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Abstract 

The present study assessed the changes in land use and land cover to correlate the variations in the land surface temperature 
of Chattogram City. In order to analyze land use land cover (LULC) change and determine its effects on land surface 
temperature in the city area, temporal Landsat (5,7 ETM+ and 8,9 OLI) imageries from four time periods (2007, 2012, 2017 
and 2022) were used. To assess the correctness of the picked random pixels, current ground truth data gathered from several 
sources was applied. Raster data has been utilized to identify the places that are influenced year-round in the green space 
(i.e. vegetation cover) and to examine the remote sensing image categorization for the green area using satellite images. 
These enable the study to explain the causes of the degradation and alteration of green space throughout time. The study 
identified that urbanization has resulted in a significant rise (about 2840 hectares, 16.74%) in urban land between 2007 and 
2022, causing a loss of vegetative land (about 656 hectares, 3.85%). Additionally, the research concentrated on the actual 
affected area and attempted to forecast the cities' land use in 2037, which revealed a large loss of vegetation by that year. 
The research has the potential to be utilized as a reference in the future. 

 

 

 

 

 

 

 

 

1. Introduction 

The land is a crucial resource and a source of livelihood. It is an essential and limited resource for some most essential human 
activities including agriculture, manufacturing, forestry, energy generation, settlement, recreation, and water catchments and 
storage.Land is a key component of production, and for a large portion of human history, economic development has been 
closely correlated with it. It includes biophysical characteristics including terrain, geology, hydrology, biodiversity, soil, and 
topography (Gaonkar et al., 2024). Another definition of land includes socioeconomic elements like management and 
technology and land use refers to how and why people use the land and its resources (Meyer, 1995).  In general, a piece of 
land is modified when its use changes. This shift is driven by needs, which need not just change the land cover but also its 
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intensity and management (Verburg et al., 2000). Agricultural expansion, propelled by population increase and technical 
progress, has profoundly transformed land cover, especially in developing nations, eclipsing other influences such as 
urbanisation and deforestation (Kirkpatrick, 2024). Social structure, attitudes, and values have all changed significantly in 
the same period. Urban regions are thought to be the most dynamic areas on the surface of the Earth, according to the history 
of urban growth. Urbanization has a significant negative influence on the local ecosystem  (Pasha, Chowdhury, et al., 
n.d.) despite its relevance to the regional economy (Saraswat et al., 2024). Only 14% of the world's population lived in urban 
areas in 1900; by 2000, this percentage had risen to 47% which has recently touched 56% (Ritchie & Roser, 2018), (Long 
et al., 2007). Almost all nations around the globe experience urban expansion, however, the rate of growth varies. Urban 
environment and ecology are currently the main environmental issues that require rigorous analysis and monitoring in order 
to effectively regulate land use. Inventories of land usage and land cover are becoming more and more important in a variety 
of fields, including agricultural planning, urban planning, and infrastructure development (Kavitha et al., 2021). Other forms 
of land use turning into urban land can be characterized as the primary change in land use in these locations. Several elements, 
including both physical and human aspects, have an impact on the intricate process of land use change in major urban areas. 
On the one hand, socioeconomic reasons are typically linked to and responsible for accelerated urban growth; on the other, 
the process of urbanization has a significant impact on the local economy (TYAGI et al., 2023).  

 One way to learn about urban environments is through remote sensing, which is also a crucial tool for 
comprehending and addressing many issues that face cities and their suburbs. (Lillesand et al., 2015). Change detection is 
crucial because it enables the researcher to comprehend and track the pattern of land cover change in the study area (such as 
urbanization, deforestation, and agricultural land management) (Ahmed, 2011). The remote sensing technique is a great 
data source from which updated information and changes in land use and land cover (LULC) can be effectively extracted, 
examined, and simulated. A lot of pressure has been put on the nearby land and its biotic and abiotic resources in recent 
decades due to developing countries' rapid urbanization and population increase. (Singh & Singh, 2023). This pressure is 
also the cause of the urban areas accelerating rate of landscape change. Numerous studies have demonstrated that the land 
cover change brought on by urbanization has a significant impact on the radiative, thermodynamic, and hydrological 
processes that can modify the local climate (Qian et al., 2022). The quality of vegetation cover reduces its ability to moderate 
temperature patterns, resulting in a negative correlation between the vegetation and land surface temperature (Fatemi & 
Narangifard, 2019). One of the biggest issues of this century is the urban heat island (UHI), which is a product of human 
civilization's urbanization and industrialization (Jabbar et al., 2023). The rise in surface temperature caused by the human 
activity can be a major cause for the development of urban heat islands which is one of the most significant markers of 
urbanization. Urban heat island (UHI) is a problem that results from the unchecked urbanization of areas (Karakuş, 2019). 
Because of the significant amount of vegetation loss, urban growth and shifting of forest land to agricultural the, the land 
surface temperature increase which ultimately develops UHI (Thomas et al., 2024). After urbanization, it is impossible to 
restore the forest and vegetation to their pre-urban state (B. Mia et al., 2017). By the end of 2047, it is predicted that urban 
migration would account for 50% of all migration. 

 Bangladesh is one of the most populous nations in the world and is currently developing. It has recently 
experienced major environmental degradation and rapid, uncontrolled urban growth. However, because of rapid 
urbanization, the region has seen significant environmental degradation and several ecological issues, including 
deforestation, biodiversity loss, soil erosion, and modifications to the carbon sink in water-based ecosystems (Thomas et al., 
2024). Chattogram is the second largest city of Bangladesh which is also experiencing land use and land cover changes 
because of urban development.  

The local and microclimate of Chattogram City has changed as a result of anthropogenic activities and urban growth, which 
are driven by land use, such as built-up areas, impermeable structures, industrial activities, waste dumping, nucleated high 
buildings, and transportation activities (Pathirana et al., 2014). New urban development in the metropolis is destroying 
urban trees and plants, which are crucial for protecting the urban ecosystem and environment. With a population of 66% 
living in urban areas, Chattogram, Bangladesh's second-largest city and business hub, is currently one of the fastest-growing 
cities in the world. It accounts for 19.7% of the country's urban population and 30% of the GDP (Hassan & Nazem, 2016). 
The urban forests, water bodies, and vegetation in cities have all been gradually destroyed by the rapid rise of urbanization 
in Chattogram city (Gazi et al., 2021). It is important to take into account Chattogram, a developing city in Bangladesh 
when analysing LST in connection to land-use change. Therefore, it is essential to recognise how LST is changing in 
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Chattogram City. According to a (BBS, 2011) analysis, the country is losing 809 km2 of agricultural land every year as a 
result of city growth, road construction, and infrastructure development. Due to migration from rural to urban areas, 
Chattogram City's average annual growth rate become 17.5% (M. A. Mia et al., 2015). Since rising urbanisation has a 
negative effect on LST (Hokao et al., 2012), it is critical to track changes in land use and land cover and how they relate 
to LST behaviour in Chattogram. Hence, the present study aimed to identify the rate of changes in land use and land cover 
in the study area. Moreover, the study investigated the multitemporal spatial dynamics of LULC change and its contribution 
to UHI generation for Chattogram City, additionally, it determined the mean LST for each LULC class, the dynamics of 
change, and the relation with the urban landscape.  This study used open-source Landsat imageries with advanced remote 
sensing and GIS technology to trace the dynamics of urban growth, monitor geographical and temporal changes in land use 
and land cover, and evaluate Chattogram's environmental sustainability. 

