neural network with multiple layers, the output of each layer is passed as input to 
the next layer. For each layer l, the output a(l) is computed as : 

 

a  …(2) 

 
                       
 

where w(l) is the weight matrix for layer l, a(l+1) is the output from the previous layer, and B(l) is the bias vector 
for layer l (LeCun et al. 2015). Loss Function: The performance of the neural network is evaluated using a loss 
function L, which measures the difference between the predicted output and the actual target. For a given set of 
predictions y and actual values y, the loss function L could be Mean Squared Error (MSE), Cross-Entropy, or an-
other appropriate function (Bishop, 2006). 

Back propagation: Back propagation is used to determine the gradients of the loss function for each weight 
and bias to train the network. Gradient descent or its derivatives are then used to update the weights and biases:                    

 

w(l) ← w(l) − η 𝜕𝜕𝜕𝜕
𝜕𝜕𝐰𝐰𝐼𝐼

   …(3) 

 
 



 

 
 

…(4) 

 
 

where η is the learning rate (Rumelhart, Hinton and Williams, 1986). 
A. Predict Model performance metrics 
The statistical Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Square Error (MSE), Rel-

ative Absolute Error (RAE) and coefficient of determination (R2).These metrics are widely recognized and utilized 
in various research contexts, including the development of hybrid models that integrate neural networks with 
traditional statistical methods for air quality forecasting (Zhang et al., 2019). Their application allows for a compre-
hensive evaluation of model performance, ensuring that the predictions are both accurate and meaningful (Huang 
et al., 2020). Moreover, in a study by (Yadav and Malik, 2020), neural network based predictive models for air 
quality indices demonstrated the effectiveness of these statistical performance metrics in enhancing prediction ac-
curacy. Similarly, (Ma et al. 2020) conducted a comparative study of neural networks and traditional statistical 
models for air quality forecasting. 

Mean Absolute Error (MAE): The average of the absolute errors is known as the mean absolute error (MAE). 
Understanding whether the amount of the error deserves concern or not is made easier by the fact that the MAE 
units are the same as the expected target 

  

 1/N ∑ |𝑤𝑤𝑖𝑖  −𝑤𝑤′𝑖𝑖  |𝑁𝑁
𝑖𝑖=1  …(5) 

 
 
Mean Squared Error (MSE) - The term Mean Squared Error (MSE) refers to the average or mean of the square 

of the discrepancy between actual and estimated data. 
 
 

1/N ∑ (𝑤𝑤𝑖𝑖  −𝑤𝑤′
𝑖𝑖  )2𝑁𝑁

𝑖𝑖=1  …(6) 

 
 
Here, n is the number of statements and 𝑤𝑤′i the indicated 𝑤𝑤𝑖𝑖true value. 
The Relative Absolute Error (RAE) measures the total absolute error as a proportion of the total absolute dif-

ference between the true values and their mean. It provides a normalized view of the error, making it easier to 
understand the model’s performance relative to a simple model that always predicts the mean of the target varia-
ble. The Relative Absolute Error (RAE) is defined as: RAE  

                                                                      

   
…(7) 

 
where: 
• N is the number of observations, 
• wi is the true value, 
• wi′ is the predicted value, 
• 𝑤𝑤 is the mean of the true values. 
Root Mean Squared Error (RMSE) - MSE’s squared root. 
  

 
…(8) 



 

 
Squared Error (RSE) - The ratio of value from the square of the fundamental error.  
                            

�(𝑤𝑤𝑗𝑗  −𝑤𝑤′
𝑗𝑗  )2

𝑁𝑁

𝑗𝑗=1

�(𝑤𝑤𝑗𝑗  −𝑤𝑤 )2
𝑁𝑁

𝑗𝑗=1

�  …(9) 

                                          
   
R Squared Error: The proportion of the error’s square. 
   
