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ABSTRACT 

Landslides are significant natural hazards that cause damage to the environment, life, and properties, mainly in 

hilly terrain. This research was mostly focused on generating a landslide susceptibility zone map of Papumpare 

District, Arunachal Pradesh, and classifying the region from high susceptibility to least susceptibility using AHP 

modeling techniques considering the landslide causative factors. The Analytical Hierarchy Process (AHP) is a 

multicriteria decision-making model (MCDM) in which each parameter is compared based on its role in triggering 

a landslide. A total of eight parameters were selected based on the factors that could affect the most, like Slope, 

Rainfall, Drainage Density, Lineament Density, Geomorphology, Soil, Geology, and Land use/Land cover. These 

layers were prepared using ArcGIS 10.8 software and ERDAS IMAGINE 2014. Based on the output, the region 

was classified into five zones of landslide susceptibility classes. Of these, the high-very-high landslides are mostly 

amassed near the steep and disturbed slopes due to earth-cutting, especially for building or construction of roads. 

Validation was done using the ROC curve (73.2%) suggesting good performance of the model. The outcome of 
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this work will provide information for proper landslide hazard management and will help in formulating suitable 

mitigation strategies in the future. 

INTRODUCTION 

Natural disasters are emerging as a huge threat to human life, property, and the environment. Landslides, a 

significant hazard, are more severe and frequent in the regions where topography is rugged and human settlements 

are sparse. Many natural factors such as earthquakes, heavy rainfall, river bank erosion by flood water, 

anthropogenic activities including development of infrastructures, deforestation, slope excavation causing slope 

failure, building townships in environmentally sensitive zones, etc, have also amplified the impact of disasters. 

Climate-induced disasters such as floods, landslides, and cyclones are increasing concerns among the community. 

These climate-induced disasters are projected to become more severe with region-specific intensification (IPCC 

2021). Landslides serve as one of the most catastrophic geological hazards in the hilly regions.  It is more frequent 

in high mountainous regions where cloudburst-induced extreme rainfall causes huge movement of debris down 

the slope (Kirschbaum et al. 2020). In recent years, landslide events have modified landforms, affected 

biodiversity, triggered various hazards like floods, earth-cutting, and alteration of river courses due to 

sedimentation, and damaged life and properties (Lombardo et al. 2020, Hao et al. 2023). 

India's distinct climate and geodynamics make it susceptible to various naturally occurring disasters. Studies show 

that about 60% of its landmass is susceptible to earthquakes of different magnitudes, about 8% to cyclone hazards, 

about 68% to drought, 12% to floods, and approximately 15% area is vulnerable to landslides. Nearly 14% of 

India’s land area is landslide-prone, among which one-fifth falls under the northeastern region (Raju 2002). 

Almost the entire NE region is susceptible to landslides of various degrees due to its complex terrain conditions.  

Landslide zonation maps formulated through geospatial technologies are crucial in disaster management and risk 

mitigation (Kanwal et al. 2016, Huan et al. 2023). According to Fell et al. (2007, 2008) and AGS (2000), landslide 

hazard zonation means the classification of terrain into different zones that are characterized based on the spatial 

and temporal probability of the phenomenon, including location, volume, and future prediction of landslide 

occurrence. The availability of high-resolution spatial data, geoinformatics, and fast-processing computers has 

automated landslide hazard/susceptibility mapping processes, minimizing fieldwork and delineating potential 

landslide-affected areas (Ilanloo 2011). In recent years, several techniques have been utilized for the identification 

and assessment of landslide susceptibility zones, including machine learning (ML) (Jhunjhunwalla et al. 2019, 

Merghadi et al. 2020), logistic regression model (Hemasinghe et al. 2018, Shano et al. 2022), analytical hierarchy 
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process (Das et al. 2022, Barman et al. 2024), frequency ratio (Yadav et al. 2023, Qazi et al. 2023). Many 

researchers have experimented with GIS using various causative factors to perform models for landslide hazards 

(Sarkar & Kanungo 2004, Hong et al. 2007, Kouli et al. 2010, Avtar et al. 2011, Othman et al. 2012, Devkota et al. 