2. Materials and Methods 
      2.1 The study area: The city of Chattogram, which is part of the Chattogram district, is bordered by rivers and is made 
up of small hills and narrow valleys. In addition to being Bangladesh's busiest seaport, Chattogram is also renowned as the 
country's commercial centre. The second-largest city in Bangladesh is Chattogram, with a land area of 157 km2 (M. A. Mia 
et al., 2015). The city is located between latitudes 21°54′ and 22°59′ north and 91°17′ and 92°14′ east. Its southern and 
eastern boundaries are formed by the Karnaphuli River, northern and eastern by the Halda River, and western by the Bay of 
Bengal. Chattogram City is the chosen research topic for this study because it has expanded its urban zone with time and 
become the second most important city after the capital. (Figure 1). About 2.5 million people live in the city, which is under 
the control of the City Corporation, and it covers an area of about 168 square kilometres (Statistics, 2011). Approximately 
40% of the nation's large-scale enterprises are located in Chattogram, which also accounts for 85% of Bangladesh's imports 
and 80% of its exports in the country's seaborne trade (Hassan & Nazem, 2016), which makes it an important location for 
this study.  

 

Figure 1: The location of Chattogram city selected for the present study. 

      2.2 Classification of images: Satellite imagery is detailed and essential for supplying geographic information.  The 
complexity of field labour and study time is reduced by the quantitative and qualitative data provided by satellite and remote 
sensing imagery (Shahbaz et al., 2012). Image Classification is one of the most efficient methods which can provide both 
qualitative and quantitative data (Vaiphasa et al., 2011). Supervised image classification is the method (Figure 2) used 
here to identify and calculate the land cover amount of the study area. In this process researcher manually input some 
supervised samples in ArcGis software (Figure 2), later the software itself calculates the pixel of the image data and shows 
the output (Abburu & Golla, 2015). The amount of land cover used in an area can be calculated with the help of production. 
In this case, the land cover shows the amount of increase or decrease meant for a particular land cover category. 



 

4 

             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

 

Figure 2: Representation of Data analysis process.  

      2.3 Markov modelling for probability matrix: A Markovian process is one that uses the current state of a system to 
predict its future state over time using the same design. Depending on the status right now, it is a random procedure. Markov 
chain is a discrete-time stochastic process (Winston & Goldberg, 2004). Here the condition of the future can be determined 
by analyzing the present state of that individual area (Ross, 2014). Markovian property can be described and stated with 

𝑖𝑖0, 𝑖𝑖1 , … , 𝑖𝑖𝑡𝑡−1, 𝑖𝑖𝑡𝑡 , 𝑖𝑖𝑡𝑡+1 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ≥ 0 

𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑖𝑖𝑡𝑡+1 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖𝑡𝑡 ,𝑥𝑥𝑡𝑡−1 = 𝑖𝑖𝑡𝑡−1, … . ,𝑥𝑥1 = 𝑖𝑖1,𝑥𝑥0 = 𝑖𝑖0) 

= 𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑖𝑖𝑡𝑡+1 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖𝑡𝑡      (1) 

According to the Markov chain, it assumes that the conditional probability does not change over time. for all States i and j 
and all 𝑡𝑡,𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑗𝑗 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖)   is independent of 𝑡𝑡, as expressed in Eq (1) 

𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑗𝑗 ∣∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖 ) = 𝑝𝑝𝑖𝑖𝑖𝑖      (2) 

Where, 𝑃𝑃𝑖𝑖𝑖𝑖 =Transition probability that, given the system is in State 𝑖𝑖 at time 𝑡𝑡, It will be in a state 𝑗𝑗 at the time (𝑡𝑡 + 1). The 
transition probabilities are expressed as a [𝑚𝑚× 𝑚𝑚] Matrix and it is called the transition probability matrix or transition matrix, 
P. The characteristics of the transition probability matrix as p are given below 

P= �
𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1𝑚𝑚
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2𝑚𝑚
𝑝𝑝𝑚𝑚1 𝑝𝑝𝑚𝑚2 … 𝑝𝑝𝑚𝑚𝑚𝑚

�     (3) 

The estimation of transition probabilities in a Markov chain-based deterioration model requires data from the condition 
assessments of existing systems. (Baik et al., 2006). 

       2.4 Calculation of NDVI: The amount of vegetation or biomass present in the environment is measured by the 
Normalized Difference Vegetation Index (NDVI). Greater greenness and healthy vegetation are indicated by a higher 
NDVI(Curran, 1980). Data from Landsat MSS and TM can be used to calculate NDVI (Jensen, 1996). The reflectance 
data from the red (red) and near-infrared (nir) bands were utilized to calculate the NDVI values for the research area (Tan 
et al., 2010). 

NDVI= (𝝆𝝆𝒏𝒏𝒏𝒏𝒏𝒏 − 𝝆𝝆𝒏𝒏𝒓𝒓𝒓𝒓)/(𝝆𝝆𝒏𝒏𝒏𝒏𝒏𝒏 + 𝝆𝝆𝒏𝒏𝒓𝒓𝒓𝒓)    (4) 

      2.5 Land surface temperature (LST) for Landsat 8/9 and 7/5 image: The temperature that is sensed while touching the 
ground in a region is known as the land surface temperature. It is distinct from the temperature of the air or the atmosphere. 
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Different Landsat data sets, including Landsat-9, 8, 7, and Landsat-5, were employed in this investigation (Pasha, 
Mozumder, et al., n.d.). Because the two Landsat data have different band values, calculating the land surface temperature 
for the two sets of data is different. There are eleven bands available for Landsat 8, and 9, and we used band 10 TIRS to 
calculate LST (Figure 3) (Avdan & Jovanovska, 2016). Thermal mapping is done using the Landsat 8 data band-10 TIRS, 
which specifies the thermal band with a 100-meter precision. Similar to this, Landsat 4-5 has a total of seven bands, each of 
which denotes a separate class. The thermal infrared band in Landsat 4-5 is band number 6, and it is frequently used to 
determine an area's thermal mapping (Figure 3)  (Qin et al., 2001). Software named Arc GIS 10.4 has been used to perform 
the calculation. In order to obtain the LST, specific formulas were utilised in the raster calculator. 

 

Figure 3: Graphical representation of the calculation of LST from Landsat 8,9 and 5,7 satellite image. 

For Landsat 8/9, In order to recover the land surface temperature of various years from satellite photos, an image-based 
methodology has been used (Lo & Quattrochi, 2003). OLI images were converted using the USGS standard equation, and 
the DNs of the TIR bands of each year's ETM images were transformed to spectral radiance (Figure 3) using the method 
employed by Chander and Markham (Chander et al., 2009). 

