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ABSTRACT 

     Diabetes mellitus is a prevalent chronic disease with significant implications for public health, 
counting an expanded chance of coronary heart malady, stroke, persistent kidney illness, misery, 
and useful inability. In India, the predominance of diabetes among grown-ups matured 20 a long 
time and more seasoned rose from 5.5% in 1990 to 7.7% in 2016. Traditionally, diabetes management 
involves costly consultations and diagnostic tests, presenting challenges for timely diagnosis and treatment. 
Additionally, a comprehensive study was conducted to investigate the relationship between the incidence of 
type 2 diabetes mellitus (T2DM) and environmental exposure to arsenic in the form of air, water, and food 
pathways. The majority of the analyzed studies examined the levels of arsenic in water samples, with analyses 
of urine, blood, serum, and plasma samples coming next. Groundwater supplies may get contaminated by 
arsenic, especially in regions where arsenic deposits are naturally occurring or as a result of industrial activity. 
Additionally, various meals contain it, particularly rice, seafood, and poultry. Besides, it might be released 
into the environment by industrial processes such coal combustion, smelting, and mining, which could lead 
to occupational exposure. There may be a genetic component to the association between arsenic exposure 
and the onset of diabetes. Ultimately diabetes mellitus is enhanced by arsenic pollution through air, food and 
drinking water. Advances in machine learning and telemedicine offer innovative solutions to address these 
challenges. Data mining, a crucial aspect of machine learning, facilitates the extraction of valuable insights 
from extensive datasets, enabling more efficient and effective diabetes management. This study explores a 
telemedicine-based system utilizing five classification techniques—Decision Tree, Naive Bayes, Support 
Vector Machine, and others—to predict Type-2 diabetes. By leveraging real-time data analysis, the system 
aims to enhance early diagnosis and management of Type-2 diabetes, potentially preventing progression to 
critical conditions. The results evaluate the effectiveness of these models in a telemedicine context, 
identifying the best-performing model to assist healthcare professionals in making informed decisions for 
early intervention and improved patient outcomes. 
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1. INTRODUCTION 

Diabetes has developed as a worldwide wellbeing emergency, with the scourge especially 
articulated in South East Asia, eminently in India. Around 72 million individuals in India are 
evaluated to have diabetes, whereas an extra 80 million are accepted to have pre-diabetes. Type 2 
diabetes accounts for over 90-95% of these cases (Desilva 2016, Gupta 2024 & Arvind 2024). 
Concurring to the World Wellbeing Organization (WHO), roughly 347 million individuals around 
the world are influenced by diabetes, and it is anticipated to gotten to be the seventh driving cause 
of passing all inclusive by 2030 (“WHO/diabetes” & Rahman 2023).The management of Type 2 
diabetes has evolved rapidly over the past decade, with several new therapeutic agents introduced. 
In 2005, the Indian Council of Medical Research (ICMR) released guidelines for the management 
of Type 2 diabetes, which have been extensively embraced throughout the nation. A subsequent 
ICMR workshop in 2018 focused on refining these guidelines (Arvind 2024). The short goals of 
this work are to discuss certain methodological modifications related to the environment, possible 
fixes, and further research opportunities. At this point, the most prevalent attributes are walking 
distance, air pollution, food, exercise and environmental pathways (Schulz 2016).  

1.1 Mechanism Linking the Environment and T2DM 

      Environmental, biochemical, and behavioral risk variables are thought to combine to cause type 
2 diabetes (Kahn S.E 2014 & Chatterjee 2017). If there is no environment that encourages healthy 
lifestyles, it is taught that these lifestyles are undesirable. A comprehensive search was carried out 
in pubmed, scopus, web of science and embase databases. The inclusive of some criteria were 
studied. Diabetes is a chronic metabolic disease characterized by the body's inability to 
appropriately control blood sugar levels. Diabetes mellitus type 2 is a chronic metabolic disease 
usually shows up as adult food, and its start is caused by a complex interaction between 
environmental and genetic factors. This condition is characterized by insulin resistance and 
decreased insulin production, both of which cause long-term disruptions in glucose metabolism. 
As a result, high blood sugar levels can lead to a number of complications, such as cardiovascular 
disease, neurological conditions, kidney problems, and retinopathy. (M. Barbagallo 2022, 
N.R. Kakavandi 2023 & Armghan, J 2023). 

