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ABSTRACT 

Accurately classifying land use and land cover (LULC) is crucial for understanding Earth's dynamics 
under human influence. This study proposes a novel approach to assess LULC classification accuracy 
using Sentinel-2 data. Authors have compared traditional and Principal Component Analysis (PCA)-
based approaches for Maximum Likelihood Classification, Random Forest, and Support Vector Machine 
(SVM) classifiers. Four key classes (agricultural land, water bodies, built-up areas, wastelands) are 
classified using supervised learning. Accuracy is evaluated using producer, user, overall accuracy, and 
kappa coefficient. Our findings reveal superior accuracy with PCA-SVM compared to other methods. 
PCA effectively reduces data redundancy, extracting essential spectral information. This study highlights 
the value of combining PCA with SVM for LULC classification, empowering policymakers with 
enhanced decision-making tools and fostering informed policy development. 
 

 
INTRODUCTION 
 
The alteration of land use and land cover (LULC) has emerged as a pivotal element in 
contemporary approaches to the stewardship of natural resources and the surveillance of 
environmental transformations. The terms 'Land Use' and 'Land Cover,' initially identified as 
distinct, have been observed to be used interchangeably across diverse literature (Shrestha et 
al. 2021). Remote sensing data obtained from satellites are widely employed in the delineation 
of the Earth's LULC. The global repercussions of changes in LULC are evident, particularly in 
the contrasting impacts on urban and rural regions. Mapping LULC stands out as a crucial 
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application of remote sensing (Lakhera & Rahi 2021, Tiwari et al. 2024). Land cover serves as 
a foundational factor influencing and connecting various aspects of both the human and 
physical environment. It is widely acknowledged that alterations in land cover have substantial 
implications for essential processes, such as biogeochemical cycling, consequently affecting 
global warming, soil erosion, and sustainable land use. Over the next century, land cover is 
anticipated to be the foremost influential variable impacting biodiversity (Cheruto et al. 2016). 
Remote sensing technologies offer a unique advantage in this context, allowing for repetitive, 
long-term observations of the same geographic regions. The ability to monitor changes over 
time provides critical insights into the dynamics of land cover transitions, enabling more 
accurate predictions of future environmental shifts. Platforms like Google Earth and the Earth 
Observation (EO) satellites have revolutionized the way researchers access and analyze spatial 
data, making it easier to conduct LULC assessments even in remote or poorly monitored 
regions. This is particularly vital for developing countries, where other forms of high-resolution 
data might be unavailable due to resource constraints. Remote sensing fills this gap, providing 
comprehensive data that can be used for effective land management, urban planning, and 
environmental conservation (Tilahun & Teferie et al. 2015, Fakeye et al. 2015). Moreover, the 
rapid development of machine learning (ML) (Loukika et al. 2021) and Deep Learning (DL) 
techniques has transformed LULC classification. Traditionally, methods like the Bayesian 
Maximum Likelihood classifier were used, but recent advancements in ML have led to the 
development of more efficient and accurate classification algorithms. Support Vector Machines 
(SVM), Random Forest (RF), K-nearest neighbors (KNN), and more recently, deep learning 
models have enabled researchers to analyze LULC data with unprecedented accuracy (Asif et 
al. 2023, Avcı et al. 2023) These techniques are particularly beneficial in handling the vast 
amounts of complex data generated by hyperspectral imagery (HSI), which contain hundreds 
of spectral bands for each pixel. Hyperspectral data provide detailed information about the 
composition of land surfaces, making them ideal for fine-scale LULC classification. However, 
this data richness also presents challenges, such as the high dimensionality and computational 
demands of processing HSI. 
Deep learning models, including Convolutional Neural Networks (CNNs), have proven 
particularly adept at handling hyperspectral data, outperforming traditional methods by 
capturing intricate spatial and spectral features that other algorithm may miss. The ability of 
these models to automatically learn feature representations from raw data has significantly 
improved the performance of LULC classification, leading to more accurate and reliable maps 
(Tao et al. 2023). This is especially important in heterogeneous landscapes—areas where 
diverse land use patterns, such as mixed urban and agricultural zones, create complex decision 
boundaries that can be challenging for conventional methods to classify correctly. 
 