2013, Paulín et al. 2014, Ahmed 2015, Pareta & Pareta 2015, Younes Cárdenas and Mera 2016, Hadmoko et al. 

2017, Stanley & Kirschbaum 2017, Mahdadi et al. 2018). This requires the identification of those areas that are 

or could be affected by landslides and the calibration of the chances of such landslides occurring within a specific 

period. Commenting on the eventuality of landslides through zonation mapping itself is a challenging task. The 

LHZ maps do not directly incorporate the magnitude and time before or after the occurrences. The methodology 

to develop a susceptibility map hinge on several elements, viz., the nature of the terrain, parameters to be 

considered, available data on slope, rainfall, seismicity, geology, soil, etc. The AHP techniques are very productive 

in identifying potential landslide zones as they depend on subjective knowledge and expert judgments and are 

constantly checked through consistency measures (Veerappan et al. 2017, Ozioko & Igwe 2020). Thus, for 

minimizing the impact of landslides, the AHP-based susceptibility map becomes important since the area is 

classed between very low hazard to very high hazard zones based on different landslide hazard zones (Arora et al. 

2004). Landslide hazard mapping offers knowledge that helps designers and engineers locate landslide-prone 

areas to implement effective mitigation measures.  

Here in this study, the method used for preparing the zonation map of the Papumpare district is the GIS-based-

Analytical Hierarchy Process (AHP), given by (Saaty 1980). AHP is an accepted multicriteria decision-making 

analysis method that has been widely applied to many decision-making systems. AHP technique integrated with 

the landslide hazard map makes it more reliable (Feizizadeh et al. 2014). This research attempts to produce 

information that can be useful for predicting the location of future landslides in the Papumpare district of 

Arunachal Pradesh which will help the planners and policymakers in the effective management of landslide 

hazards in the region. 

STUDY AREA 

The Papumpare district is situated in the southwestern part of Arunachal Pradesh, bordering Assam. The name 

Papumpare is procured from the rivers Papum and Pare, which flow through the district. Papumpare district lies 

between 93°12' E to 94°13' E Longitudes and 26°56' N to 27°35' N Latitudes (Fig. 1). The district covers a 

geographical area of 3462 sq.km in the lesser Himalayan zone. It is bounded by Lower Subansiri and Kurung 

Kumey districts in the north, East Kameng district in the west, and North Lakhimpur district of Assam in the east 
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and south. Papumpare ranked 14th among the districts of Arunachal Pradesh in terms of area. The district is covered 

by thick forest which has sub-tropical, deciduous, and humid types of vegetation. Mostly, the low-lying regions 

and valleys are occupied by inhabitants. The Hill range approximately varies from 300 m to 2700 m above sea 

level. Itanagar, the state capital, is situated at an altitude of 440m above MSL. 

 

Fig. 1: Locational Map of the Papum Pare District, Arunachal Pradesh. 

 

MATERIALS AND METHODS 

Data Sources 

Several causative factors which are responsible for landslides were studied for this project. The study is solely 

based on the secondary data obtained from various sources (Table 1). The selected factors were slope, rainfall, 

drainage density, lineament density, geomorphology, soil type, geology, and land use/land cover. Various thematic 

layers were generated within ArcGIS software 10.8 to develop the LSZ map. A topographical map of scale 

1:50,000 from the Survey of India has been georeferenced. Cartosat-3, version 3 (1.12 m resolution) DEM was 

employed to develop slope and drainage density maps. For rainfall, the data were downloaded from the Climate 
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Hazards Group InfraRed Precipitation with station data (CHIRPS 0.05° resolution). The spatial distribution of 

rainfall data for the study is estimated using the interpolation method (Kriging). LULC map was generated from 

Landsat-8 OLI by supervised classification in ERDAS IMAGINE 2014. The Geomorphology, Geology, and 

Lineament map of the study area was obtained from the Geological Survey of India. Soil data were collected from 

the Food and Agriculture Organization (FAO). 

Table 1: Database and its sources. 