     Empirical data has demonstrated a probable association between diabetes and exposure to 
environmental arsenic. Numerous studies have shown that extended exposure to arsenic may 
increase the likelihood of developing diabetes. There is evidence linking the high levels of arsenic 
in the population's drinking water to both occupational settings and demographics (M. Halim 
2019). Studies revealed a 27% increase in the risk of developing diabetes is linked to a drinking 
water arsenic concentration rise of 15 micrograms per liter (C. Ke, K.V 2023 & Rahmani 2023) 
Insulin signaling and secretion are negatively impacted by arsenic, which results in decreased 
glucose tolerance and elevated insulin resistance. This event raises the possibility that arsenic plays 
a role in the onset or exacerbation of diabetes mellitus 2. Furthermore, it has been demonstrated 
that exposure to arsenic increases oxidative stress and inflammation, two processes that are known 



to be important in the development and maintenance of diabetes (M. Nikravesh 2023, 
M.L. Colwell 2023 & K. Rangel-Moreno 2022). 

      Arsenic's effects on the advancement of diabetes have been linked in numerous research. The 
data points to a possible connection between inorganic arsenic and the onset of diabetes, especially 
in populations exposed to different concentrations of the metal. Chronic low-level arsenic exposure 
has been linked in certain publications to a higher prevalence of diabetes mellitus 2 (W. Li 2023, 
S. Shokat 2024, V.M. Nurchi 2020 & N.E. Tinkelman 2020). Polluted air can raise type 2 diabetes 
risk. Studies from the USA, Europe reveals that there is a definite link between incident diabetes 
mellitus 2 and ambient PM 2.5(fine particulate matter 2.5 micrometer diameter). In a systematic 
review and meta-analysis some countries showed that the risk of diabetes mellitus 2 rose by 8-
10% per 10 microgram/meter increase in the exposure and the association was stronger in females. 
However conclusion drawn from these studies cannot be directly extra collated to developing 
countries.  

     Ambient pollution and the levels are low in high income countries. There have been a few 
attempts accessing the risk of diabetes associated with air pollution in developing nations where 
the air quality tends to be much poorer. A study from china showed a 155 increased hazards of 
incidents of diabetes from every 10 microgram/meter increase in fine particulate matter of diameter 
of less than or equal to 2.5 micrometer. Another study from china reported an increase in the fasting 
plasma glucose (FPG) and glycated hemoglobin (HBA1c) by 0.025 and 0.001 m mole/liter 
respectively for every 10 microgram/meter increase in particulate matter of diameter less than or 
equal to 10 micrometer and an increase by 0.061 to 0.016 m mole /liter respectively for every 10 
microgram/meter increase in fine particulate matter of diameter 2.5 micrometer.  

     An analysis of data from nearly 4 lakhs individuals showed that exposer to the higher levels of 
fine particulate matter in air of diameter 2.5 micrometer was associated with not only with the 
increased risk of diabetes 2, but also mortality risk from base line of diabetes mellitus 2 and its 
complications (Mohan V 2024). In such an environment, educational and behavioral measures 
may be severely reduced or completely useless. Numerous studies have demonstrated the 
importance of behavioral, socioeconomic, demographic, and individual level factors in predicting 
type 2 diabetes(Gray-Webb 2013 & Agardh 2011). Reviews from the past also point to a 
connection between the environment and conditions like obesity, cardiovascular disease, 
hypertension, metabolic syndrome, and physical activity that are directly linked to type 2 diabetes 
(Black 2008, Sallis 2008 & Poortinga 2006).  

 

 

 



Figure 1: Diagrammatic representation of the mechanisms by which environmental factors 
affect the risk of Type-2 diabetes mellitus. 