Predictive Modeling Approaches 
Machine learning classifiers are noted for achieving increased accuracy, even when dealing 
with intricate data and a higher number of input features (Parracciani et al. 2024, Huang et 
al.,2011). Some well-known classifiers include Artificial Neural Network (ANN), CART, k-
Nearest Neighbor (k-NN), RF and SVM (Jayabaskaran et al. 2023). While certain classifiers, 
like ANN, adhere to a neural network structure with multiple layers of nodes that exchange 
input observations iteratively throughout the learning process (specifically, the Multi-Layer 
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Perceptron), reaching a termination condition, CART constructs a straightforward decision tree 
based on provided training data (Sun et al. 2024). RF, on the other hand, employs random 
subsets of training data to create numerous decision trees (Chowdhury et al. 2024). Other 
classifiers such as k-NN utilize information about neighboring pixels to discern the inherent 
patterns within the training dataset (Van Groenigen and Stein, 1998). In contrast, classifiers 
like SVM identify a subset of training data known as support vectors by fitting a hyperplane 
that optimally separates two classes. Across various literature, it is widely suggested that in 
most classification scenarios, RF and SVM stand out as superior performers compared to other 
machine classifiers (Huang et al., 2002, Mountrakis et al. 2011, Pal and Foody 2012, Belgiu 
and Dragut 2016). 
Random Forest tree employs a bagging technique, randomly selecting a subset of training 
samples with replacement to build individual trees. This can lead to overlapping samples and 
some being excluded from certain trees (Kunapuli 2023, Siqueira et al. 2024). The unused 
samples (out-of-bag samples) are utilized for unbiased performance evaluation, providing an 
estimate of generalization error (Blain). Additionally, at each node, Random Forest randomly 
selects variables to determine the best split, reducing correlation between trees and lowering 
generalization error. The choice of pruning methods typically affects tree-based classifiers, but 
Random Forest is resilient to such influences, as it constructs trees without the need for pruning 
techniques (Breiman 2001 et al., Breiman et al. 2004). 
The Maximum Likelihood Classification (MLC) assumes normal distribution of statistics for 
each class in every band. It computes the likelihood that a particular pixel belongs to a specific 
class. Unless a probability threshold is chosen, all pixels receive classification. Each pixel is 
allocated to the class with the highest probability, i.e., the maximum likelihood. If the 
maximum probability is below a specified threshold, the pixel remains unclassified (Richards 
et al. 2013). 
Support vector machine (SVM) is a supervised machine learning method that is often used 
LULC classification (Halder et al. 2023). SVM demonstrates effective accuracy in LULC 
applications, creating a hyperplane in high-resolution satellite imagery. Notably, it excels in 
classifying images with a constrained set of training samples. SVM is regarded as more 
sophisticated than maximum likelihood classification (MLC) and is capable of achieving 
superior LULC classification compared to other classifiers, especially when dealing with a 
limited number of pixels (Fetene et al., 2023). SVM aims to discover the optimal hyperplane 
that maximizes the margin between different classes of data points.  
Principal component analysis (PCA) utilizing satellite imagery has been widely employed 
across various domains, notably in the detection of changes in land use and land cover 
(Moharram and Sundaram 2023). Over the years, it has gained considerable popularity due to 
its simplicity and effectiveness in amplifying change-related information (Schirpke et al. 2023). 
PCA, rooted in eigenvector analysis of the data correlation matrix, aims to capture maximum 
variances within a limited number of orthogonal components (Mahmud & Hafsa 2016; Shekar 
& Mathew 2022). 
The fundamental concept of PCA involves the reduction of dimensionality in a dataset 
comprising numerous interrelated variables. This reduction is typically achieved by 
transforming the dataset into a new set of variables known as principal components (PCs). 
These PCs are both uncorrelated and ordered. When applied to data from multiple spectral 
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bands, PCA tends to concentrate the majority of information in the initial two or three PCs, 
while the subsequent PCs generally contain noise (Somayajula et al. 2021, Shekar et al. 2023). 
This study makes a unique contribution to the existing literature by conducting a direct 
comparative analysis between a conventional method utilizing Sentinel-2 original bands and a 
PCA-based approach for land use and land cover (LULC) classification. While much of the 
previous work has focused on evaluating classification algorithms in isolation or utilizing only 
traditional methods, this study evaluates the same classifiers (Maximum Likelihood 
Classification, Random Forest, and Support Vector Machine) across two distinct 
dimensionality reduction approaches. By doing so, the study sheds light on how PCA, a 
commonly used dimensionality reduction technique, impacts the performance of LULC 
classification algorithms in real-world applications. 
The comparison of PCA and conventional methods is impactful because it addresses a key 
challenge in remote sensing—the curse of dimensionality—especially when handling multi-
spectral data. Reducing dimensionality can lead to more efficient classification while 
maintaining or even improving accuracy. This study provides new insights into how PCA, 
when combined with machine learning classifiers like SVM, can outperform traditional 
classification approaches. This adds to the current understanding of LULC classification by 
highlighting the effectiveness of PCA-SVM, particularly in improving classification accuracy 
and computational efficiency.  
Study area 
This study delves into the Panam watershed, a left bank tributary of the Mahi River basin 
nestled within Gujarat's Mahisagar district. The Panam River originates near Bhadra in Madhya 
Pradesh's Jhabua district, traversing northwest for roughly 125 kilometers before merging with 
the Mahi in Panchmahals district of Gujarat state. Encompassing a drainage area of 2400 square 
kilometers, the region experiences a tropical climate with temperatures fluctuating between 
15°C in January and 40 °C in May. Rainfall averages 945 mm annually, shaping the watershed's 
characteristics. This unique confluence of geographical and climatic factors positions the 
Panam watershed as an ideal canvas for our research endeavors. Figure 1 provides a visual 
representation of the study area's location. 
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Figure 1. Study area of Panam river watershed 