The algorithm's initial stage is the input of Band 10, which is used to calculate the atmospheric Spectral Radiance (Figure 
3). The program retrieves the top of atmospheric (TOA) spectral radiance (Lλ) once band 10 is inputted in the background 
using calculations from the USGS website. 

𝐿𝐿𝐿𝐿 = 𝑀𝑀𝐿𝐿 ∗ 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐿𝐿 − 𝑂𝑂𝑖𝑖     (5) 

Where ML stands for the band-specific multiplicative rescaling factor, Qcal for the Band 10 image, AL for the Band 10 
additive rescaling factor, and Oi for the Band 10 correction (Barsi et al., 2014). 

The next step is to calculate and covert spectral radiance to Brightness temperature (BT) by using metadata (Figure 3) where 
Using the thermal constants provided in the metadata file, the TIRS band data should be changed from spectral radiance to 
brightness temperature (BT) after being converted from digital numbers (DNs) to reflection. The tool's algorithm converts 
reflectance to BT using the equation shown below, 

𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [�𝐾𝐾1𝐿𝐿𝜆𝜆

�+1]
− 273.15      (6) 

Where K1 and K2 refer to the metadata's band-specific thermal conversion constants. The radiant temperature is corrected 
by adding absolute zero (about -273.15 0C) to obtain the figures in Celsius (Xu & Chen, 2004). The Thermal constant for 
Landsat 9, Band 10 image is used in the method. Where the value of K1 (Constant Band_10)  is 799.0284 and the value of K2 (Constant 
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Band_10) is 1329.2405. For the Rescaling factor for Landsat 9, Band 10 image, the value of ML (Radiance Mult Band) is 0.000384 also 
the value of AL (Radiance Add Band) is 0.10000 and the Correction value of Band 10 is Oi = 0.29.  

In the third step NDVI value needed to be calculated following the procedure in section (2.5) then the portion of Vegetation 
Pv is calculated. The NDVI values for vegetation and soil (NDVIv = 0.5 and NDVIs = 0.2) are suggested to be used under 
global settings for computing Pv (Sobrino et al., 2004). Where, 

𝑃𝑃𝑣𝑣 = � 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

�
2
      (7) 

However, the figure for vegetated surfaces, 0.5, maybe too low because the NDVI values vary for each place. Since NDVIV 
and NDVIs will rely on atmospheric conditions, it would not be possible to establish global values in the case of an NDVI 
computed using TOA reflectivities (Figure 3). Global values from NDVI can be obtained from at-surface reflectivities 
(Jiménez-Muñoz et al., 2009). 

In the next phase surface emissivity has to be calculated to estimate LST, the land surface emissivity (LSE) must be known 
because it is a proportionality factor that scales blackbody radiance (Planck's law) to forecast emitted radiance and measures 
how effectively thermal energy is transmitted from the surface to the atmosphere (Jiménez-Muñoz et al., 2006). The 
emissivity can be calculated with the following formula(Sobrino et al., 2004).  

𝜀𝜀𝐿𝐿 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 + 𝜀𝜀𝑠𝑠𝑣𝑣(1−𝑃𝑃𝑣𝑣) + 𝐶𝐶𝑣𝑣    (8) 

Where, C stands for surface roughness (C = 0 for homogeneous and flat surfaces) and is constant at 0.005 for vegetation and 
soil emissivities, respectively (Sobrino & Raissouni, 2000). 

 As a final step, the land surface temperature Ts, also known as the emissivity-corrected land surface temperature, is 
determined as follows. 

𝐵𝐵𝑠𝑠 =  𝐵𝐵𝐵𝐵

�1+��𝜆𝜆𝜆𝜆𝜆𝜆𝜌𝜌 � ln 𝜀𝜀𝜆𝜆��
                (9) 

Where Ts is the LST in degrees Celsius ( C), BT is the at-sensor BT ( C), is the emission wavelength (for which the maximum 
response and the average of the limiting wavelength ( = 10.895) will be used) and is the previously determined emissivity 
(Markham & Barker, 1985).  

For Landsat 7 and 5 image 𝐿𝐿𝑣𝑣 have to be calculated with the following formula, 

𝐿𝐿𝑣𝑣 = 𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

(𝐷𝐷𝐷𝐷 −𝑄𝑄𝐶𝐶𝐴𝐴𝐿𝐿𝑚𝑚𝑖𝑖𝑚𝑚)             (10) 

Qcal is the DN of each image in the metadata of Landsat 7 and 5, QCALmax is the maximum DN (255), and QCALmin is the 
minimum DN (1). The top of the atmosphere (TOA) radiances, Lmax and Lmin, are scaled to QCALmax and QCALmin in W/(m2 
srm), respectively. Using the following equation, the radiant images were transformed from the DNs to the spectral radiance 
to determine the blackbody temperature. 

𝐵𝐵𝑏𝑏 =  𝐾𝐾2
ln��𝐾𝐾1 𝐿𝐿𝜆𝜆� �+1�

                        (11) 

Where K1 and K2 are prelaunch calibration constants in Kelvin units acquired from the image metadata file, Tb is the effective 
at-sensor brightness temperature in Kelvin units, L is spectral radiance in W/(m2 srm), For the Thermal constant for Landsat 
7, Band 6 image is, K1 (Constant Band 6) = 666.09 and the K2 (Constant Band 6)= 1282.71. The Rescaling factor for Landsat 7 and 5, Band 
6 image is, QUANTIZE Cal Max Band_6= 255 and QUANTIZE Cal Min Band_6= 1. 
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The calculated LST values were then translated to the standard Degree Celsius (0 C) unit by subtracting the absolute zero, 
which is roughly minus 273.50 C (Xu & Chen, 2004).  

𝐿𝐿𝐿𝐿𝐵𝐵 = 𝐵𝐵𝑏𝑏 − 273.15               (12) 

      2.6 Model Accuracy, Assumptions and Potential Errors: Rooted on the land use land cover changes data from 2007 to 
2022, the Markov model anticipates land use changes depending upon the prior patterns in the future, which is likely to be a 
fallacy. It however does not out of consideration include the irregular events that can occur such as a change in policy, and 
natural catastrophes among others and simplifies changes to be linear which may not adequately portray the complexities 
related to urban growth. In this case, present conditions and the quality of data used for forecasting predictions, as well as 
the fact that the transition probabilities do not change, are major factors in determining the predictive power of these matrices. 
The span or the window of the data, which, in this instance is 15 years of history makes it difficult to trust the forecasting, 
for it is prone to future incongruence with present trends. The expected figures for urban encroachment and vegetation 
destruction relate to other fast-developing cities like Dhaka and Kolkata. These comparisons do enhance the forecasts made 
by the model, but their usage carries risks and should thus be moderated. The Markov modelling framework does not 
incorporate sudden land cover changes or any effects of land cover change on land use. This development could be even 
more beneficial for future projections by adding some innovative models with more dynamics like the CA-Markov model 
and integrating socio-economical and environmental factors in the modeling process. 