      The hypothetical system shown in Figure 1 describes the various ways that unique 
environmental factors could influence type 2 diabetes.  Socio-ecological theories form the basis of 
this paradigm; they highlight that human behavior is determined by capacity and is supported by 
the socio-demographic, psycho-social, economic, organizational, and physical environments 
(Sallis 2012). In Figure 1.1, the methods by which environmental factors affect the possibility of 
Type-2 diabetic complications are diagrammatically represented (Northridge 2023). Within this 
framework, newer advancements have led to the development of categorization models utilizing a 
range of machine learning approaches. By leveraging extensive or real-time data sets to aid in 
diagnosis and prediction, these models assist medical professionals in the identification and 
management of Type 2 diabetes (Arvind 2024). 

1.2 Investigation 

      This study's main objective is to examine diabetes datasets and apply machine learning 
algorithms—namely Decision Tree, Random Forest, Neural Network, Support Vector Machine, 
and Naive Bayes—for the prediction of Type 2 diabetes (Teimoory 2024, Xiaopu 2024,  
Chakraborty 2023, Krishna 2024 & Uddin 2023). The research seeks to develop a robust prediction 
engine and a corresponding web application that enables users to predict diabetes using these 



algorithms. This study also explores the application of statistical models in machine learning and 
aims to enhance understanding of how these algorithms function in the context of diabetes 
prediction (Teimoory 2024 & Xiaopu 2024).  

1.3 Materials and Methods 

     The study was done preferred reporting items for systematic reviews and meta-analysis 
(PRISMA) statement. Based on study criteria such as  

1. Article published in English  
2. Full text records  
3. Articles relating arsenic exposure through the drinking water, air and food path 

ways and its effects on diabetes mellitus 2.  
4. Exclusion criteria like books, clinical trials and conference articles. 

     Along with these criteria followed by real time data set and online dataset to study prevalence 
accessibility of diabetes mellitus 2 and its management to reduce mortality rate, it also emphasis 
the linkage between air pollution in the form of fine particulate matter less than or equal to 2.5 
micrometer diameter and also arsenic pollution through drinking water and food and other 
pollutant toxin.  

Diabetes mellitus is classified into the following types: 

1. Type 1 Diabetes: Previously known as "Insulin-Dependent Diabetes Mellitus," this kind of the 
disease is caused by the body's inability to manufacture insulin (IDDM). 

2. Type 2 Diabetes: This kind is marked by an absolute insulin deficit that can occasionally 
coexist with insulin resistance, a condition in which cells are unable to use insulin as intended. 
It was once referred to as "Adult-Onset Diabetes" or "Non-Insulin Dependent Diabetes 
Mellitus" (NIDDM). 

3. Type 3 diabetes, often known as gestational diabetes, is characterized by increased blood 
glucose levels and affects pregnant women who have never been diagnosed with the disease 
(Chakraborty 2023, Krishna 2024 & Uddin 2023). 

4. The following Table 1 describes Clinical Differentiation between Type 1 and Type 2 Diabetes. 



Figure 2: Block Diagram of Asian Indian Phenotype 

Table 1: Clinical Differentiation between Type 1 and Type 2 Diabetes (LIANA 2024) 

Clinical Point Type 1 Diabetes Type 2 Diabetes 

Age  Typically diagnosed in youth Commonly diagnosed  
in adults 

Family History of Diabetes Uncommon Common 
Ketosis at Diagnosis Can occur Rare 
Insulin Markers Absence  Presence  

C-Peptide Assay Lack of reserve beta cells Presence  of reserve beta 
cells 

Pancreatic Autoantibodies Presence  Absence  

 



1.4 Overview of Types-2 Diabetes  

     Diabetes type 2 may be a complicated metabolic and vascular condition primarily marked by 
insulin resistance and, to differing degrees, insulin secretory absconds. It may be 
a dynamic condition as often as possible related with central corpulence, dyslipidemia, and 
hypertension. In spite of the fact that type 2 diabetes is most common among overweight 
and hefty people of center to late age, it is progressively watched in more youthful populaces and 
those with lower body mass index (BMI). Outstandingly, South Asians display the “Asian Indian 
phenotype,” where, at a given BMI level, Compared to Caucasians, they typically have more total 
body fat, extra visceral fat, increased insulin resistance, and a higher prevalence of diabetes (see 
Figure 2). 