MATERIALS AND METHODS 
This research investigates LULC in the Panam River watershed using freely available Sentinel-
2 satellite imagery from January 2024, acquired from the Copernicus Open Access Hub with 
minimal cloud cover. QGIS, free and open-source GIS software, was employed for data 
visualization, editing, and analysis. The study focused on 12 Sentinel-2 bands (bands 2 to 12) 
that were mosaicked and clipped to the specific watershed area. Details regarding the utilized 
Sentinel-2 multi spectral instrument (MSI) Level 1C bands are provided in Table 1. 

 
 
 
 
 

Table 1. Sentinel-2 MSI Level1 C bands and its band width 
Band 
No. 

Band Name Central Wavelength 
(nm) 

Band width 
(nm) 

2 Blue 496.6 98.0 
3 Green 560.0 45.0 
4 Red 664.5 38.0 
5 Vegetation Red Edge 705.0 19.0 
6 Vegetation Red Edge 740.0 18.0 
7 Vegetation Red Edge 783.0 28.0 
8 Near Infrared 835.1 145.0 

8A Narrow NIR 865.0 33.0 
9 Water vapour 945.0 26.0 

10 SWIR-Cirrus 1380.0 75.0 
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11 SWIR 1610.0 143.0 
12 SWIR 2190.0 2420 