                           Data                   Source 

Cartosat-3, version 3 (1.12m resolution) DEM Downloaded from NRSC-Bhuvan,  

https://bhuvan-app1.nrsc.gov.in/ 

CHIRPS Annual Rainfall data (0.05° resolution) Downloaded from Climate Hazard Centre, UC Santa 

Barbara, 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/ 

LULC from satellite image Landsat-8 OLI  Downloaded from the United States Geological 

Survey, 

http://earthexplorer.usgs.gov/ 

Lineament, Geology, Geomorphology Downloaded from Geological Survey of India, 

https://bhukosh.gsi.gov.in/ 
Soil data Downloaded from the Food and Agriculture 

Organization of the United Nations (FAO), 

https://www.fao.org/ 

 

Application of AHP Techniques 

The AHP (Saaty 1980) is a technique employed to determine the weight of different parameters. Relative 

ratings/scores were assigned to every parameter according to the level of influence, the literature review, and 

expert opinions. Each class of parameter was graded using Saaty’s nine-point weighing scale (0-9), i.e., the 

pairwise comparison matrix (Table 2), where a high rating indicates a high influence on the occurrence of 

landslides. The final layout for the LHZ map was carried out by using weighted overlay analysis within the ArcGIS 

10.8 software using each of the generated thematic layers.  

According to Gorsevski et al. (2006), AHP is a hierarchical structure of a pairwise comparison matrix consisting 

of equal rows and columns. For formulating a comparison matrix, each parameter is rated against each one of the 

parameters by assigning a rate that is relatively more dominant. The scale ranges between 1 to 9 (Table 2). Thus, 

https://bhuvan-app1.nrsc.gov.in/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
http://earthexplorer.usgs.gov/
https://bhukosh.gsi.gov.in/
https://www.fao.org/
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comparison matrices are pursued as input, and the relative weights are accorded as output. Fig. 2 shows the 

methodological framework adopted in delineating the landslide inventory map of Papumpare district, Arunachal 

Pradesh. 

 Table 2: Weights for Pairwise comparison. Source: (Saaty 1990). 

Scales Intensity Descriptions 

 

1 Equally important Both factors are important 

3 Slightly important One among others is slightly more effective than a certain factor 

5 Quite important One among others strongly tends to a certain factor 

7 Extremely important One among others is extremely dominant to a certain factor 

9 Absolutely important A factor has the highest possibility of tending to a certain factor 

 

Computation of the Weights Assigned to Parameters 

After assigning the pairwise comparison matrix (Table 3), the calculation was done. The comparison matrix in 

AHP consists of rows and columns; each row of the matrix is compared to the other, and each row indicates the 

relative significance between the two criteria. In this matrix, the rows follow the inverse of each criterion and its 

significance with others (Bera et al. 2019). Subsequently, the weights were normalized (Table 4) to minimize the 

biases that exist in the weight assignment (Saravanan et al. 2021). 

The calculation of the Consistency ratio (CR) validates the result and was coined to consider whether the 

comparison matrix is consistent or not (Kolat et al. 2012).  

                   Consistency Ratio (CR) =      CI
RI

      

                                                            CI =   λmax− n
n − 1  

Where λ - eigenvalue and n - number of factors.  

To determine the Consistency Index, AHP compares it by Random index (RI), and the result is called Consistency 

Ratio, which can be defined as CR = CI/RI. The Random index  (Table 5) is the randomly generated comparison 

matrix of order 1 to 10 obtained by approximating random indices (Saaty 1990). Table 3 shows the value of RI. 
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As per the values of CR, if CR is less than 0.10, the ratio indicates a sensible level of consistency for the given 

pairwise comparisons. Thus, if CR is greater than 0.10, then the ratio indicates inconsistent judgments. In certain 

cases, the assigned values for the given matrix should be reconsidered and re-evaluated.  

Based on this study, the calculated overall value for the consistency ratio was 0.065, which shows that the 

comparisons of each factor/parameter indicate a reasonable consistency and that the weights (Table 6) were 

appropriate for the model.  

 

Fig. 2: Conceptual Framework. 
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Table 3: Pair-wise comparison matrix. 