1.5 Data Collection 

     Actual data were gathered from diagnostic facilities in accordance with accepted clinical 
standards for the diagnosis of diabetes. The following table 2 describes diagnostic criteria for 
Diabetes and Pre-diabetes disease. Among the diagnostic standards used are: 

• Random Plasma Glucose: ≥ 200 mg/dL 
• Fasting Plasma Glucose (FPG): ≥ 126 mg/dL 
• 2-Hour Post 75g Glucose (hPG): ≥ 200 mg/dL 
• Glycated Hemoglobin (HbA1c): ≥ 6.5% 

Patients presenting with symptoms such as osmotic symptoms, weight loss, tiredness, 
weakness, recurrent urogenital infections, and delayed wound healing were assessed. Notably, 
some patients with diabetes may exhibit no symptoms. Pre-diabetes, identified as impaired glucose 
tolerance (IGT), was also evaluated to gauge early risk. 

Table 2: Diagnostic Criteria for Diabetes and Pre-diabetes 

Parameter WHO/ADA Criteria Diabetes 

Fasting Plasma Glucose 

(FPG) (mg/dl) 
< 110 mg/dL 126 mg/dL or higher 

2-Hour Postprandial Glucose(2-hPG) 

(mg/dl) 
< 140 mg/dL 200 mg/dL or higher 

Glycated Hemoglobin (HbA1c)(%) < 5.7% 6.5% or higher 

Random Plasma Glucose Not specified 
200 mg/dL or higher with 

symptoms 

 



Based on family history, symptoms of insulin resistance, hypertension, dyslipidemia, and 
polycystic ovarian syndrome (PCOS), specialists frequently predict Type 2 diabetes. This research 
leverages real-time data collected at Clinical diagnostic centers to enhance prediction accuracy. 
Machine learning algorithms were applied to analyze patterns in the collected data. This approach 
aimed to improve the prediction and classification of diabetes and pre-diabetes, providing a 
valuable tool for doctors in the diagnostic process. The data mining techniques used were selected 
to identify underlying patterns and trends, thus supporting more accurate diabetes classification 
and management. 

2. Methodology 

2.1 Data Description 

     The evaluation of the performance of various classification algorithms on two distinct datasets 
and reviews relating to arsenic in drinking water, food, fine particulate matter & pollution in air to 
predict diabetes. 

Dataset 1: the dataset is collected from online Kaggle website. It Consists of 5,000 samples with 
nine features including gender, age, hypertension, heart disease, smoking history, BMI, HbA1c 
level, blood glucose level, and diabetes as the target variable. The following Table 3 is the sample 
table of online dataset. 

Dataset 2: the real time data set is collected from Clinical Diagnostic Center. It Comprises 48 
samples with 19 features, including lab_id, gender, age, fasting blood sugar levels, postprandial 
blood sugar levels, HbA1c, and a target variable indicating diabetes presence. The following Table 
4 is the sample table of real time dataset. 

Table 3: The Sample Table of Online Dataset 

SI.No Gender Age hypertension heart_ 
disease 

smoking_ 
history bmi HbA1c_ 

Level 

blood_ 
glucose_ 

level 
diabetes 

1 Female 80 0 1 never 25.19 6.6 140 0 

2 Female 54 0 0 No Info 27.32 6.6 80 0 

3 Male 28 0 0 never 27.32 5.7 158 0 

4 Female 36 0 0 current 23.45 5 155 0 

5 Male 76 1 1 current 20.14 4.8 155 0 

  



Table 4: The Sample Table of Real Time Dataset 

 

2.2 Data Preprocessing 

Dataset 1: 

• Missing Value Imputation: Examined for any missing data. The most frequent value was 
used to impute categorical data, and the mean was used for numerical features. 

• Encoding Categorical Variables: One-hot encoding was used for categorical variables 
like "smoking history" and "gender," whereas label encoding was used for other variables. 

• Feature Standardization: Standardized numerical features were given a mean of 0 and a 
standard deviation of 1. 

Dataset 2: 

• Missing Value Handling: Missing values were handled appropriately, with numerical 
features filled using the mean, and categorical features filled using the mode. 

• Feature Transformation: Features were encoded and scaled as necessary for 
compatibility with the classification algorithms. 

2.3 Managing Class Disparities 

 Dataset 1: 

• Created synthetic samples for the minority class using the Synthetic Minority Over-
sampling Technique (SMOTE), which balanced the distribution of classes. 
 