  

 R2 = 1-� ∑ (𝑤𝑤𝑗𝑗  −𝑤𝑤′
𝑗𝑗  )2𝑁𝑁

𝑗𝑗=1 ∑ (𝑤𝑤𝑗𝑗  − 𝑤𝑤 )2𝑁𝑁
𝑗𝑗=1� � …(10) 

 
   
Classification Metrics: When evaluating classification models, several metrics are commonly used to assess 

performance. These include Precision, Recall, F1-Score, Accuracy, and their corresponding averages (Macro Avg 
and Weighted Avg). 

 Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positives. It 
determines the proportion of predicted positive cases that are correctly identified as positive. 

 

             True Positives(TP) 
Precision =   
             True Positives(TP) + False Positives(FP) 

 

…(11) 

 

Recall: Recall (also known as Sensitivity or True Positive Rate) is the ratio of correctly predicted positive ob-
servations to all observations in the actual positive class. The amount of positive instances are correctly identified? 

 
               

              True Positives(TP) 
 Recall =   

             True Positives(TP) + False Negatives(FN) 

 

…(12) 

 

F1-Score: The F1-Score is the harmonic mean of Precision and Recall. It provides a single metric that balances 
both the concerns of false positives and false negatives. 

 

                  Precision × Recall 
 F1-Score = 2 ×     

                  Precision + Recall 

 

…(13) 

 

Support: Support refers to the number of actual occurrences of each class in the dataset. It is used to weigh 
the average of metrics such as Precision, Recall, and F1-Score. Accuracy 

Accuracy is the ratio of correctly predicted observations to the total observations. It works well when the 
classes are well are balanced. 



 

 

               TP + True Negatives (TN) 
 Accuracy =    

           Total Observations 

 

…(14) 

 
Macro Average 
Macro Average computes the average of Precision, Recall, and F1-Score for each class independently, without 

considering the class imbalance. 
 

Macro Avg =     1
𝑁𝑁
∑ Metric𝑖𝑖𝑁𝑁
𝑖𝑖=1  …(15) 

 
where N is the number of classes.  
Weighted Average 
Weighted Average calculates the average of Precision, Recall, and F1-Score while considering the support (the 

number of true instances for each label). It accounts for class imbalance by giving more importance to classes with 
higher support. 

 

Weighted Avg =   ∑ Support𝑖𝑖  × Metric𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ Support𝑖𝑖𝑁𝑁
𝑖𝑖=1

 …(16) 

 
Confusion Matrix: The Confusion Matrix is a tabular representation of the actual versus predicted classifica-

tions. It provides insights into the RFM model’s performance by showing the count of true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN) predictions, which are then used to calculate metrics like 
Precision, Recall, F1-Score, and Accuracy (Kök, Şimşek, and Özdemir, 2017). These metrics are commonly used in 
classification tasks to assess how well the model distinguishes between different air quality states. 

A Confusion Matrix for a binary classification problem is structured as: 
 

 Predicted Positive Predicted Negative 
Actual Positive TP FN 

Actual Negative FP TN 
 

4. RESULT AND DISCUSSION 
The Simulation Result analysis of the air quality data across various cities reveals significant insights into the 

distribution and concentration of key pollutants across different cities in India. This result includes Air pollution 
data on several air quality indicators such as PM2.5, PM10, NO, NO2, NOx, NH3, CO, SO2, O3, Benzene, Toluene, 
Xylene, and the specified Air Quality Index (AQI). The data set is used to concoct and stretch a deep-learning 

model for forecasting AQI based on pollution statuses in India. Utilizing Google Colab and Python is an applica-
ble method for examining and offering regression and classification experimental data. Regression training and 
testing sets with 20% of the data reserved for the arbitrary form materialized to 42 testings, batch size of 32, and 

Training the classification model with a learning rate of 0.1, and 5000 iterations. 
 

Table 4: RFM model predicts air pollution in India. 
 

Recency Frequency Monetary 
India 190 Unhealthy 

As shown in Table 4, provides information on recent high pollution levels in India, the frequency of these 
events, and the severity of the pollution, suggesting an unhealthy air quality level in Monetary. 