 
As shown in Figure 2, the methodology commences by importing Sentinel-2-MSI L1 C 
imagery into the QGIS software, followed by the creation of a seamless image of the study area 
through mosaicking. A band composite image is then generated using all bands. To streamline 
data and identify crucial bands for classification, a Principal Component Analysis (PCA) is 
performed on the band composite image. After data preprocessing, the subsequent step involves 
collecting training samples for each land use class to be classified. High-resolution Google 
Earth images were employed to extract training samples for each LULC class. These images, 
with their fine spatial detail, allowed for accurate identification of homogeneous areas 
corresponding to Agricultural land, Water bodies, Built-up areas, and Barren land. Each sample 
class was carefully delineated through visual interpretation, ensuring that only representative 
and pure pixels were included. 
The size of each sample class was determined based on the area and spatial distribution of the 
LULC classes, ensuring sufficient representation across the study area. For instance, larger 
classes like Agricultural land had a higher number of sample pixels compared to smaller classes 
like Water bodies. On average, around 200–300 pixels were collected per class to train the 
classifiers. Validation of the sample set was achieved through a stratified random sampling 
technique, where ground-truth points were cross-referenced with both high-resolution imagery 
and field data (where available). This process ensured that the samples represented the true 
variability within each LULC class, leading to robust training datasets for model development. 
The classification stage employs three distinct machine learning classifiers: maximum 
likelihood classifier, random forest tree classifier, and support vector machine classifier. Each 
classifier undergoes training using the previously collected training samples, distinguishing 
among the specified land use classes. Various accuracy metrics, including user's accuracy (UA), 
producer's accuracy (PA), overall accuracy (OA), and Kappa's coefficient (k), are calculated 
for each classifier within the context of the designated land use classes. Kappa coefficient is 
calculated using the following equation 
𝑘𝑘 = (𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑒𝑒) (1− 𝑃𝑃𝑒𝑒)⁄          (1) 
where: k is the kappa coefficient (ranges from 0 to 1), Po is the observed agreement probability 
(sum of diagonal elements of confusion matrix divided by total number of pair, Pe is the 
expected agreement probability (sum of products of individual agreement probabilities for each 
category) 
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Figure 2. Methodology adopted for LULC 

A kappa value of 0 indicates absolutely no agreement between raters beyond what could be 
expected by chance alone. Essentially, their ratings are no better than random guessing. If the 
kappa falls between 0.01 and 0.20, there's some slight agreement, meaning the raters are 
occasionally aligned but more often differ. Moving to the 0.21-0.40 range suggests fair 
agreement. While not perfect, the raters demonstrate some consistency in their assessments. A 
kappa value between 0.41 and 0.60 signifies moderate agreement, indicating the raters are often 
in agreement, though occasional discrepancies still exist. Substantial agreement is achieved 
with a kappa of 0.61 to 0.80. Here, the raters demonstrate a strong level of consistency in their 
evaluations. Finally, a kappa value between 0.81 and 1.00 represents almost perfect agreement. 
In this case, the raters are nearly always in sync, providing highly reliable and consistent 
assessments. 
 
RESULTS AND DISCUSSION 
Principal component analysis of all bands  
Principal component analysis (PCA) was employed to compress the Sentinel-2 multispectral 
data. This technique aims to statistically capture the most significant evidence from the original 
bands (bands 2-12) into a reduced set of uncorrelated components termed principal components 
(PCs). The first few PCs inherently capture the majority of the data's variability (Rana et al. 
2020). Notably, the 1st principal component (PC1), resulting from the 1st eigenvector, captured 
the greatest portion of the overall alteration within the Sentinel-2 dataset. Furthermore, the first 
three PCs collectively explained 98.85% of the eigenvalues, highlighting their effectiveness in 
representing the data. The remaining PCs displayed a decreasing trend in explained variance, 
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corresponding to their respective eigenvalues. Tables 2 and 3 illustrate the redundancy of 
information among several bands, indicating that if this redundancy can be reduced through 
techniques like PCA, then the amount of information can be compressed without significant 
loss of valuable data. Author concentrated on the crucial data and excluded the later 
components (bands 4 to 12) because they appeared noisy and lacked useful information. Table 
4 presents the eigenvalues and their corresponding cumulative percentage for principal 
components derived from Sentinel-2 bands. PCA reduced the associated Sentinel-2 dataset to 
a significantly smaller set of non-related variables that retain most of the original dataset's 
information. Figure 3(a‒c) displays the PCA bands obtained from the Sentinel-2 information, 
while Figure 3(d‒f) illustrates the frequency supply of these PC bands. The highest variance 
is found in the 1st PC, followed by the 2nd and 3rd components, according to the frequency 
distribution. The considered variances for PCA bands 1, 2, and 3 are 515,498.4, 263,079.1, and 
8,843.772, respectively. Because of its high variance, the image produced from PCA band 1 
data resembles the original image and contains the majority of the pertinent scene information. 
In multispectral remote sensing imagery, adjacent bands are often highly correlated and tend 
to provide similar information about an object. The correlation between PCs 1 and 3, 1 and 2, 
and 2 and 3 was all found to be precisely zero. The random scatter observed in the Figure 4(a‒
c) and minimal correlation values indicate a complete absence of relationship between the PCs. 
Consequently, classification tasks can often benefit from using the first few PCs instead of the 
entire original dataset. In our study, visual inspection revealed that PCA band 1 generally 
exhibited brighter pixel values and higher contrast compared to PCA band 2. This suggests that 
PCA band 1 may capture information related to high-variance features in the data, potentially 
making it more suitable for specific classification tasks depending on the target features of 
interest. 
Table 2. Covariance matrix for Sentinel-2 Bands 