 

3 Results  

      3.1 Changes in Land use and Land cover from 2007 to 2022: This study showed the land use and land cover of the 
Chattogram City Area. According to the analysis of land use and land cover, only 5901.21 hectares of urban area were found 
in 2007 (table 1). However, it expanded significantly from 5901.21 ha in 2007 to 6895.08 ha in 2012, rising from 34.77% to 
40.63% of the total study area during those five years (figure 4). In 2017, the urban area's growth trends accounted for 
8073.36 ha, or 47.57% of the total area (table 1). The Chattogram city has a huge population, and the urban area is growing 
swiftly. The urban area has grown even more, accounting for 8741.52 ha in 2022, or 51.51% of the city's total land area 
(table 1). But as the graph demonstrates, there has been a significant decline in the vegetation cover, with 0.4% (70 ha) 
between 2007 and 2012 and 2.15% (363.51 ha) between 2012 and 2017. 1.3% (220.95 acres) of vegetation was lost between 
2017 and 2022. (figure 4). Over the course of 15 years, 654.39 ha less land was covered by vegetation. These trends in plant 
loss should worry city people because they portend an increase in urban heat, which is harmful to both the environment and 
human civilization. There was a discernible drop in bare land, agricultural land, and water body area. Agriculture occupied 
3641.54 hectares (21.46%) of the total area in 2007, increased to 4686.03 ha (27.63%) in 2012, and again decreased to 2733.3 
ha (16.11%) in 2017 (table 1). According to the study, the total amount of agricultural land decreased by 908.64 ha between 
2007 and 2017, but in 2022, it climbed by roughly 5%, or 3661.74 ha, of the study region's total land cover (table 1). The 
area's bare land severely declined from 3215.07ha to 1793.07ha between 2007 and 2012 (a loss of 8.38%), but it dramatically 
increased from 2012 to 2017 (a gain of 8.15%) and became 3176.82 ha. The total land area in 2022 was 1574.1 ha, a 9.44% 
decrease in bare land area (table 1). Over the course of 15 years, bare land dropped by 1640.97 ha in total. The area occupied 
by inland water bodies shrunk between 2007 and 2012, from 1196.28 hectares in 2007 to 650.25 ha in 2012, and it also 
shrunk significantly between 2012 and 2017, between 650.25 hectares in 2012 and 404.46 hectares in 2017 (table 1). It did, 
however, grow in 2022, though still only by 3.72% of the overall area. Between 2007 and 2017, the water body shrunk by 
791.82 ha, while between 2017 and 2022, it grew by 227.07 ha (table 1). Despite the fact that the total area by the years 
2007, 2012, 2017, and 2022 was almost the same, the internal land use and landcover types have changed dramatically (figure 
4). Urban lands produce more urban heat island zones than other types of land use. There was a noticeable change in the land 
use and land cover of the Chattogram region between 2007 and 2022. Analyses of change detection clearly demonstrated 
that several land use and land cover categories had undergone considerable changes. In 2007, urban land took up 34.77% of 
the research area's land area, followed by agricultural land (21.46% of the area), bare land (18.95% of the area), and 
vegetation (17.77%). Water bodies made up 7.05% of the study area's land area. The findings showed that the percentage of 
vegetation cover and bare land decreased to 3.85% and 9.67%, respectively. However Chattogram City's urban area 
drastically increased to 51.51% of the total area (table 1). 
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Figure 4: Land cover change including Vegetation and urban trend line. 
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Table 1: Land cover change from 2007 to 2022. 

 

 Hectors P% Hectors P% Hectors P% Hectors P% 

Class 2007 2012 2017 2022 

Vegetation 3015.9 17.77% 2945.97 17.36% 2582.46 15.22% 2361.51 13.92% 

Agriculture 3641.94 21.46% 4686.03 27.61% 2733.3 16.11% 3661.74 21.58% 

Urban 5901.21 34.77% 6895.08 40.63% 8073.36 47.57% 8741.52 51.51% 

Bare land 3215.07 18.95% 1793.07 10.57% 3176.82 18.72% 1574.1 9.28% 

Water body area 1196.28 7.05% 650.25 3.83% 404.46 2.38% 631.53 3.72% 

Total  16970.4 100% 16970.4 100% 16970.4 100% 16970.4 100% 
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Figure 5: Land Use and Land Cover map from and the Changes in Vegetation and Urban area from 2007 to 2022. 

      3.2 Indicative changes in LULC by 2037: By examining two qualitative land uses from two distinct periods, Markov 
creates a transition matrix or a transition area matrix. For this study, 15 years of data from 2007 to 2022 (table 2) was used. 
More recent land cover usage is represented by the column, whereas older land cover use is represented by the rows. 
Agriculture, bare terrain, urban, vegetation, and water bodies are represented here in chronological order by the categories. 
Here, the Markov analysis used the matrix to forecast how the land cover will be used in 2037 (Islam & Ahmed, 2011).  



 

10 

             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

Table 2: Probability of changes in the year 2037 land cover (prediction) using transition matrix. 

Class Agriculture Bare land Urban  Vegetation Water Body Grand Total 

Agriculture 39.29% 11.19% 41.28% 5.97% 2.27% 100% 

Bare land 28.20% 19.64% 41.20% 8.36% 2.59% 100% 

Urban 5.15% 4.53% 86.28% 1.49% 2.56% 100% 

Vegetation 25.57% 4.55% 15.56% 53.97% 0.35% 100% 

Waterbody 16.64% 4.17% 41.54% 12.74% 24.91% 100% 

  Markov's prediction of land use change in the next 15 years 

 

According to the transition matrix, the probability of change for agricultural land is that 39.29% of the current agricultural 
area will remain the same in 2037. Of the current area, 11.19% may become bare land, 41.28% may become urban areas, 
5.97% may become vegetation, and 2.27 per cent may become water body areas (table 2). 19.64 per cent of the current bare 
land area is likely to remain unchanged in 2037, which would represent no change in the bare land area. Currently, agriculture 
can occupy 28.20 per cent of the land, whereas urban uses can occupy 41.20 per cent, vegetation can occupy 8.36 per cent, 
and water bodies can occupy 2.59 per cent (table 2). Similar to this, in 2037, 86% of the currently developed urban land will 
still be there, with 4.53 % of it being bare land, 5.15 % being used for agriculture, 1.49 % being covered in vegetation, and 
2.56 % being a body of water. In 2037, it is anticipated that 53.97 per cent of the area's vegetation cover will remain the 
same, while 15.56 per cent of it may become urban, 4.55 per cent could turn into bare ground, 25.57 per cent could be used 
for agriculture, and 0.35 per cent could turn into a body of water (table 2). In terms of the water body area, there will be no 
change of 24.91 per cent in 2037. However, 12.74 per cent may be covered by vegetation, 41.54 per cent by urban, 4.17 per 
cent by bare land, and 16.64 per cent by agriculture (table 2). 