CRITERIA SL RF DD LD GE SO G LULC 

Slope (SL) 1 2 3 3 4 5 6 7 

Rainfall (RF) 0.5 1 2 4 5 5 6 7 

Drainage density (DD) 0.33 0.5 1 2 3 4 6 6 

Lineament density (LD) 0.33 0.25 0.5 1 3 4 6 6 

Geomorphology 0.25 0.2 0.33 0.33 1 2 3 5 

Soil 0.2 0.2 0.25 0.25 0.5 1 3 4 

Geology (G) 0.17 0.17 0.17 0.17 0.33 0.33 1 3 

LULC 0.14 0.14 0.17 0.17 0.2 0.25 0.33 1 

 

Table 4: Standardized comparison matrix and calculation of criterion weights.  

CRITERIA SL RF DD LD GE SO G LULC 
Total 

Weight 

Standardized 

Weight 

Slope (SL) 0.34 0.45 0.40 0.27 0.23 0.23 0.19 0.18 2.31 0.29 

Rainfall (RF) 0.17 0.22 0.27 0.37 0.29 0.23 0.19 0.18 1.93 0.24 

Drainage density 

(DD) 0.11 0.11 0.13 0.18 0.18 0.19 0.19 0.15 1.25 0.16 

Lineament density 

(LD) 0.11 0.06 0.07 0.09 0.18 0.19 0.19 0.15 1.03 0.13 

Geomorphology 0.09 0.04 0.04 0.03 0.06 0.09 0.10 0.13 0.58 0.07 

Soil 0.07 0.04 0.03 0.02 0.03 0.05 0.10 0.10 0.44 0.06 

Geology (G) 0.06 0.04 0.02 0.02 0.02 0.02 0.03 0.08 0.28 0.03 

LULC 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.03 0.18 0.02 

 

Table 5: Random Index.  

N 1 2 3 4 5 6 7 8 9 10 

RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

Table 6: Consistency Vector for each criterion. 

CRITERIA                   Weight    Consistency Vector 

Slope                      2.56                     8.87 
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Rainfall                      2.22                     9.20 

Drainage                      1.41                     9.03 

Lineament                      1.14                     8.84 

Geomorphology                      0.61                     8.45 

Soil Type                      0.46                     8.32 

Geology                      0.28                     8.10 

LULC                      0.18                     8.33 

 

Eigenvector   λ = sum of consistency vector/ no. of parameters(N) 

   λ = 8.64 

Consistency Index    = 0.092 

Consistency Ratio    = 0.065 

 

RESULTS AND DISCUSSION 

Slope 

The slope plays a major role, as the degree of slope angle is considered the main causative factor used to generate 

the susceptibility in landslides. According to (Lee et al. 2004), as the degree of slope angle increases, shear stress 

in soil or overlying material increases as well. The slopes of the study area (Fig. 3) were classified into five 

categories such as steep (>50°), which cover 301.49 sq. km, and high (31°- 40°) covers 798.41 sq. km. Moderately 

high (21°- 30°) covers 1024.26 sq. km, gentle (11°- 20°) covers 897.96 sq. km, and rolling slopes (<10) which 

covers 497.57 sq. km. A steep slope with more mobilizing force may fail early (Anbalagan et al. 2015). In steeper 

slopes, due to gravity, the weight of the underlying material will be more compared to moderate slope, thus, the 

weights were allotted accordingly (Table 7).  

Rainfall 

Landslides triggered by rainfall are primarily caused by the build-up of pore water pressures in the ground 

(Sengupta et al. 2010). For the preparation of the rainfall distribution map (Fig. 4), 10-year rainfall data were 

considered. The intensity of the annual average rainfall of the region ranges between 864 and 2884 mm. The 

rainfall map was divided into five categories, namely, 864-1268 mm, which covers 465.47 sq. km, 1268-1664 mm 
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covers 708.40 sq. km, 1664-2012 mm covers 987.89 sq. km, 2012-2392 sq. km, and 2392-2884 mm which covers 

591.84 sq. km. Higher intensity of rainfall was found in the eastern part of the region, and the northern region 

showed moderate-intensity rainfall (864-1664 mm). Intense rainfall during monsoon causes rainwater seepage, 

due to which the materials get saturated and loosened, this, in turn, causes slope failure. Higher rainfall zones 

were provided with high weights and vice-versa (Table 7). 