Covariance Matrix 
Bands 2 3 4 5 6 7 8 8A 9 10 11 12 
2 2534 3142 6366 5086 1155 74 246 -2 14 13356 12664 278 
3 3142 4302 8274 7382 4774 4420 4968 787 19 19648 17347 5308 
4 6366 8274 19571 16612 3777 130 1069 1127 58 48332 43630 2041 
5 5086 7382 16612 17449 13716 13701 15026 3646 67 52130 42330 17894 
6 1155 4774 3777 13716 60727 82391 82966 13782 53 45670 21589 93635 
7 74 4420 130 13701 82391 114641 114838 18556 50 48490 17398 129299 
8 246 4968 1069 15026 82966 114838 120480 18465 55 53913 21237 130521 
8A -2 787 1127 3646 13782 18556 18465 4161 17 13710 7207 21660 
9 14 19 58 67 53 50 55 17 2 225 159 72 
10 13356 19648 48332 52130 45670 48490 53913 13710 225 182512 143458 65389 
11 12664 17347 43630 42330 21589 17398 21237 7207 159 143458 122336 27102 
12 278 5308 2041 17894 93635 129299 130521 21660 72 65389 27102 147830 
 
Table 3. Correlation matrix for Sentinel-2 Bands 

Correlation matrix 
Bands 2 3 4 5 6 7 8 8A 9 10 11 12 

2 1.00 0.95 0.90 0.76 0.09 0.00 0.01 0.00 0.21 0.62 0.72 0.01 
3 0.95 1.00 0.90 0.85 0.30 0.20 0.22 0.19 0.22 0.70 0.76 0.21 
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4 0.90 0.90 1.00 0.90 0.11 0.00 0.02 0.12 0.31 0.81 0.89 0.04 
5 0.76 0.85 0.90 1.00 0.42 0.31 0.33 0.43 0.38 0.92 0.92 0.35 
6 0.09 0.30 0.11 0.42 1.00 0.99 0.97 0.87 0.16 0.43 0.25 0.99 
7 0.00 0.20 0.00 0.31 0.99 1.00 0.98 0.85 0.11 0.34 0.15 0.99 
8 0.01 0.22 0.02 0.33 0.97 0.98 1.00 0.82 0.12 0.36 0.17 0.98 

8A 0.00 0.19 0.12 0.43 0.87 0.85 0.82 1.00 0.19 0.50 0.32 0.87 
9 0.21 0.22 0.31 0.38 0.16 0.11 0.12 0.19 1.00 0.39 0.34 0.14 
10 0.62 0.70 0.81 0.92 0.43 0.34 0.36 0.50 0.39 1.00 0.96 0.40 
11 0.72 0.76 0.89 0.92 0.25 0.15 0.17 0.32 0.34 0.96 1.00 0.20 
12 0.01 0.21 0.04 0.35 0.99 0.99 0.98 0.87 0.14 0.40 0.20 1.00 

 
Table 4. Total variance explained for Sentinel-2 Bands 

Percent and Accumulative Eigenvalues 
PC Layer Eigen Value % of Eigen Values Accumulative of Eigen Values 