 
 

Dataset 2: 

SI.No lab_id Gender Age fbs1 fns1 ppbs1 ppvs1 HbA1c Mbg result remarks 

1 4 M 49 209 1 354 1.5 9.3 220.21 1 dm 

2 11 M 28 81 0 105 0 5.4 108.28 0 nd 

3 12 F 25 76 0 99 0 5.1 99.67 0 nd 

4 15 M 65 69 0 104 0 5.6 114.02 0 nd 

5 19 M 51 164 0.5 238 1 7.3 162.81 1 dm 



• The dataset was relatively balanced, but preprocessing was applied to ensure class 
distributions were optimal for modeling. 

2.4 Model Training and Evaluation 

Dataset 1: 

• Trained and evaluated six classifiers: Support Vector Machine (SVM), Decision Tree, 
Random Forest, Naive Bayes and Neural Network  

• Split the dataset into training (70%) and testing (30%) sets. 
• Employed Stratified K-Fold cross-validation (5 folds) to assess model performance. 

Dataset 2: 

1. Trained and evaluated the same classifiers with cross-validation techniques suited for 
smaller datasets. 

2. Used the entire dataset for training and evaluation due to its smaller size. 

2.5 Classifiers and Configurations: 

• SVM: RBF kernel approximation. 
• Decision Tree: Limited maximum depth to avoid overfitting. 
• Random Forest: 100 trees with maximum depth of 10. 
• Naive Bayes: classifier with probability based on the Bayes theorem. 
• Neural Network:  100 neurons in a single hidden layer with ReLU activation. 

     3.  Results and Discussions 
 

    Arsenic is a heavy metalloid that can be toxic to the body and has no place in human physiology. 
Type 2 diabetes is more common in people who have been exposed to high doses of arsenic over 
an extended period of time (C. Fan 2022, S.-M. Tsai 1999, B.Z. Guisela 2022 & M.L. Kile 2008). 
Due to the fact that prolonged exposure to arsenic is associated with impaired glucose tolerance 
and insulin resistance, two conditions that are known to exist. The characteristic insulin resistance 
found in people with type 2 diabetes. Uncertainty exists regarding the exact mechanisms by which 
arsenic influences the development of type 2 diabetes (F. Castriota 2018, Z. Ghaedrahmat 2021, 
B. Dalal 2010 & M.J. Spratlen 2018). The likelihood of developing diabetes increases with 
continuous exposure to arsenic and with increasing concentrations of the element, according to 
weighted data ((M.J. Spratlen 2019, X. Wang 2018 & Chang 2020). More research that looked 
into the quantity of arsenic in water samples was included in the review. Arsenic analysis in 
plasma, blood serum, and urine samples came in second. The more inferior classes included food, 
diet, nails, and tears in addition to air samples.  

 
4.1 Environmental Exposure To Arsenic And Type 2 Diabetic Mellitus 



Long-term exposure to arsenic through drinking water has been linked to an increased 
incidence of micro and Marco vascular complications of diabetes type 2—such as myocardial 
infractions, heart failure, stroke, retinopathy, diabetic food, and poly neuropathy (D. Jovanović 
2019, L.-I. Hsu 2016, E.V. Bräuner 2014, M. Rahman 1998, A.S. Andrew 1998, A.S. Andrew & 
D. Chakraborti 2011). This systematic review looked at several studies that looked into the 
relationship between the prevalence of diabetes and long-term exposure to arsenic via food, drink, 
and airborne environments (D. D'Ippoliti 2010, J.-W. Huang 2014 & N.S. Rao 2022) Consuming 
arsenic-tainted water can lower insulin production and increase insulin resistance, which can lead 
to beta cell dysfunction and insulin resistance. Furthermore, oxidative stress and inflammation—
both of which are connected to diabetes mellitus—can result from exposure to arsenic (37, Diaz-
Villasenor 2013). 