Drainage Density 

Drainage is an important factor that controls the landslide as its densities control the nature of the soil and its 

geotechnical properties (Pareta 2004). The function of infiltration is negatively correlated to drainage density. 

High-density values are indicative of lower infiltration rates and higher surface flow velocity. The lower the 

infiltration rate, the more favorable it is for runoff, thus indicating higher drainage density. The study area (Fig. 

5) has been divided into five classes, namely, 0.01-0.22 km/sq.km, which covers a 438.62 sq.km area, 0.22-0.34 

km/sq.km covers 828.2 sq.km, 0.34-0.44 km/sq.km covers 939.57 sq.km, 0.44-0.55 km/sq.km covers 818.31 

sq.km and 0.55-0.78 km/sq.km covers 505.3 sq.km. High-density values, i.e., between 0.01- 0.78 km/sq.km, are 

witnessed in whole parts of the region. The susceptibility of landslide zones is proportional to the function of 

drainage density due to its relation with surface runoff and permeability. The weights were allotted according to 

the dominance of drainage in different locations of the Papumpare district (Table 7). 

Lineament Density 

Lineament is a linear feature in a landscape that is an expression of an underlying geological structure, such as a 

fault. Lineament appears as a fault-aligned valley, fold-aligned hills, straight coastline, or union of these features. 

Lineament helps to surmise mineral prospects of a region, analyze structural deformation patterns/trends, identify 

geological boundaries, and surmise crustal structure and various subsurface phenomena in areas of unexposed 

lithology. Lineament and any planar structure are important factors for assessing the stability of slopes which 

destabilize the area as well as lead to the deterioration of rocks, which energize the weathering processes. The 

lineament density varies between 0 and 74.9 km/km square. Hence, the Lineament density (Fig. 6) has been 

classified upon natural breaks into 5 classes such as class I (0-6.46 km/sq.km), class II (6.46-18.21 km/sq.km), 

class III (18.21-31.42 km/sq.km), class IV (31.42-42.04 km/sq.km), class V (49.04-74.9 km/sq.km). The regions 

with high lineament density values were provided with higher weights and vice-versa (Table 7). 
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Fig. 3: Slope map. 

 

Fig. 4: Rainfall map. 
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Fig. 5: Drainage Density map. 

Geomorphology 

The geomorphologic map depicts important geomorphic units, landforms, and underlying geology to provide an 

understanding of the processes, lithology, structures, and geologic controls related to landslide susceptibility. The 

geomorphology of the region (Fig. 7) consists of a river, an alluvial/flood plain, highly/low dissected structural 

hills, a pediment/piedmont slope, and mass wasting. The region is mostly mountainous, forming a part of the 

eastern Himalayan ranges. The high/low dissected structural hills dominate the region with 3361.44 sq. km of 

areal coverage comprising 95.23% of the geographical area of the region, followed by alluvial/flood plain with 

96.60 sq.km (2.73%), rivers occupying 49.83 sq.km (1.41%), pediment slope covering 21.53 sq.km (0.60%) and 

the rest are mass wasting products spread across 2.33 sq.km area (0.06%). The weights are ranks assigned to the 

geomorphological class, and sub-classes are depicted in Table 7. 

Soil 

Soil texture,  soil depth, and soil erosion play an important role in assessing the stability of the soil and landslide 

susceptibility of the land. In the case of soil texture, the landslide occurrence probability value is higher in rocky 

and sandy loam and is lower in fine sandy loam, silt/gravelly silt loam, and loam (Lee et al. 2004). According to 
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the generated soil map (Fig. 8), the region is mainly composed of three soil types: loamy soil (1516.33 sq.km areal 

coverage), fine loamy soil (1054.44 sq.km), and coarse loamy soil (959.18 sq.km). The study shows that 

lightweight soils like sandy and coarse loams are easy to detach as they need low organic matter content, leading 

to an inability to stable aggregates. Therefore, soil with a lot of sand, steep slopes, and intensive fall, which 

represent the most dominant factors of landslide, cause severe harm to the land, and thus, weights were provided 

accordingly (Table 7). Thus, the susceptibility of an area to landslide increases with the increase of soil erosion.  

 

 

Fig. 6: Lineament Density map. 
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Fig. 7: Geomorphology. 