1 515498.4 64.7168 64.7168 
2 263079.1 33.0275 97.7444 
3 8843.772 1.1103 98.8547 
4 3807.653 0.478 99.3327 
5 2426.928 0.3047 99.6374 
6 1031.848 0.1295 99.7669 
7 770.6416 0.0967 99.8636 
8 462.6402 0.0581 99.9217 
9 324.2669 0.0407 99.9624 

10 230.819 0.029 99.9914 
11 67.13062 0.0084 99.9998 
12 1.29266 0.0002 100 
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(a) (d) 

  
(b) (d) 

  
(c) (e) 

Figure 3. Sentinel-2 data in three principal component bands (a-c) alongside their respective frequency 
distributions (d-f) 
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(a) (b) (c) 

Figure 4(a‒c). Scatter Plots Reveal Weak Linkages Between Principal Components. 
 
LULC classes were chosen based on a thorough understanding of the specific study area. The 
study identified four primary LULC classes: Agricultural land (Agricultural zones, forest, etc.), 
water bodies (Reservoirs, rivers, stream, swamps, lakes,), built-up areas (buildings and other 
manmade edifices, areas designated as mixed urban, industrial, or built territory), and barren 
land (Areas perpetually stripped bare, boasting less than 10% vegetation cover. Windswept 
plains and rocky outcrops reign supreme, their surfaces a tapestry of exposed dirt, sand, and 
stone). Classification was carried out using two approaches: the conventional method using 
Sentinel-2 original bands as shown in Figure 5(a) and a PCA-based approach as shown in 
Figure 5(b).  

  
(a) (b) 

Figure 5. Original band composite (a) and PCA - band composite (b) 
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a. Maximum likelihood Classification 

 
b. Maximum likelihood Classification (PCA) 

 
c. Random Tree Forest 

 
d. Random Tree Forest (PCA) 

 
e. Support Vector Machine 

 
f. Support Vector Machine (PCA) 