 

        3.3 Relationship between NDVI and LST: Figure (6) shows the relationship between NDVI and LST. It has been 
demonstrated that the NDVI and surface temperature have a negative correlation. This is a blatant indication that the LST 
and NDVI have a high and unfavourable correlation. As a result, the land surface temperature is higher in areas with less 
vegetation. Figures (6) show that the area's temperature regime has been significantly impacted by changes in land use. 
However, compared to other locations, such as city areas, the vegetative area had a lower temperature. In comparison to 
urban green spaces such as parks, and agricultural fields, LST values were comparatively greater in urban areas with no 
vegetation cover. Because there is a negative association between NDVI and LST, areas with lower NDVI values have higher 
land surface temperatures, whereas areas with higher NDVI values have lower land surface temperatures (Gorgani et al., 
2013). The value of the NDVI in 2007 ranged from +0.6 to -0.25, with a negative value indicating lesser vegetation cover 
(Table 3), which typically indicates places with water cover. By looking at the figure (6), it is clear that this range was true 
in 2007. The LST map for 2007 displays the same information, indicating that the maximum LST was 380 C and the minimum 
LST was 24.50 C (table 3). It is evident from the 2007 co-relationship diagram that NDVI value decreases with high LST 
value and increases with low LST value. The NDVI value was 0.289 in the trend line of correlation (Figure 6) when the LST 
value was close to 250 C, but it constantly declined with higher LST values, as can be seen when the LST value was close to 
380 C and the NDVI value was negative at -0.075. That indicates that in 2007, the trend line is unmistakably demonstrating 
a negative association between NDVI and LST (Figure 6). With a slightly different NDVI and LST value for the year 2012, 
it was essentially a reflection of the year 2007. The trend line for 2012 shows a similar outcome to that of 2007, where the 
NDVI value is 0.237 while the LST is close to 220 C but continuously decreases as the LST increases (Figure 6). The NDVI 
value is -0.221 when the LST value is near 350 C. This clearly illustrates the conflict between the NDVI and LST. This 
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implies the tendency of inverse relationships between NDVI and LST where the increase of NDVI values fits to the decrease 
of LTS values and vice versa. In the same way, in 2017 the relationship showed a negative trend line between NDVI and 
LST. In 2017 the highest NDVI was +0.56 and the lowest NDVI was -0.15, while the maximum LST and lowest LST values 
were 37.70 C and 20.260 C, respectively (table 3). The trend line indicated that less vegetation will be present if the LST has 
a higher value when the relationship between them is taken into account. When the LST was close to 370 C, the NDVI value 
was negative (-0.086), indicating the absence of vegetation, as it was in 2017 when the NDVI value was 0.35 on the trendline 
(figure 6). In 2022 the result was quite similar as the correlation was negative. In 2022 the higher NDVI value was +0.60 
and -0.17 was the lowest NDVI score. The highest LST and lowest LST in 2022 were 42.030 C and 24.780 C, respectively 
(figure 6). The trendline indicated that less vegetation will be present if the LST has a higher value when the relationship 
between them is taken into account. The NDVI had a low value of 0.02 when the LST was close to 410 C, indicating very 
little vegetation, but it had a high value of +0.37 when the LST was close to 250 C (figure 6). 

 

Table 3: Retrieved statistics of LST (◦C) and NDVI values from 2007-2022. 

 
LST NDVI 

 
2022 2017 2012 2007 2022 2017 2012 2007 

Maximum 42.0361 37.755 37.2995 38.0009 0.608817 0.564 0.447368 0.6 

Minimum 24.7868 20.2609 20.2609 24.5451 -0.17095 -0.15216 -0.28571 -0.25 

Mean 33.41145 29.00795 28.7802 31.273 0.218932 0.205919 0.080827 0.175 

Standard Deviation 12.1971 12.3702 12.04811 9.514687 0.551381 0.506403 0.518367 0.601040764 
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Figure 6: Correlation of LST and NDVI From the year 2007 to 2022. 

 

4.  Discussion 
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Gain-loss and net change estimation from the four temporal periods of 2007 to 2012, 2012 to 2017, 2017 to 2022 and 2007 
to 2022 were detected using the continuous analysis of LULC. Nearly all of the land use land cover classes displayed gains 
and losses. Gain and loss graphs for various purposes (figure 7) were made per category to aid in understanding. From the 
transition matrix (table 4) it can be identified that lands from different categories have changed with time. The area which 
was covered by water in 2007, transformed into an urban area which is about 472 ha of land. Also, there is a significant 
change has been shown in the vegetation area which has been converted into an urban area in the last 15 years. About 470 
ha of land has been converted from a vegetation area to an urban buildup area, also about 772 ha of land has been converted 
into agricultural land in the last 15 years in Chattogram city. The conversion of vegetation land to bare land is also alarming 
for the overall environment of Chattogram City. About 137 ha of land has been converted from vegetation to bare land. 
Because of the gain of urban area and loss of vegetation area, it is significantly impacting the thermal environment of the 
city. The Land Surface Temperature (LST) and NDVI both show their individual characteristics because of these changes 
(table 5). ArcGIS 10.4 image processing software is used to display the LST and NDVI images of Chattogram side by side 
in order to better comprehend the LST and NDVI pattern. The spatial distribution of the urban thermal environment and 
vegetation cover in Chattogram City is depicted in Figure (8) in an instructive manner. The urban area of Chattogram has a 
higher LST than the surrounding area of vegetation and agricultural land. It is evident that non-porous materials, such as 
metal, asphalt, and concrete, which are used to construct city structures and main transportation corridors, contribute to 
greater temperatures (Hoehne et al., 2022). Water bodies, agricultural areas, and vegetation, on the other hand, all have lower 
temperatures. In the NDVI image (Figure 8), the values are the exact opposite. Due to the lack of vegetation, built-up or core 
city regions have low NDVI values, as do water body locations. Because green biomass is present at relatively high levels, 
high values are found in agriculture, vegetation, and green land areas (Prashar et al., 2022). Regarding LST, the phenomenon 
that LST values are disproportionately greater in the built-up or core urban area than in the suburbs makes the impact of the 
urban thermal environment clear. With the exception of a few open spaces, NDVI values in the built-up or core city region 
are significantly lower than in the suburbs. When comparing LST and NDVI, one discovers that their respective changing 
trends are completely at odds (table 5). LST values are typically high where the main city area or buildup area is situated, 
while they are typically low where bodies of water and green space are present. The green space is where the NDVI peaks 
arise. LST and NDVI typically exhibit a clear inverse association. On the other hand, Chattogram’s urban form and urban 
sprawl are intimately tied to the shifting trends of LST or NDVI. 

 

Table 4: Land Use Land Cover Transition Matrix 2007-2022 in Hectors.  

