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ABSTRACT 

Land Use and Land Cover (LULC) classification is critical for monitoring and managing natural resources 
and urban development. This study focuses on LULC classification for change detection analysis of remotely 
sensed data using a machine learning-based Random Forest classifier. The research aims to provide a detailed 
analysis of LULC changes between 2010 and 2020. The Random Forest classifier is chosen for its robustness 
and high accuracy in handling complex datasets. The classifier achieved a classification accuracy of 86.56% 
for the 2010 data and 88.42% for the 2020 data, demonstrating an improvement in classification performance 
over the decade. The results indicate significant LULC changes, highlighting areas of urban expansion, 
deforestation, and agricultural transformation. These findings highlight the importance of continuous 
monitoring and provide valuable insights for policymakers and environmental managers. The study 
demonstrates the effectiveness of using advanced machine-learning techniques for accurate LULC 
classification and change detection in remotely sensed data. 
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1. Introduction 

Land Use and Land Cover (LULC) classification is a crucial aspect of environmental monitoring and 
management, providing insights into the spatial distribution and temporal dynamics of the Earth's surface 
(Mahendra, H.N. et al., 2023a). The classification and subsequent change detection of LULC are 
fundamental for understanding ecological dynamics, urban planning, and resource management (Kumar 
Jat, M et al., 2008). Traditionally, LULC mapping relied on manual interpretation of satellite images, which 
was both time-consuming and prone to human error. With advancements in remote sensing technology, it 
is now possible to acquire high-resolution, multi-temporal satellite imagery, facilitating more efficient and 
accurate LULC classification (K. Ganesha Raj et al., 2020). 

In recent years, the integration of machine learning techniques with remote sensing technologies 
has emerged as a powerful collaboration, offering unprecedented capabilities for analyzing vast amounts 
of spatial data (Benyamin Hosseiny et al., 2022; Mahendra, H. N et al., 2023d). This research delves into 
the application of a machine learning-based random forest classifier for the classification and change 
detection of remotely sensed data. Remote sensing, with its ability to capture information from a distance, 
provides an invaluable tool for monitoring changes in the Earth's surface over time (Li, M et al., 2013). 
Leveraging the efficiency and versatility of machine learning algorithms, particularly the random forest 
classifier, holds the promise of enhancing the accuracy and automation of such analyses (Chaitanya B. 
Pande et al., 2022; Jayabaskaran, M. et al., 2023). 

The classification of remotely sensed data is a fundamental step in extracting meaningful 
information about land cover and land use (Belgiu, M et al., 2016). Traditional methods often face 
challenges in handling the complexity and variability present in large-scale datasets (D. Lu et al., 2007). 
This research seeks to address these challenges by exploring the random forest (RF) classifier's ability to 
handle high-dimensional data, nonlinear relationships, and complex interactions between spectral bands. 
By employing this machine learning approach, we aim to improve the precision and efficiency of land cover 
classification, leading to more reliable assessments of the Earth's surface characteristics. 

Change detection, a critical component of land monitoring, involves identifying alterations in land 
cover over time (Firoz et al., 2016; Mahendra, H.N et al., 2023b). As environmental dynamics accelerate, 
timely and accurate detection of changes becomes paramount for informed decision-making (GN 
Vivekananda et al., 2021). The random forest classifier, known for its adaptability and robustness, presents 
an innovative solution for change detection in remotely sensed imagery (Gislason et al., 2004; Mahendra, 
H.N et al., 2023c). Through a systematic analysis of temporal datasets, this research aims to evaluate the 
random forest classifier's performance in detecting and characterizing land cover changes, contributing to 
our understanding of environmental transformations on both regional and global scales. 

The integration of machine learning algorithms into the realm of remote sensing not only promises 
advancements in accuracy and efficiency but also opens avenues for scalable and automated analyses 
(Mahendra  H N et al., 2019). By exploring the potential of the random forest classifier in this context, we 
aspire to contribute to the ongoing discourse on the optimization of land cover classification and change 
detection methodologies (Tiwari et al., 2024). This research aligns with the broader objective of harnessing 
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technology to address environmental challenges and facilitate sustainable land management practices, 
ultimately fostering a deeper understanding of our planet's ever-evolving landscape. The outcomes of this 
research contribute valuable insights into the effectiveness of machine learning-based random forest 
classifiers for remotely sensed data analysis. The findings have implications for a range of applications, 
including environmental monitoring, land-use planning, and natural resource management. Eventually, this 
research enhances our ability to harness the power of machine learning for accurate classification and 
change detection in remotely sensed datasets, facilitating a more comprehensive understanding of dynamic 
land cover patterns. 