Figure 6. Comparative analysis of classification methods: (a) MLE, (b) MLE with PCA, (c) 
Random Tree Forest, (d) Random Tree Forest with PCA, (e) Support vector machine, (f) 
Support vector machine with PCA 
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The effectiveness of these two LULC classification approaches was evaluated by assessing the 
predictive performance of three classification algorithms, namely MLC, RF and SVM, along 
with the training data. Training data for each LULC category was collected as a set of pixels, 
and obtaining test data was done using stratified random sampling. The LULC maps generated 
using various classifiers for both the approaches are depicted in Figure 6(a-f). 
Performance evaluation 
Authors evaluated the efficiency of each model-MLC, RF, and SVM for both approaches by 
considering user's accuracy (UA) and producer's accuracy (PA) for each LULC class. The 
results for each class were individually outlined as the models exhibited varying performance 
across different types. The specifics of UA and PA for each LULC class using MLC, RF, and 
SVM were thoroughly examined and described.  
UA and PA for Agricultural land 
The land cover classification results for Agricultural Land using the Sentinel-2 Conventional 
Approach and Sentinel-2 PCA Approach with different classifiers reveal varying levels of 
accuracy. As shown in Table 5 under the Conventional Approach, both MLC and RF classifiers 
achieve high User's accuracy (UA) for Agricultural Land, with MLC reaching 100.00% UA 
and a corresponding Producer's accuracy (PA) of 65.63%, while RF achieves a UA of 100.00% 
and a PA of 62.50%. As shown in Table 6 in the PCA Approach, MLC shows a decrease in 
accuracy for Agricultural Land, with a UA of 80.95% and a lower PA of 39.29%. RF 
experiences a significant decline in both UA (62.79%) and PA (3.57%) for Agricultural Land, 
indicating diminished accuracy. SVM exhibits a perfect UA of 100.00% with a PA of 50.00% 
under the Conventional Approach, and in the PCA Approach, it maintains a relatively high UA 
of 82.61% with a lower PA of 32.14%. These results highlight the varied performance of 
classifiers in accurately classifying Agricultural Land under different approaches. 
UA and PA for Built up Area 
In the land cover classification results for Built-up Area using the Sentinel-2 Conventional 
Approach and Sentinel-2 PCA Approach with different classifiers, there are notable differences 
in the accuracy metrics. As shown in Table 5 under the conventional approach, maximum 
likelihood classification (MLC) achieves a user's accuracy (UA) of 80.95%, indicating 
reasonably accurate classification, with a high producer's accuracy (PA) of 94.44%. Random 
Forest Tree performs exceptionally well, achieving a perfect UA of 100.00% and a high PA of 
91.67%, showcasing precise classification for built-up area. Support vector machine (SVM) 
exhibits a UA of 78.05% with a corresponding PA of 88.89%. As shown in Table 6 the PCA 
Approach, MLC maintains accuracy with a UA of 81.58% and a perfect PA of 100.00%. 
Random Forest Tree achieves a UA of 83.78% and a perfect PA of 100.00%, indicating reliable 
classification. SVM also demonstrates consistent accuracy, with a UA of 83.78% and a perfect 
PA of 100.00%. These results highlight the varying performance of classifiers in accurately 
classifying Built-up Area under different approaches, with each classifier showcasing strengths 
in specific accuracy metrics. 
UA and PA for Water bodies 
In the land cover classification results for Water Bodies using the Sentinel-2 Conventional 
Approach and Sentinel-2 PCA Approach with different classifiers, distinct patterns in 
classification accuracy emerge. As shown in Table 5 under the CA, MLC exhibits high 
accuracy, achieving a UA of 96.43% and a PA of 79.41%. RFT, while displaying a lower UA 
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of 82.93%, achieves a perfect PA of 100.00%, indicating precise classification for Water 
Bodies. SVM demonstrates a UA of 96.77 % with a PA of 88.24 %. As shown in Table 6, the 
PCA Approach, all classifiers perform exceptionally well for water bodies. MLC achieves a 
perfect UA of 100.00 % and a high PA of 92.11 %. Random forest tree and SVM both achieve 
perfect UA and PA values of 100.00 % and 97.37 %, respectively, showcasing precise and 
consistent classification for Water Bodies. 
UA and PA for Barren Land 
In the land cover classification results for Barren Land using the Sentinel-2 CA and Sentinel-2 
PCA approach with different classifiers, there are noticeable variations in classification 
accuracy.  
Table 5.  Accuracy of different Classifiers for LULC using conventional approach for Sentinel-
2 data set 
Sr. No Conventional approach 

Classifiers Classes UA PA OA Kappa 
1 Maximum Likelihood 

Classification 
Agricultural Land 100.00% 65.63% 80.13% 0.8013 
Built up Area 80.95% 94.44% 
Water bodies 96.43% 79.41% 
Barren Land 70.67% 98.15% 

2 Random Forest Tree Agricultural Land 100.00% 62.50% 82.69% 0.8269 
Built up Area 100.00% 91.67% 
Water bodies 82.93% 100.00% 
Barren Land 71.83% 94.44% 

3 Support Vector Machine Agricultural Land 100.00% 50.00% 81.41% 0.8141 
Built up Area 78.05% 88.89% 
Water bodies 96.77% 88.24% 
Barren Land 73.97% 100.00% 

 
As shown in Table 5 under the CA, MLC achieves a UA of 70.67%, indicating moderate 
accuracy, with a high PA of 98.15%. RTF displays slightly higher UA at 71.83%, with a PA of 
94.44%. SVM performs well, achieving a UA of 73.97% and a perfect PA of 100.00%, 
indicating reliable classification for Barren Land. 
Table 6.  Accuracy of different classifiers for LULC using PCA approach for Sentinel-2 dataset 
Sr. No PCA approach 

Classifiers Classes UA PA OA Kappa 
1 Maximum Likelihood 

Classification 
Agricultural Land 80.95% 39.29% 83.22% 0.8322 
Built up Area 81.58% 100.00% 
Water bodies 100.00% 92.11% 
Barren Land 73.47% 78.26% 

2 Random Forest Tree Agricultural Land 62.79% 3.57% 83.92% 0.8392 
Built up Area 83.78% 100.00% 
Water bodies 100.00% 97.37% 
Barren Land 96.15% 54.35% 