 Land cover class 2022  

L
an

d 
co

ve
r 

cl
as

s 2
00

7 

Land Class Agriculture Bare land Urban  Vegetation Water Body Grand Total 

Agriculture 1431.744195 407.898234 1504.122069 217.562777 82.592654 3643.919929 

Bare land 893.989644 622.767495 1306.324578 265.116518 82.140167 3170.338402 

Urban 307.313042 270.381518 5153.086372 88.993963 152.719009 5972.493904 

Vegetation 772.824363 137.596243 470.26625 1631.57592 10.622077 3022.884852 

Waterbody 189.196549 47.430983 472.239674 144.855487 283.202797 1136.92549 

Grand Total 3595.067793 1486.074473 8906.038943 2348.10466 611.276704 16946.56258 
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Figure 7: Changes in Land cover in each category from 2007 to 2022. 

Table 5 presents the regression functions and correlation coefficient (R2), which gauges the potency of linear regression, to 
show the relationship between LST and NDVI for each LULC type. NDVI and LST of all LULC categories, with the 
exception of water bodies, showed a substantial inverse association. For every year the greatest negative regression slope 
was indicated by "Urban area," while the shallowest negative regression slope was revealed by "Vegetation area." Figure 8 
illustrates that the NDVI and LST association was consistently negative except water body area. The NDVI reduced as LST 
grew at all-time intervals due to having a negative connection, and this association demonstrated that when a lower 
Vegetation Level was present, the LST increased (Table 5). In other words, higher Vegetation Levels caused lower LST 
while lower vegetation levels caused higher LST (Figure 8). So if the vegetation decreases with time in Chattogram region 
the, with time a significant amount of LST will increase which is usually responsible for creating an Urban heat island that 
also has a direct impact on the overall temperature of the city (Roy et al., 2020). According to (Farzana et al., 2022) a city's 
heat island can also have an impact on precipitation, which is a problem for Chattogram City. 
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The swift growth of the population in the urban area of Chattogram City and its changing patterns of land use and land cover 
(LULC) has brought about tremendous changes in the urban thermal environment, –that is, the urban heat islands (UHI) 
phenomenon is becoming increasingly prevalent. With the growth of the built-up areas, especially those where trees and 
farms are cleared, the UHI intensity increases, which in turn has far-reaching consequences on health, diversity, and energy 
usage. Citing previous studies, it can be said these increasing UHI effects worsen heat stress and the associated health risks, 
especially during heat waves which are very dangerous to certain people such as the aged and those with underlying illnesses 
(Liu et al., 2021; Wang et al., 2021). With the growing infrastructure in Chattogram City, for example, there is loss of 
vegetation and enhancement of pavements. As a result, the capacity of the land to cool down by means of an efficient natural 
process known as evapotranspiration reduces. There is a body of literature that supports the view that such a process is very 
important in controlling surface temperatures in other cities which have undergone similar transformations (Atasoy, 2020; 
Zhou et al., 2022). Extreme weather conditions attributed to urban surfaces not only mean hotter temperatures but also 
prolonged hot days and warm nights (Wang et al., 2021). 

The impact on the environment goes further than just human wellbeing. Urban biodiversity is especially sensitive to the 
higher temperatures resulting from the urban heat island effect. Species twice as rapid as climate-adjusting species pose a 
risk of extinction or decline in numbers in (Kong et al., 2021). The intensified UHI effect also increases the energy 
consumption demand for buildings especially air conditioning. Also, this may lead to high-energy use and emissions which 
contribute to the problem of combating urban ecological pollution (Dudorova & Belan, 2022; Liu et al., 2021). Overall, the 
results from Chattogram City are consistent with worldwide observations, where uncontrolled urban development contributes 
significantly to increased UHI effects, which presents great threats to human health, the environment as well as energy 
utilization. Addressing these negative effects requires strategic urban development and active measures to mitigate the effects 
including increasing urban vegetation as well as the use of energy effective technologies (Jusuf et al., 2019; Kong et al., 
2021). 

Table 5:  LST and NDVI Relationship by LULC Type. 

Class 

(2007-2022) 

2022 2017 2012 2007 

Regression function and 
(R2) 

Regression function 
and (R2) 

Regression function and 
(R2) 

Regression function 
and (R2) 

Vegetation y = -10.502x + 32.449 

R² = 0.1912 

y = -7.9417x + 27.748 
R² = 0.1925 

y = -3.8895x + 25.705 
R² = 0.1143 

y = -5.1192x + 29.643 
R² = 0.1151 

Agriculture y = -12.517x + 34.941 

R² = 0.5495 

y = -6.8163x + 28.026 
R² = 0.5096 

y = -6.3522x + 27.371 
R² = 0.4693 

y = -11.12x + 31.164 
R² = 0.4159 

Urban y = -29.924x + 37.13 

R² = 0.2255 

y = -11.624x + 30.041 
R² = 0.1868 

y = -12.469x + 27.854 
R² = 0.1794 

y = -15.409x + 32.227 
R² = 0.229 

Bare land  y = -19.346x + 38.531 
R² = 0.5969 

y = -2.9813x + 29.199 
R² = 0.0397 

y = -5.6523x + 27.541 
R² = 0.0034 

y = -12.806x + 33.853 
R² = 0.314 

Water area y = 8.6653x + 28.799 

R² = 0.1108 

y = 1.1331x + 23.87 
R² = 0.0021 

y = 7.8215x + 25.113 
R² = 0.2422 

y = 5.4723x + 27.463 
R² = 0.0552 
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Figure 8: LST and NDVI Relationship by LULC Type for the year 2022 (a), 2017 (b), 2012 (c), 2007 (d).
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5. Conclusion: The analysis shows that there have been significant changes in land use and land cover in the Chattogram 
City region during the past 15 years. This study also illustrates how the study area's urban heat island is distributed spatially 
and how land surface temperature fluctuates over time. For four separate years 2007, 2012, 2017, and 2022 the study has 
determined the land surface temperature and the urban heat island zone. Due to changes in land use and land cover, there 
have been observed variations in land surface temperature and urban heat islands, which have altered radiant surface 
temperatures and ultimately produced urban heat island zones. In the Chattogram City Area, the urban area had the largest 
land cover (34.77 per cent of the entire study area) in 2007, and it rapidly rose in 2012, 2017 and 2022. In 2022, the urban 
area became the CMA's main and significant land cover, accounting for 51.51 per cent of the entire study area, while the 
covering of dominating vegetation declined by 654.39 ha. The land surface temperature in Chattogram City significantly 
increased between 2007 and 2022 as a result of the shift in land usage. Rooftop gardening and plantations might help restore 
some of the lost green space that has been lost over the previous few decades, which may help to regulate the current level 
of UHI. Additionally, rooftop gardening and tree planting can lower the temperature of the city of Chattogram's surface as 
well. Both of the mayors of the city corporations in Dhaka, the capital of Bangladesh, have promised a 10% holding tax 
discussion to promote rooftop gardening. Even if only half of the structures in Chattogram allowed for rooftop gardening, it 
would still be good for the city's ecosystem. The rooftop tree plantation and gardening plan in Chattogram City may be 
difficult to accomplish due to a lack of awareness, policy, and management. However, action must be taken in the Chattogram 
City area for a safe and environmentally friendly future. 