These mechanisms may explain why consuming arsenic-contaminated water results in diabetes 
and other associated health problems (K.A. James 2013, Fevrier-Paul 2021, Z.  Drobná 2013, 
M. Rahman M 1999 & K. Sripaoraya 2017). Genetics and drinking water exposure to arsenic were 
also associated with an increased incidence of diabetes 2. People with particular mutations in the 
notch Recept(J.G. Spangler 2012) or 2 Gene (NOTCH2) were more likely to develop diabetes 2 
when exposed to inorganic arsenic There is a correlation between the death rate from diabetes 
mellitus and the county-level air concentration of arsenic in each of the 100 counties of North 
Carolina, in addition to drinking water sources. Furthermore, it is well acknowledged that exposure 
to particulate matter containing arsenic, beryllium, cadmium, and nickel has a negative effect on 
health, potentially increasing death rates and elevating the risk of Type 2 diabetes (J.G. Spangler 
2012 & E. Riseberg 2021). 

4.2 Demographic Characteristics And Socio Economic Status 

Based on demographic factors like gender, age, genetics, obesity, and socioeconomic level, 
some research demonstrates a relationship between arsenic exposure and the development of Type 
2 diabetes. Regarding this, some findings were noted across a number of populations, including 
those in the US, Taiwan, Korea, and China. Diabetes increased the incidence of internal 
malignancies, such as those of the stomach, colon, liver, pancreas, and lungs. When diabetes 
patients had elevated arsenic levels, the correlation was especially strong (M. Hendryx 2021). For 
instance, the amount of 20 metals in the urine of middle-aged women participating in the study 
was measured. This finding indicated a link between T2DM in women and the excretion of metals 
like arsenic (X. Wang 2020). Thus, in order to eliminate the accessibility of heavy metals that 
cause T2DM and ultimately result in mortality, the primary focus needs to be on drinking water, 
food, and crops. In order to reduce and assist physicians in identifying the primary causes of 
diabetes and to identify previous treatments based on reviews and datasets that are currently 
available, the best machine learning techniques or classifiers were developed. This allowed 
medical professionals to provide direct or telemedicine care while also lowering global death rates. 

3.3 Dataset Results 

In Table 5,the test accuracy of five classifiers—SVM, Decision Tree, Random Forest, 
Naive Bayes, and Neural Network—was evaluated across two datasets is shown. On Dataset 1, 



Random Forest achieved the highest accuracy at 98%, followed by Neural Network (93%), 
Decision Tree (92%), SVM (91%), and Naive Bayes (86%). In contrast, for Dataset 2, all 
classifiers except the Neural Network reached 100% accuracy. The Neural Network, however, 
showed a significant drop to 50% accuracy on Dataset 2, suggesting potential challenges such as 
over fitting or data imbalance. 

Table 5: Test Set Accuracy 

Classifier Dataset 1 Accuracy Dataset 2 Accuracy 

SVM 0.91 1.00 

Decision Tree 0.92 1.00 

Random Forest 0.98 1.00 

Naive Bayes 0.86 1.00 

Neural Network 0.93 0.50 

 

 

Figure 3 Accuracy of Different Classifiers on Dataset1 and Dataset2 

The bar graph in Figure 3 illustrates the accuracy of five classifiers—SVM, Decision Tree, 
Random Forest, Naive Bayes, and Neural Network—across two datasets. Random Forest 
consistently achieved the highest accuracy on Dataset 1, while all classifiers except the Neural 

 
 



Network reached 100% accuracy on Dataset 2. The Neural Network's significant drop in 
performance on Dataset 2, with only 50% accuracy, stands out, highlighting potential model-
specific issues. 

Table 6: Cross-Validation Accuracy 

Classifier Dataset-1 
Accuracy 

Dataset-1 

Std Dev 

Dataset-2 

Accuracy 

Dataset-2 

Std Dev 

SVM 0.91 0.01 1.00 0.00 

Decision Tree 0.92 0.02 1.00 0.00 

Random Forest 0.98 0.00 1.00 0.00 

Naive Bayes 0.86 0.01 1.00 0.00 

Neural Network 0.92 0.02 0.50 0.00 

In Table 6, the cross-validation accuracy and standard deviation of five classifiers are 
compared across two datasets. On Dataset 1, Random Forest achieved the highest accuracy (0.98), 
while Naive Bayes had the lowest (0.86). For Dataset 2, all classifiers except the Neural Network 
achieved perfect accuracy (1.00) with no variation. The Neural Network showed a notable drop in 
performance on Dataset 2, with an accuracy of 0.50 and no deviation. 