3 Support Vector Machine Agricultural Land 82.61% 32.14% 86.01% 0.8601 
Built up Area 83.78% 100.00% 
Water bodies 100.00% 97.37% 
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Barren Land 78.26% 78.26% 
 
As shown in Table 6 the PCA Approach, MLC maintains reasonable accuracy with a UA of 
73.47 % and a PA of 78.26 %. Random Forest Tree demonstrates significantly higher accuracy, 
with a UA of 96.15% and a PA of 54.35%, indicating precise classification for Barren Land. 
SVM shows consistent accuracy with a UA of 78.26 % and a PA of 78.26 %. 
Overall accuracy and Kappa’s coefficient 
In evaluating the land cover classification results using the Sentinel-2 Conventional Approach 
and Sentinel-2 PCA Approach with different classifiers, Overall Accuracy (OA) and Kappa 
coefficients provide insights into the performance of each approach. Under the Conventional 
Approach, MLC achieves an OA of 80.13% with a Kappa coefficient of 0.8013, indicating 
reasonably accurate classification. Random Forest Tree demonstrates higher accuracy, with an 
OA of 82.69 % and a Kappa coefficient of 0.8269. SVM maintains competitive accuracy with 
an OA of 81.41% and a Kappa coefficient of 0.8141. 
In the PCA approach, MLC showcases improved accuracy with an OA of 83.22 % and a Kappa 
coefficient of 0.8322. Random Forest Tree maintains similar accuracy, achieving an OA of 
83.92 % and a Kappa coefficient of 0.8392. Notably, SVM excels with the highest accuracy, 
presenting an OA of 86.01% and a Kappa coefficient of 0.8601. 
The practical advantages of using the PCA-SVM method for land use and land cover (LULC) 
classification are substantial, particularly in addressing issues like high dimensionality and data 
complexity. By reducing the number of input features, PCA captures the most important 
variance in the data, thereby improving computational efficiency and reducing the risk of 
overfitting. This makes PCA-SVM particularly useful in cases where the training data is 
limited, as SVM’s strong generalization capability allows it to perform well even with fewer 
samples. Moreover, PCA-SVM proves highly effective in heterogeneous landscapes, where 
complex land use patterns (e.g., urban and agricultural mixes) require sophisticated 
classification models that can handle intricate decision boundaries. As demonstrated in the 
study, PCA-SVM achieved the highest OA and Kappa coefficients, making it a superior 
approach for LULC classification, especially in regions with limited training samples and 
diverse landscape features. 
 
CONCLUSIONS 
In conclusion, this study undertook land use and land cover classification in the study area, 
delineating four primary classes: Agricultural land, water bodies, built-up areas, and barren 
land. The predictive performance of three classification algorithms (MLE, RF, and SVM) was 
evaluated using both traditional and PCA-based approaches using the original bands of 
Sentinel-2. The results demonstrated varying accuracies across land cover classes and 
classifiers. Particularly noteworthy was the Sentinel-2 PCA Approach, notably with the 
Support Vector Machine classifier, which exhibited superior accuracy for Agricultural Land 
(UA: 82.61%, PA: 32.14%), Built-up Area (UA: 83.78%, PA: 100.00%), Water Bodies (UA: 
100.00%, PA: 97.37%), and Barren Land (UA: 78.26%, PA: 78.26%) compared to the 
Conventional Approach. 
The detailed assessment of User's Accuracy (UA), Producer's Accuracy (PA), Overall Accuracy 
(OA), and Kappa coefficients provided comprehensive insights into the strengths and 
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weaknesses of each approach and classifier. With an Overall Accuracy of 86.01% and a Kappa 
coefficient of 0.8601, the Sentinel-2 PCA Approach with the SVM classifier emerged as the 
most effective approach for accurate land cover classification in this study. These findings 
underscore the potential applicability of this approach for land use and land cover mapping and 
monitoring throughout similar regions, demonstrating its utility for broader applications in land 
cover studies. The integration of Sentinel-2 data with advanced classification methods can 
contribute significantly to more accurate and efficient land cover assessments in diverse 
geographical areas. 
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