 

ACKNOWLEDGMENTS:  The authors are grateful and give thanks for this work being supported by the faculty and 
officials of the Department of Environmental Science and Disaster Management (ESDM), Daffodil International University 
(DIU). 

 

References 

Abburu, S., & Golla, S. B. (2015). Satellite image classification methods and techniques: A review. 
International Journal of Computer Applications, 119(8). 

Ahmed, B. (2011). Urban land cover change detection analysis and modeling spatio-temporal Growth 
dynamics using Remote Sensing and GIS Techniques: A case study of Dhaka, Bangladesh. 

Assessment of Urban Heat Island and Spatiotemporal Landscape Transformation In Three Cities Of Sindh, 
Pakistan. (2022). SINDH UNIVERSITY RESEARCH JOURNAL -SCIENCE SERIES, 54(1). 
https://doi.org/10.26692/surj.v54i1.4494 

Atasoy, M. (2020). Assessing the impacts of land-use/land-cover change on the development of urban heat 
island effects. Environment, Development and Sustainability, 22(8), 7547–7557. 
https://doi.org/10.1007/s10668-019-00535-w 

Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using 
LANDSAT 8 satellite data. Journal of Sensors, 2016. 

Baik, H.-S., Jeong, H. S., & Abraham, D. M. (2006). Estimating transition probabilities in Markov chain-based 
deterioration models for management of wastewater systems. Journal of Water Resources Planning and 
Management, 132(1), 15–24. 

Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 
thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607–11626. 



 

19 

             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

BBS, S. Y. (2011). Bangladesh Bureau of Statistics, Min-istry of Planning. Govt. of Bangladesh, Dhaka. 

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients 
for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903. 

Curran, P. (1980). Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4(3), 
315–341. 

Dudorova, N. V., & Belan, B. D. (2022). The Energy Model of Urban Heat Island. Atmosphere, 13(3). 
https://doi.org/10.3390/atmos13030457 

Farzana, R., Tabassum, A., Mannan, Md. A., & Karunatillake, S. (2022). Assessment of Uhi and its Long-Term 
Impact on Temperature, Precipitation, and Evapotranspiration for the Major Cities in Bangladesh. SSRN 
Electronic Journal. https://doi.org/10.2139/ssrn.4127959 

Fatemi, M., & Narangifard, M. (2019). Monitoring LULC changes and its impact on the LST and NDVI in 
District 1 of Shiraz City. Arabian Journal of Geosciences, 12(4), 1–12. 

Gaonkar, V. G., Nadaf, F. M., & Kapale, V. (2024). Mapping and Quantifying Integrated Land Degradation 
Status of Goa Using Geostatistical Approach and Remote Sensing Data. Nature Environment & Pollution 
Technology, 23(1). 

Gazi, M., Rahman, M., Uddin, M., & Rahman, F. M. (2021). Spatio-temporal dynamic land cover changes and 
their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh. 
GeoJournal, 86(5), 2119–2134. 

Gorgani, S. A., Panahi, M., & Rezaie, F. (2013). The Relationship between NDVI and LST in the urban area of 
Mashhad, Iran. International Conference on Civil Engineering Architecture & Urban Sustainable 
Development 27&28 November, 51. 

Hassan, M. M., & Nazem, M. N. I. (2016). Examination of land use/land cover changes, urban growth 
dynamics, and environmental sustainability in Chittagong city, Bangladesh. Environment, Development 
and Sustainability, 18(3), 697–716. 

Hoehne, C. G., Chester, M. V., Sailor, D. J., & King, D. A. (2022). Urban Heat Implications from Parking, 
Roads, and Cars: a Case Study of Metro Phoenix. Sustainable and Resilient Infrastructure, 7(4), 272–290. 
https://doi.org/10.1080/23789689.2020.1773013 

Hokao, K., Phonekeo, V., & Srivanit, M. (2012). Assessing the impact of urbanization on urban thermal 
environment: A case study of Bangkok Metropolitan. International Journal of Applied, 2(7). 

Islam, M. S., & Ahmed, R. (2011). Land use change prediction in Dhaka city using GIS aided Markov chain 
modeling. Journal of Life and Earth Science, 6, 81–89. 

Jabbar, H. K., Hamoodi, M. N., & Al-Hameedawi, A. N. (2023). Urban heat islands: a review of contributing 
factors, effects and data. IOP Conference Series: Earth and Environmental Science, 1129(1), 012038. 
https://doi.org/10.1088/1755-1315/1129/1/012038 

Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective. (Issue Ed. 2). 
Prentice-Hall Inc. 



 

20 

             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

Jiménez-Muñoz, J. C., Sobrino, J. A., Gillespie, A., Sabol, D., & Gustafson, W. T. (2006). Improved land 
surface emissivities over agricultural areas using ASTER NDVI. Remote Sensing of Environment, 103(4), 
474–487. 

Jiménez-Muñoz, J. C., Sobrino, J. A., Plaza, A., Guanter, L., Moreno, J., & Martínez, P. (2009). Comparison 
between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case 
study of PROBA/CHRIS data over an agricultural area. Sensors, 9(02), 768–793. 

Jusuf, S. K., Ignatius, M., Hien, W. N., & Akbari, H. (2019). Editorial: Urban Heat Island (UHI) and its 
Mitigation through Urban Planning, Design, and Landscaping. Architectural Science Review, 62(1), 1–2. 
https://doi.org/10.1080/00038628.2019.1548095 

Karakuş, C. B. (2019). The impact of land use/land cover (LULC) changes on land surface temperature in Sivas 
City Center and its surroundings and assessment of Urban Heat Island. Asia-Pacific Journal of 
Atmospheric Sciences, 55(4), 669–684. 

Kavitha, A. V., Srikrishna, A., & Satyanarayana, Ch. (2021). A Review on Detection of Land Use and Land 
Cover from an Optical Remote Sensing Image. IOP Conference Series: Materials Science and 
Engineering, 1074(1), 012002. https://doi.org/10.1088/1757-899X/1074/1/012002 

Kirkpatrick, J. (2024). A Big History of Land Clearance and Deforestation. Journal of Big History, 7(3), 1–18. 
https://doi.org/10.22339/jbh.v7i3.7301 

Kong, J., Zhao, Y., Carmeliet, J., & Lei, C. (2021). Urban heat island and its interaction with heatwaves: A 
review of studies on mesoscale. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910923 

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & 
Sons. 

Liu, B., Xie, Z., Qin, P., Liu, S., Li, R., Wang, L., Wang, Y., Jia, B., Chen, S., Xie, J., & Shi, C. (2021). 
Increases in Anthropogenic Heat Release from Energy Consumption Lead to More Frequent Extreme Heat 
Events in Urban Cities. Advances in Atmospheric Sciences, 38(3), 430–445. 
https://doi.org/10.1007/s00376-020-0139-y 

Lo, C. P., & Quattrochi, D. A. (2003). Land-use and land-cover change, urban heat island phenomenon, and 
health implications. Photogrammetric Engineering & Remote Sensing, 69(9), 1053–1063. 