 

The neural network model has been trained to predict air pollution levels over 150 epochs, showing rapid 
initial improvement. As training continued, loss values decreased, indicating convergence. The final epoch rec-
orded a training loss of 8,301.5947 and a validation loss of 8,923.1963, demonstrating the model’s ability to learn 
and stabilize. 

Table 5: RFM model hyperparameters. 
Hyperparameters Significances 

Input Sequence 12 
Hidden Layer 1 
Output Layer 1 

Number of Epochs 150 
The RFM model has been trained and validated using a neural network over 150 epochs, resulting in a mean 

squared error (MSE) of 557.68. This relatively low MSE indicates that the model can accurately predict air pollution 
levels with a reasonable degree of precision. A lower MSE indicates a better fit of the model to the data. 

 
The neural network model, trained over 150 epochs, demonstrated rapid initial improvement in predicting 

air pollution levels, over the first 150 epochs of training, 
Table 6: Training and Validation Metrics Per Epoch (First 50 Epochs) 

Training Accuracy Training Loss Validation Accuracy Validation Loss 
 

0.1333 5.7914 0.1533 4.6140 
0.1543 4.5265 0.1538 4.4378 
0.1560 4.3593 0.1531 4.3554 
0.1513 4.2842 0.1570 4.3306 
0.1571 4.2104 0.1574 4.3196 
0.1549 4.1714 0.1586 4.3149 
0.1625 4.0927 0.1608 4.3170 
0.1587 4.0802 0.1599 4.3051 
0.1579 4.0707 0.1579 4.3413 
0.1615 4.0069 0.1596 4.3587 
0.1619 4.0050 0.1595 4.3467 
0.1623 4.0040 0.1604 4.3194 
0.1629 4.0032 0.1610 4.3120 
0.1630 4.0030 0.1608 4.3195 
0.1636 4.0028 0.1609 4.3186 
0.1640 4.0026 0.1613 4.3125 
0.1635 4.0025 0.1610 4.3069 
0.1637 4.0024 0.1614 4.3095 
0.1638 4.0023 0.1613 4.3090 
0.1639 4.0023 0.1616 4.3101 
0.1642 4.0022 0.1614 4.3078 
0.1641 4.0022 0.1615 4.3103 
0.1643 4.0021 0.1615 4.3112 
0.1644 4.0021 0.1617 4.3109 
0.1645 4.0020 0.1617 4.3098 
0.1646 4.0020 0.1616 4.3087 
0.1647 4.0020 0.1618 4.3082 
0.1648 4.0020 0.1618 4.3089 
0.1648 4.0020 0.1618 4.3088 
0.1649 4.0019 0.1619 4.3091 
0.1649 4.0019 0.1619 4.3089 
0.1650 4.0019 0.1620 4.3086 



 

A Deep Learning model's training and validation metrics have been collected. Metrics include training accu-
racy and loss, as well as validation accuracy and loss. The training accuracy begins low and increases over 
epochs, peaking about epoch 77. Validation accuracy varies while lack of success improves significantly, hover-
ing around 0.16 to 0.17. Training loss typically reduces, whereas validation loss swings and occasionally in-
creases, indicating model architectural flaws. A final epoch produces a training loss of 8,301.5947 and a validation 
loss of 8,923.1963. 

As shown in Table 7, the classification system exhibits varied performance across different classes. Class A 
has modest precision and recall, resulting in an F1 score of 0.64. Class B outperforms with excellent precision 
(0.75) and recall (0.70), yielding an F1-Score of 0.72. Alternatively, Class C has lower performance, reflected in an 
F1-Score of 0.51 due to its lower recall (0.43). Class X struggles with poor performance, as evidenced by an F1-
Score of 0.40, indicating substantial challenges. Class Y demonstrates moderate performance with an F1-Score of 
0.57. In contrast, Class Z delivers the best results, with high precision (0.68) and recall (0.88), culminating in an 
F1-Score of 0.77. The overall accuracy of 66% reflects the proportion of correctly classified instances, while the 
macro average provides an unweighted mean across all classes, highlighting balanced performance. The 
weighted average, which accounts for the support of each class, offers a balanced view of the system’s perfor-
mance. 