Table 7: Confusion Matrices 

Dataset 1 
SVM: 

 Predicted 
Non-Diabetic 

Predicted 
Diabetic 

Actual Non-
Diabetic 1357 45 

Actual 
Diabetic 85 513 

 
Decision Tree: 

 Predicted 
Non-Diabetic 

Predicted 
Diabetic 

Actual Non-
Diabetic 1360 42 

Dataset 2 
SVM: 

 Predicted Non-
Diabetic 

Predicted 
Diabetic 

Actual Non-
Diabetic 17 0 

Actual 
Diabetic 0 31 

 
Decision Tree: 

 Predicted Non-
Diabetic 

Predicted 
Diabetic 

Actual Non-
Diabetic 17 0 



Actual 
Diabetic 72 526 

 
Random Forest: 
 Predicted 

Non-Diabetic 
Predicted 
Diabetic 

Actual Non-
Diabetic 1392 10 

Actual 
Diabetic 32 566 

 
Naive Bayes: 
 Predicted 

Non-Diabetic 
Predicted 
Diabetic 

Actual Non-
Diabetic 1300 102 

Actual 
Diabetic 95 503 

 
Neural Network: 

 Predicted 
Non-Diabetic 

Predicted 
Diabetic 

Actual Non-
Diabetic 1362 40 

Actual 
Diabetic 72 526 

 

Actual 
Diabetic 0 31 

 
Random Forest: 
 Predicted Non-

Diabetic 
Predicted 
Diabetic 

Actual Non-
Diabetic 17 0 

Actual 
Diabetic 0 31 

 
Naive Bayes: 
 Predicted Non-

Diabetic 
Predicted 
Diabetic 

Actual Non-
Diabetic 17 0 

Actual 
Diabetic 0 31 

 
Neural Network: 

 Predicted Non-
Diabetic 

Predicted 
Diabetic 

Actual Non-
Diabetic 17 0 

Actual 
Diabetic 0 31 

 

     The confusion matrices compare the performance of five classifiers—SVM, Decision Tree, 
Random Forest, Naive Bayes, and Neural Network—across two datasets as shown in Table 7. On 
Dataset 1, Random Forest exhibited the highest accuracy, with only 10 false positives and 32 false 
negatives, while Naive Bayes showed the most errors. For Dataset 2, all classifiers performed 
flawlessly, correctly classifying both non-diabetic and diabetic cases, with no misclassifications. 

3.4 Key Findings 

1. Dataset Characteristics and Performance: 
o Dataset 1 (5,000 samples) and Dataset 2 (48 samples) presented different 

challenges due to their size and feature composition. Dataset 1, with its larger size 
and varied features, demonstrated generally lower but still competitive accuracy 
scores compared to Dataset 2, which, despite its small size, showed perfect 
classification results for most models. 

 



2. Classifier Performance: 
o Random Forest emerged as the most effective classifier for Dataset 1, achieving 

the highest cross-validation accuracy (0.98) and test set accuracy (0.98). This 
robustness indicates Random Forest’s ability to handle complex feature interactions 
and its generalization capability. 

o For Dataset 2, all classifiers achieved perfect test set accuracy except neural 
network. However, permutation testing showed a p-value of 1.0000 for the SVM 
classifier, suggesting that while the model performed well, the results could be 
influenced by the small sample size. 

3. Model Evaluation Metrics: 
o Cross-Validation Accuracy: Random Forest consistently outperformed other 

models in Dataset 1. For Dataset 2, classifiers achieved perfect accuracy, but this is 
likely influenced by the small sample size. 

o Confusion Matrices: The confusion matrices highlighted the models' ability to 
correctly classify diabetic and non-diabetic instances. For Dataset 1, Random 
Forest had the lowest number of misclassifications. For Dataset 2, all classifiers 
achieved perfect results, indicating a lack of variance in the data. 

4. Feature Importance: 
o In Dataset 1, Random Forest's feature importance analysis identified Blood Glucose 

Level, HbA1c Level, and BMI as the most influential features, aligning with 
clinical expectations. Dataset 2’s limited feature set and size did not permit a 
detailed feature importance analysis. 