Long, H., Tang, G., Li, X., & Heilig, G. K. (2007). Socio-economic driving forces of land-use change in 
Kunshan, the Yangtze River Delta economic area of China. Journal of Environmental Management, 83(3), 
351–364. 

Markham, B. L., & Barker, J. L. (1985). Spectral characterization of the Landsat Thematic Mapper sensors. 
International Journal of Remote Sensing, 6(5), 697–716. 

Meyer, W. B. (1995). Past and Present Land Use and Land Cover in the U. S. A. Consequences: The Nature 
and Implications of Environmental Change, 1(1). 

Mia, B., Bhattacharya, R., & Woobaidullah, A. S. M. (2017). Correlation and monitoring of land surface 
temperature, urban heat island with land use-land cover of Dhaka City using satellite imageries. Int. J. 
Res. Geogr, 3, 10–20. 



 

21 

             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

Mia, M. A., Nasrin, S., Zhang, M., & Rasiah, R. (2015). Chittagong, Bangladesh. Cities, 48, 31–41. 

Pasha, A. B. M. K., Chowdhury, A. H., Hussain, A., Rahman, M., Mozumder, S., & Fuente, J. A. Dela. (n.d.). 
Identification of the ecosystem services and plant diversity in Ramna Park Dhaka. 

Pasha, A. B. M. K., Mozumder, S., Bhuiyan, M. A. H., & Parveen, M. (n.d.). MONITORING LAND USE AND 
LAND COVER CHANGES OF DHAKA CITY: A REMOTE SENSING AND GIS-BASED ANALYSIS. 

Pathirana, A., Denekew, H. B., Veerbeek, W., Zevenbergen, C., & Banda, A. T. (2014). Impact of urban 
growth-driven landuse change on microclimate and extreme precipitation—A sensitivity study. 
Atmospheric Research, 138, 59–72. 

Prashar, Y., Sharma, R., Kumar, S., Hassan, S. S., & Pateriya, B. (2022). ANALYZING THE IMPACT OF 
BUILT UP AND GREEN SPACES ON LANDSURFACE TEMPERATURE WITH SATELLITE 
IMAGES IN JALANDHAR SMART CITY. International Journal on Environmental Sciences, 13(02), 
99–106. https://doi.org/10.53390/ijes.v13i2.6 

Qian, Y., Chakraborty, T. C., Li, J., Li, D., He, C., Sarangi, C., Chen, F., Yang, X., & Leung, L. R. (2022). 
Urbanization Impact on Regional Climate and Extreme Weather: Current Understanding, Uncertainties, 
and Future Research Directions. Advances in Atmospheric Sciences, 39(6), 819–860. 
https://doi.org/10.1007/s00376-021-1371-9 

Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature 
from Landsat TM data and its application to the Israel-Egypt border region. International Journal of 
Remote Sensing, 22(18), 3719–3746. 

Ritchie, H., & Roser, M. (2018). Urbanization. Our World in Data. 

Ross, S. M. (2014). Introduction to probability models. Academic press. 

Roy, S., Pandit, S., Eva, E. A., Bagmar, Md. S. H., Papia, M., Banik, L., Dube, T., Rahman, F., & Razi, M. A. 
(2020). Examining the nexus between land surface temperature and urban growth in Chattogram 
Metropolitan Area of Bangladesh using long term Landsat series data. Urban Climate, 32, 100593. 
https://doi.org/10.1016/j.uclim.2020.100593 

Saraswat, A., Pipralia, S., & Kumar, A. (2024). Exploring the Application of Ecosystems Approach to Urban 
Planning: International Review for Spatial Planning and Sustainable Development, 12(2), 2. 
https://doi.org/10.14246/irspsd.12.2_28 

Shahbaz, M., Guergachi, A., Noreen, A., & Shaheen, M. (2012). Classification by object recognition in satellite 
images by using data mining. Proceedings of the World Congress on Engineering, 1, 4–6. 

Singh, G., & Singh, S. K. (2023). Evapotranspiration Over the Indian Region: Implications of Climate Change 
and Land Use/Land Cover Change. Nature Environment and Pollution Technology, 22(1), 211–219. 

Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT 
TM 5. Remote Sensing of Environment, 90(4), 434–440. 

Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: 
Application to Morocco. International Journal of Remote Sensing, 21(2), 353–366. 



 

22 

             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

Statistics, B. B. S. D. (2011). Chittagong. Bangladesh Bureau of Statistics; Statistics and Informatics Division 
(SID), Ministry of Planning, Parishankhan Bhaban. E-27/A, Agargaon, Dhaka-1207. 

Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and 
determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 
1509–1521. 

Thomas, G. S., Liu, Y., & Mwanga, N. (2024). Exploring the Environmental Effects of Urbanization in 
Monrovia. European Journal of Theoretical and Applied Sciences, 2(3), 1117–1130. 
https://doi.org/10.59324/ejtas.2024.2(3).89 

TYAGI, S. K., KUMAR, V., KUMAR, K., & KUMAR, D. (2023). ENVIRONMENTAL HEALTH QUALITY 
AND THE CONSEQUENCES OF URBANIZATION: A REVIEW. International Journal of Advances in 
Agricultural Science and Technology, 10(5), 13–23. https://doi.org/10.47856/ijaast.2023.v10i05.003 

Vaiphasa, C., Piamduaytham, S., Vaiphasa, T., & Skidmore, A. K. (2011). A Normalized Difference Vegetation 
index (NDVI) Time-series of idle agriculture lands: A preliminary study. Engineering Journal, 15(1), 9–
16. 

Verburg, P. H., Chen, Y., Soepboer, W., & Veldkamp, A. (2000). GIS-based modeling of human-environment 
interactions for natural resource management. Proceeding of the 4th International Conference on 
Integrating GIS and Environmental Modeling: Problems, Prospects En Research Needs, Canada 2000, 1–
13. 

Wang, J., Chen, Y., Liao, W., He, G., Tett, S. F. B., Yan, Z., Zhai, P., Feng, J., Ma, W., Huang, C., & Hu, Y. 
(2021). Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. 
Nature Climate Change, 11(12), 1084–1089. https://doi.org/10.1038/s41558-021-01196-2 

Winston, W. L., & Goldberg, J. B. (2004). Operations research: applications and algorithms (Vol. 3). 
Thomson Brooks/Cole Belmont. 

Xu, H., & Chen, B. (2004). Remote sensing of the urban heat island and its changes in Xiamen City of SE 
China. Journal of Environmental Sciences, 16(2), 276–281. 

Zhou, D., Xiao, J., Frolking, S., Zhang, L., & Zhou, G. (2022). Urbanization Contributes Little to Global 
Warming but Substantially Intensifies Local and Regional Land Surface Warming. Earth’s Future, 10(5), 
1–19. https://doi.org/10.1029/2021EF002401 

  