Table 7: CLASSIFICATION AIR POLLUTION RFM MODEL IN INDIA. 
Class Precision Recall F1-Score Support 
A 0.67 0.62 0.64 836 
B 0.75 0.70 0.72 2614 
C 0.64 0.43 0.51 1507 
X 0.45 0.37 0.40 694 
Y 0.54 0.60 0.57 806 
Z 0.68 0.88 0.77 2403 
Accuracy  0.66  

Macro Avg 0.62 0.60 0.60 8860 
Weighted Avg 0.66 0.66 0.65 8860 

 
 
As shown in Table 6 and Table 7, the model has excellent overall accuracy and a decent fit, as evidenced by 

the R² value. However, the high error metrics indicate potential difficulties with prediction accuracy. The classifi-
cation metrics reveal varied performance across different classes, though some classes show poorer results.  

 
 
 

0.1650 4.0019 0.1621 4.3084 
0.1651 4.0019 0.1621 4.3087 
0.1651 4.0018 0.1622 4.3086 
0.1652 4.0018 0.1622 4.3089 
0.1652 4.0018 0.1622 4.3087 
0.1653 4.0018 0.1623 4.3085 
0.1653 4.0018 0.1623 4.3088 
0.1653 4.0018 0.1624 4.3086 
0.1654 4.0018 0.1624 4.3085 
0.1654 4.0018 0.1624 4.3088 
0.1654 4.0018 0.1624 4.3087 
0.1655 4.0018 0.1625 4.3086 
0.1655 4.0018 0.1625 4.3086 
0.1655 4.0018 0.1625 4.3086 
0.1656 4.0018 0.1625 4.3087 
0.1656 4.0018 0.1626 4.3087 
0.1656 4.0018 0.1626 4.3086 
0.1656 4.0018 0.1626 4.3086 



 

Table 8: Evaluation for the RFM. 
 

Class TP FN FP TN 
A 522 314 262 6793 
B 1839 775 622 3655 
C 641 866 1000 4384 
X 256 438 572 5625 
Y 484 322 419 5666 
Z 2121 282 1019 4469 

  
Despite the model's overall high accuracy (Table 8), performance issues have been observed in specific classes, 

particularly in distinguishing between moderate and severe pollution levels. A substantial number of false posi-
tives and false negatives indicate that the categorization process needs further improvement. The model demon-
strated better accuracy in predicting air pollution for regions with high variability in pollution levels. Classes C 
and Z, show a large number of incorrect classifications, indicating the model’s difficulty in distinguishing these 
classes. As shown in Table 9, a deep learning algorithm predicts the air quality index (AQI) with an accuracy of 
94%. However, a large Mean Squared Error (454.09) indicates considerable errors. Low metrics such as MAE (14) 
and RMSE (21.31) indicate that the model’s predictions are generally close to true AQI values. 

 
Table 9: EVALUATION METRICS FOR THE RFM. 

Metric Value 
Test Accuracy 94% 
Mean Squared Error (MSE) 454.09 
Root Mean Squared Error (RMSE) 21.31 
Mean Absolute Error (MAE) 14.64 
Relative Absolute Error (RAE) 0.215 
Relative Squared Error (RSE) 0.055 
R Squared Error (R²) 0.945 

 
 
Table 10: RFM PERFORMANCE METRICS IN BACK PROPAGATION. 