3.5 Implications 

• The findings suggest that while Random Forest is a highly effective algorithm for larger, 
complex datasets, smaller datasets may yield inflated performance results due to limited 
data variability. Future research should focus on expanding dataset sizes, exploring 
additional features, and applying more advanced preprocessing techniques to enhance 
model performance and generalizability. This research work emphasis the purpose of 
application of data mining techniques in  telemedicine. 

• In the telemedicine system regular visits to the hospitals for patients suffering from 
diseases is minimized, since they can be expensive for rural background patients. 

• During the COVID 19 pandemic the physical presence of the patients and doctors 
became risky. People preferred Telemedicine system. 

• Telemedicine services done through video conferences & smart phone which reduce the 
time and cost to patients. 

• Furthermore telemedicine system has a fast and advantageous characteristics. It can 
stream line the work flow of the hospitals and clinics. 

• This method is more useful in natural calamities , floods , at the war zones and rural areas 
all over the world. 

• The telemedicine system would make easier to monitor ,discharged patients and manage 
their recovery from disease and reduce mortality rates. 

 



4. Conclusion 
This systematic review and dataset study discusses the relationship between type 2 diabetes 

and arsenic exposure. Research has indicated that extended exposure to arsenic by ingestion or 
work-related exposure heightens the likelihood of acquiring Type 2 diabetes. Insulin resistance is 
thought to be caused by exposure to arsenic, which is thought to alter how the body uses insulin 
and how it is released. It is linked to inflammation and stress as well. The information now 
available suggests a possible link between TF2DM and environmental arsenic exposure from food, 
water, and the air. The review reveals a close connection between T2DM and environmental 
degradation. This study presents a straightforward approach for assessing the prevalence of type 2 
diabetes through dataset analysis utilizing different classifiers. It finds that the Random Forest 
classifier consistently delivers superior performance, achieving perfect accuracy of 100% on both 
real-time datasets. The research compares various classifiers, including SVM, Random Forest, 
Naive Bayes, Neural Network, and Decision Tree, ultimately identifying Random Forest as the 
most effective method for disease prediction in telemedicine. With accuracy rates of 98% and 
100% for online datasets, Random Forest is highlighted as the best option for detecting, 
controlling, and monitoring prevalent diseases while helping to reduce mortality rates. Thus, data 
mining techniques emerge as powerful tools for predicting and monitoring diseases within 
telemedicine systems. Doctors can use these accurate classifiers to help patients lead healthy lives, 
control the mortality rates in remote areas using telemedicine systems, or use a personal approach. 
In order to stop the disease's escalating burden, a fuller understanding of the connection between 
the environment and type 2 diabetes can assist develop health-promoting policies and offer 
opportunities for people to translate their intentions into long-lasting behavioral adjustments.  

5. Future Work 

Further investigations are needed to: 

• Expand Dataset Size: Get more samples to make sure the models are reliable and 
applicable to a wider range of situations. 

• Explore Additional Features: Integrate more relevant features that could enhance 
predictive performance. 

• Hyper-parameter Tuning: Perform extensive hyper-parameter optimization to further 
improve model accuracy. 

• Advanced Techniques: Implement ensemble methods and deep learning approaches to 
address limitations observed in smaller datasets. 

For future research, several key areas warrant attention: First, expanding the dataset size is 
crucial to obtain a more comprehensive range of samples, which will enhance the reliability and 
generalizability of the models across diverse situations. Second, exploring additional relevant 
features may significantly improve predictive performance, as incorporating more data points can 
provide a richer context for classification. Third, hyper parameter tuning should be prioritized to 
optimize model accuracy, allowing for fine-tuning of the algorithms to achieve better results. 
Finally, implementing advanced techniques, such as ensemble methods or deep learning 



approaches, can help overcome the limitations associated with smaller datasets and improve 
predictive capabilities in the context of telemedicine. This study underscores the importance of 
selecting appropriate models and evaluation techniques based on dataset characteristics and 
highlight the need for careful consideration of model performance metrics, especially in cases with 
small sample sizes. 
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