 

Fig. 8: Soil map. 
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Geology 

Lithology is one such factor that is oftentimes used for landslide susceptibility analysis in the hilly area 

(Althuwaynee et al. 2016). Landslides generally depend on the rock properties of the region because of the 

variance in strength and permeability of rocks. Due to heavy rainfall, weak or highly weathered or eroded rocks 

cause frequent landslides in different places around the world. In the study area (Fig. 9), the rocks that are the 

most dominant are the Siwalik group (59.28% area), followed by Undifferentiated Quaternary sediments (39.22% 

area), the Bomdila group (1.14% area) and the Lower Gondwana group (0.34% area). The region dominated by 

undifferentiated quaternary sediments was assigned the highest weight due to its unstable structure, and the 

Bomdila group was given the least weight as these rocks are comparatively older and more stable (Table 7). 

Land-use/Land-cover 

Alteration in land use/land cover is a crucial factor for landslide susceptibility models. Anthropogenic factors like 

the construction of buildings, roads, bridges, deforestation, etc., in the hilly regions also contribute to the event of 

landslides due to the instability of the slope. The LULC map (Fig 10) was prepared using Landsat 8 OLI satellite 

data. Five categories of land use/land cover were classified in the region, namely, dense forest (3385.23 sq.km), 

cropland (30.72 sq.km), sandbar (5.78 sq.km), rivers (10.02 sq.km), and settlement (98.25 sq.km) were identified. 

In general, the region has a dense vegetation cover with thick evergreen forests, which are very less susceptible 

to landslides and, thus, were assigned the lowest weight. The weights assigned to each LULC sub-class are 

depicted in Table 7. 
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Fig. 9: Geology. 

 

Fig. 10: Land use/Land cover map. 
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Landslide Hazard Zonation 

The LSZ map was delineated by weighted overlay analysis which was performed in ArcGIS 10.8 software, with 

reference to the eight parameters cited above. The weighted values of each parameter (Table 7) indicate the impact 

of each parameter on another. Accordingly, the susceptibility map of the region contains five zones, based on the 

landslide susceptibility index such as “very low hazard, low hazard, moderate hazard, high hazard, and very high 

hazard” (Fig. 11). Table 8 signifies that 6.35% (223.55 sq. km) of the area falls under the very high zone, 26.29% 

(925.02 sq. km) has a high zone, 40.68% (1431.43 sq. km) in the moderate zone, 26.69% (938.24 sq. km) in low 

zone and only 0.003% (0.12 sq. km) has a very low potential for the occurrence of landslide. Most of the area falls 

under the moderate to high zone. The map demonstrates that the high to very high-landslide-hazard zone was 

concentrated in the following circles, i.e., Doimukh, Itanagar, Kakoi, Kimin, Naharlagun, Sangdupota, Toru, etc. 

Most of the concentrated hazard zones are seen near steep terrains and disturbed slopes because of earth-cutting 

for the construction of roads, buildings, etc. Areas that have low-hazard potential zones are largely concentrated 

in the southern part of the district, which are mostly low-lying regions. The delineated zonation map shows that 

the degree of landslide hazard decreases with increasing distance from drainage, lineament, and settlements. 

Table 7: Landslide hazard weights values and rating system of different thematic layers. 

Factors 

 

Classes Weights Rating Consistency 

Ratio 

Slope (in degree) 

<10 

11-20 

21-30 

31-40 

>50 

0.29 

1 

3 

5 

7 

9 

0.017 

Rainfall (in mm) 

864-1268 

1268-1664 

1664-2012 

2012-2392 

2392-2884 

0.24 

5 

6 

7 

8 

9 

0.045 

Drainage Density 

[Km.sq.km-1] 

0.01-0.22 

0.22-0.34 

0.34-0.44 

0.44-0.55 

0.55-0.78 

0.16 

1 

3 

5 

7 

9 

0.016 
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Lineament 

Density 

[Km.sq.km-1] 