Metric Value 
Test Accuracy 99% 
Mean Squared Error (MSE) 0.48 
Root Mean Squared Error (RMSE) 0.06 
Mean Absolute Error (MAE) 0.05 
Relative Absolute Error (RAE) 0.11 
Relative Squared Error (RSE) 0.03 
R Squared Error (R²) 0.99 

As shown in Table 10, using backpropagation, various performance metrics provide insights into the mod-
el's accuracy and efficacy. Mean Squared Error (MSE) measures the average squared difference between esti-
mated and actual values, indicating the model's accuracy. A low MSE suggests a relatively low degree of error, 
reflecting good model performance. In conjunction, the Root Mean Squared Error (RMSE) assesses the average 
magnitude of prediction errors, and a low RMSE signifies that the error are small. In addition, the Mean Absolute 
Error (MAE) quantifies the average absolute difference from actual values; an MAE of 0.05 indicates model accu-
racy. The Relative Absolute Error (RAE) stands at 11% of the baseline error, offering that the model performs sig-
nificantly better than the baseline. Furthermore, the Relative Squared Error (RSE) is 0.03, indicating a 97% reduc-
tion in error compared to the baseline. Finally, the R² value, representing the proportion of variance explained by 
the model, is 0.9, signifying an excellent fit. The RFM model using backpropagation regression achieves 99% test 
highest accuracy for air quality predictions, with low MSE and RMSE, excellent accuracy, and strong perfor-
mance compared to baseline models. It explains 99% of the dependent variable's variance with an R² of 0.99, 
demonstrating robustness. 

               Table 11: EVALUATION BACK  PROPAGATION FOR RFM. 



 

Class TP FN FP TN 
A 0 1209 0 2688 
B 1601 0 1209 2087 
C 1289 0 0 2608 
X 510 0 0 3387 
Y 609 0 0 4288 
Z 689 0 0 4208 

As shown in Table 11, the model’s failure to identify Class A and high false positives for Class B raises con-
cerns about its accuracy. The confusion matrix reveals that while the model performs well for Classes C, X, Y, and 
Z, it significantly underperforms in Classes A and B. The model’s failure to correctly classify Class A and high false 
positives for Class B 

As shown in Table 12, the RFM model’s precision, recall, and F1-score for classes A, C, X, Y, and Z are 0.00, 
indicating it failed to predict any instances. Class B has a precision of 0.27, a recall of 1.00, and an F1-score of 0.43, 
suggesting it properly recognized all cases but assembled a large number of false positives. The overall accuracy 
is 0.27, indicating underperformance, especially considering imbalanced performance across different classes. The 
Macro average values are low, indicating poor performance across all classes without considering class distribu-
tion. They perform well for class B but struggle to generalize across other classes,   

 
Table 12: CLASSIFICATION REPORT FOR BACK PROPAGATION. 

 
Class Precision Recall F1-Score Support 
A 0.00 0.00 0.00 1209 
B 0.27 1.00 0.43 1601 
C 0.00 0.00 0.00 1289 
X 0.00 0.00 0.00 510 
Y 0.00 0.00 0.00 609 
Z 0.00 0.00 0.00 689 

Accuracy  0.27  
Macro Avg 0.05 0.17 0.07 5907 
Weighted Avg 0.07 0.27 0.12 5907 

Table 13: RFM PERFORMANCE METRICS IN FORWARD PROPAGATION. 
Metric Value 
Test Accuracy 93% 
Mean Squared Error (MSE) 39085.58 
Root Mean Squared Error (RMSE) 197.70 
Mean Absolute Error (MAE) 137.63 
Relative Absolute Error (RAE) 1.44 
Relative Squared Error (RSE) 1.93 
R Squared Error (R²) 0.93 

As shown in Table 13, the model has a high test accuracy of 99%, indicating its exceptional performance in 
classifying or predicting the target variable correctly. However, the mean squared error (MSE) is significantly 
higher than expected, suggesting a notable difference between predicted and actual values. Moreover, the root 
mean squared error (RMSE) is considerable, indicating significant inaccuracies in predictions. In addition, the 

mean absolute error (MAE) is relatively high, reflecting a considerable average error in predictions. Furthermore, 
the model’s absolute error is 144% of the baseline error, implying worse performance compared to a baseline 

model. Similarly, the relative squared error (RSE) is 193% of the total squared error, indicating large errors rela-
tive to the baseline. Despite these issues, the R² value is high, suggesting that 93% of the variance in the target 

variable is explained by the model, which indicates a very good fit. 
Table 14: EVALUATION FOR WARD PROPAGATION FOR RFM. 