 

2. Related Works 

The use of remotely sensed data in environmental monitoring and analysis has been widely explored in the 
literature. Numerous studies have investigated the application of various classification techniques to 
interpret and classify remote sensing data. Notable works include L. S. Davis et al., (2002) and Mahendra, 
H. N et al., (2023c) who employed Support Vector Machines (SVM) for land cover classification, and 
Voulgaris et al., (2008), who utilized k-Nearest Neighbors (k-NN) for similar purposes.  

A range of studies have demonstrated the effectiveness of random forest classifiers in analyzing 
remotely sensed data. Piramanayagam et al., (2016) achieved an 86.3% overall accuracy in land cover 
classification using this method, while Mellor et al., (2014) obtained a 73% accuracy in forest classification. 
Gislason et al., (2004) further highlighted the potential of random forests in handling multisource data, and 
Belgiu et al., (2016) emphasized their ability to handle high data dimensionality and multicolinearity. 
Mosin, V.K et al., (2019) presented tree detection and classification in forestry applications using machine 
learning. A system with finely tuned filters will make possible robust species classification at a cost much 
lower than hyperspectral imaging. Boukir, S et al., (2017) used random forest for remote sensing 
classification. Targeting lower-margin training samples is a strategy for inducing diversity in ensemble 
classifiers and achieving better classifier performance for difficult or rare classes. 

Pal, M. et al., (2005) developed a random forest classifier remote sensing image classification.  The 
number of user-defined parameters required by random forest classifiers is less than the number required 
for SVMs. Zerrouki, N et al., (2019) presented LULC Change Detection analysis using a machine learning-
based algorithm. The proposed detection scheme succeeds in effectively identifying land cover changes. 
M. Sheykhmousa., et al., (2013) compare the Random forest- and support vector machine-based multi-
temporal classifications. Tian, S et al., (2016) used the random forest classifier to achieve accurate 
classification in the Ertix River in northern Xinjiang, China. 

The Random Forest (RF) classifier has proven to be a robust and versatile machine learning 
algorithm for remote sensing applications. Studies such as Nguyen, H.T et al., (2018) have demonstrated 
the effectiveness of RF in land cover mapping, showcasing its ability to handle diverse spectral information 
and improve classification accuracy. Additionally, Shihab, T.H  et al., (2020) applied RF to detect changes 
in land cover over time, showcasing its utility in change detection analyses. Several studies have combined 
classification and change detection methodologies to monitor environmental changes over time. 
Abdulhakim Mohamed Abdi et al., (2020) conducted a comprehensive analysis using a combination of 
machine learning classifiers and change detection algorithms to assess land cover changes in a specific 
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region. Their work highlights the importance of integrating classification techniques with change detection 
methods for a more comprehensive understanding of dynamic environmental processes. 

While the existing literature provides valuable insights into the application of machine learning-
based classifiers for remote sensing, there is still a need for research that specifically focuses on the 
integration of Random Forest classifiers for both classification and change detection tasks. This research 
aims to address this gap by presenting a detailed analysis of the performance of Random Forest in 
classifying remotely sensed data and detecting temporal changes, contributing to the advancement of 
effective environmental monitoring techniques. 

 

3. Study Area  

Mysuru district, located in the southern part of the Indian state of Karnataka, is renowned for its rich 
historical and cultural significance. The district serves as the cultural capital of Karnataka and is steeped in 
the grandeur of its royal heritage. The city of Mysuru, also known as the 'City of Palaces,' is home to the 
iconic Mysuru Palace, a splendid architectural masterpiece that attracts tourists from around the world. The 
palace, built in Indo-Saracenic style, stands as a testament to the opulence and grandeur of the Wadiyar 
dynasty, which ruled the region for centuries. Apart from the palace, Mysuru is known for its vibrant Dasara 
festival, celebrated with grandeur, featuring a procession of decorated elephants, cultural events, and a 
spectacular illumination of the palace. 

The district is not just a historical and cultural hub but also boasts a diverse geographical landscape. 
Nestled in the Deccan Plateau, Mysuru is surrounded by lush greenery, picturesque hills, and serene lakes. 
The Chamundi Hills, with the Chamundeshwari Temple perched on top, provide a panoramic view of the 
city. Mysuru is also home to the enchanting Brindavan Gardens, known for its musical fountain and 
beautifully landscaped terraces. Additionally, the district is recognized for its educational institutions, 
including the historic Mysore University, contributing to the intellectual and academic development of the 
region. With its blend of cultural heritage, natural beauty, and educational excellence, Mysuru district 
stands as a unique and vibrant destination in the heart of South India. The map of the Mysuru district is 
shown in Fig. 1. 
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Fig. 1. Study area 

 

4. Data used 
 
Linear Imaging Self-Scanning Sensor-III (LISS-III), is a satellite sensor data used in this work. This sensor 
is designed for remote sensing applications, particularly in the field of Earth observation. Developed by the 
Indian Space Research Organization (ISRO), LISS-III is part of the payload onboard the Indian Remote 
Sensing (IRS) satellites. This sensor operates in the visible and near-infrared spectral bands, capturing high-
resolution imagery with a spatial resolution ranging from 23.5 meters to 5.8 meters, depending on the 
specific satellite and its orbital parameters. The multi-spectral capabilities of LISS-III enable it to provide 
valuable data for a variety of applications, including agriculture monitoring, land use planning, disaster 
management, and environmental studies. 