0-6.46 

6.46-18.21 

18.21-31.42 

31.42-42.04 

49.04-74.9 

0.13 

1 

3 

5 

7 

9 

0.020 

Geomorphology 

River 

Alluvial/Floodplain 

Highly/low dissected structural hills 

Pedimont/Piedmont slope 

Mass Wasting 

0.07 

3 

4 

5 

6 

7 

0.039 

Soil 

Loamy soil, moderate erosion 

Fine loamy soil, moderate erosion 

Coarse loamy soil, severe erosion 

0.06 

4 

5 

6 

0.006 

Geology 

Siwalik unclassified, Miocene 

Bomdila Gp. Paleoproterozoic 

Lower Gondwana Gp. Permian 

Undifferentiated   

sediment, Quaternary 

0.03 

6 

4 

5 

7 

0.086 

LULC 

River 

Sandbar 

Cropland 

Settlement 

Dense Forest 

0.02 

8 

7 

6 

5 

4 

0.053 
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Fig. 11: LHZ map of the study area. 

Table 8: Area of zones (Percentage). 

        Susceptibility zone        Area [km2] Area in Percentage [%] 

            Very Low zone 0.12 0.003 

                Low zone 938.24 26.69 

             Moderate zone 1431.43 40.68 

                High zone 925.02 26.29 

            Very High zone 223.55 6.35 

 

Map Validation of LHZ Map with Field Data 

Validation of the hazard zones is essential to confirm the precision rate of the landslide susceptibility map acquired 

based on the AHP model. In the current study, validation is done by using ROC (Receiver Operating 

Characteristic) as a tool for appraising the efficiency of landslide zonation. ROC curve is mostly used to show the 

correlation between True Positive Rate and False Positive Rate graphically (Althouse 2016). A landslide inventory 

map (Fig. 12) was prepared based on data collected from the Geological Survey of India and field visits. A total 

of hundred landslide location points were collected using the GPS device during the field survey and Geological 
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Survey of India and were analyzed with the LHZ map using ArcSDM tools. The value of the accuracy curve for 

the Area Under Curve (AUC) ranges between 0.5 to 1, and the prediction model based on the ROC curve and 

AHP generated a value of 0.73 or 73%, which quantifies that the prediction is good (Fig. 13). Fig. 14 shows 

images from the field visit identifying some active landslide zones in the Papumpare districts. 

    

Fig. 12: Landslide inventory map. 
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Fig. 13: ROC curve for Landslide zonation map derived from AHP. 
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Fig. 14: Photographs of some selected landslide sites of the study area. 

Limitations and Suggestions for Future Research 

The landslide hazard zonation (LSZ) of the Papumpare district using GIS and AHP techniques provided significant 

results. However, the research has several limitations that should be acknowledged for building a base for future 

studies in the region. Some of the limitations include a lack of adequate landslide data, inaccessibility due to 

rugged terrain conditions and limited field validation, subjectivity in the AHP model, and lack of monitoring 

temporal change in different landslide triggering factors. Thus, future courses of research need to be guided by 

the integration of real-time data, consideration of other hazards associated with landslides, and the use of GIS-

based machine learning (ML) and deep learning (DL) in landslide zone mapping. 
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CONCLUSIONS 

Papumpare, the capital district of Arunachal Pradesh, is prone to frequent landslide, which occurs every year 

mostly due to heavy downpours, seismic activity, and anthropogenic interference. During the monsoon season, 

the region faces difficulties caused by landslides, resulting in several issues like loss of life, damage of properties, 

and hindering social and economic progress. In the present research, potential landslide sites were identified by 

integrating AHP and geospatial technologies using eight landslide-triggering factors. The findings revealed that 

more than 70% (2,580 sq. km) of the region falls under moderate to very high landslide zones, and the rest of the 

region falls under low to very low landslide potential zones. The higher landslide susceptibility was witnessed in 

the areas affected by human intervention, higher rainfall, and geological vulnerability. The validation of the LSZ 

map was realized through field surveys and by generating a landslide inventory map and ROC-AUC curve with 

an accepted value of 0.73. The results suggest good landslide predictability. However, the improvement of the 

prediction accuracy of the delineated map can be further reformed by considering more factors. The resulting LHZ 

map of the Papumpare district can be a reliable repository of information supporting land-use planning and 

management of the terrain, helping to minimize the impact of landslides in the region. 
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