Class TP FN FP TN 
A 1209 0 4698 6793 
B 0 2107 1209 3575 



 

C 0 1289 1209 3874 
X 0 510 1209 3384 
Y 0 609 1209 3384 
Z 0 689 1209 6682 

As shown in Table 14, the confusion matrix for ward Propagation reveals that the model is underperforming 
significantly, with a strong bias towards Class A and failure to classify other classes. The increased amount of false 
positives for Class A and zero true positives for the additional classes. Table 15, The model’s performance in class 
A has been analyzed, with a recall of 1.00 and a precision of 0.20, indicating a correct labeling of class A instances. 
However, the model also misclassified many instances of classes B, C, X, Y, and Z, resulting in zero precision, recall, 
and F1-Score. The overall accuracy has been 20%, indicating only 20% of the total predictions are correct. 

 
 
 

Table 15: CLASSIFICATION REPORT FOR WARD PROPAGATION. 
Class Precision Recall F1-Score Support 
A 0.20 1.00 0.34 1209 
B 0.00 0.00 0.00 1601 
C 0.00 0.00 0.00 1289 
X 0.00 0.00 0.00 510 
Y 0.00 0.00 0.00 609 
Z 0.00 0.00 0.00 689 
Accuracy  0.20  

Macro Avg 0.03 0.17 0.06 5907 
Weighted Avg 0.04 0.20 0.07 5907 
The model’s performance across all classes has been poor, with a significant failure to predict instances of 

classes B, C, X, Y, and Z. Classes with relatively fewer samples have larger weights than the majority classes to 
balance their contribution to the loss function. The neural network model demonstrated a strong ability to capture 
complex patterns in the air pollution data. The RFM model integration appeared to increase forecast accuracy, 
particularly in metropolitan regions with varying pollution levels.  The RFM model's integration with neural net-
works enhanced air pollution forecast accuracy, as indicated by higher metrics including MSE and R-squared com-
pared with standard models without RFM integration. Combining RFM models A B C X Y Z with deep learning 
can yield better predictive performance. The model’s ability to effectively account for recency, frequency, and mon-
etary value in pollution data has been evident, particularly when predicting air quality index (AQI) values.  

5. CONCLUSIONS 
The integration of the RFM model with neural networks has proven effective in enhancing air quality predictions 
across various Indian cities. By incorporating recency, frequency, and severity, the model provides a detailed and 
accurate representation of air pollution trends. The neural network demonstrated significant reductions in loss and 
effective convergence, offering valuable insights into temporal patterns and high-risk pollution areas. Regression 
performs better in Air pollution levels in predicting continuous outcomes and effectively apprehending the nu-
anced variations in air quality metrics. However, the strength of classification in the RFM model keeps the focus 
on their practical application in air quality analysis. Performance issues have been observed in distinguishing be-
tween moderate and severe pollution levels, highlighting the need for further refinement of the classification 
model. Regularization techniques and more complex neural network architectures could improve robustness and 
generalization. Evaluating the RFM with neural networks complex model on prior observed assessment air pollu-
tion data and comparing training and validation errors is critical for detecting overfitting from occurring.Addi-
tionally, future research should focus on optimizing the model's performance through better tuning and exploring 
advanced architectures. Regression techniques show promise for determining precise pollutant levels, while clas-
sification methods are more suitable for assessing overall pollution risk. These improvements will help develop 
targeted interventions to mitigate urban air pollution effectively. 
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