One notable aspect of LISS-III is its ability to acquire imagery in multiple spectral bands, such as 
blue, green, red, and near-infrared. This spectral diversity allows for the extraction of valuable information 
about the Earth's surface and vegetation health. The high spatial resolution of LISS-III imagery enhances 
the level of detail in the captured data, making it a valuable tool for precision agriculture, urban planning, 
and natural resource management. Researchers, government agencies, and industries leverage LISS-III data 
to make informed decisions and monitor changes in the environment over time, contributing to sustainable 
development and effective resource utilization. Table 1 provides the details of satellite data used in the 
study.  

Table 1. Satellite Data 
Satellite Name  Spatial resolution 

(meters) 
Sensor Used Year of 

Acquisition 
 

Resourcesat-1 
 

24m 
 

LISS-III 
 

2010 
 

Resourcesat-1 
 

24m 
 

LISS-III 
 

2020 
 

5. Methodology  

LULC classification using RF involves a systematic methodology to accurately categorize different land 
use and land cover types based on remote sensing data. The first step in the process is data acquisition, 
where high-resolution satellite imagery is obtained for the study area. These images serve as the input data 
for the classification model. Preprocessing steps, such as radiometric and atmospheric correction, are 
performed to enhance the quality of the images and ensure consistency across the dataset. Additionally, 
feature extraction may be employed to identify relevant spectral, spatial, and textural characteristics that 
can aid in distinguishing between different land cover classes. 

The second step involves the application of the RF algorithm for classification. RF is an ensemble 
learning technique that combines the predictions of multiple decision trees to improve overall accuracy and 
robustness. Training data, consisting of labeled samples representing different land cover classes, are used 
to train the RF model. The algorithm leverages the spectral signatures and spatial patterns present in the 
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training data to build a robust classification model. The model is then applied to the entire dataset, 
classifying each pixel or image segment into specific land cover categories. Finally, an accuracy assessment 
is conducted using validation data to evaluate the performance of the RF classifier and refine the model if 
necessary. This iterative process ensures the generation of reliable and accurate LULC maps for informed 
decision-making in various applications, such as environmental monitoring, urban planning, and natural 
resource management. The methodology followed in this research work is shown in Fig. 2.  

Data Acquisition: The first step in our methodology involves acquiring remotely sensed data covering the 
study area. This may include satellite imagery captured at different time points. In this work, we have 
obtained the LISS-III image of the study area for the years 2010 and 2020 respectively.   

Pre-processing: Pre-processing tasks such as atmospheric correction, radiometric calibration, and 
geometric correction is performed on the both the LISS-III image to enhance the quality of the imagery. 
Atmospheric correction of satellite data involves removing the effects of the atmosphere such as scattering 
and absorption) on the reflected light reaching the sensor. This process ensures that the data accurately 
represents surface reflectance by compensating for atmospheric distortions. Techniques include using 
radiative transfer models, ground-based measurements, or empirical methods. Corrected data is essential 
for accurate analysis in remote sensing applications. Radiometric correction of satellite data involves 
adjusting the pixel values in an image to account for sensor-specific errors, atmospheric conditions, and 
illumination differences. This ensures that the observed reflectance values represent true ground conditions. 
The process typically includes calibration using known reference targets and correcting for atmospheric 
scattering and absorption. It improves the accuracy and consistency of the satellite data for further analysis. 
Geometric correction of satellite data involves aligning images to a standard coordinate system by 
correcting distortions due to sensor geometry, satellite motion, and Earth's curvature. This process typically 
uses ground control points (GCPs) to match the satellite image to a reference map or coordinate system. It 
ensures accurate spatial representation, making the data usable for further analysis and comparison.  

Feature Selection and Extraction: Next, we focus on selecting and extracting relevant features 
from the remotely sensed data.  Feature selection in satellite data typically involves parameters 
like, spectral bands, in which selection of specific wavelengths relevant to the study (e.g., visible, 
nir, thermal), spatial resolution is choosing the pixel size that balances detail with computational 
efficiency, temporal resolution is selecting data from relevant time periods or frequencies of 
observation, topographic features is inclusion of elevation, slope, and aspect to account for terrain 
effects, and radiometric calibration is ensuring the data is corrected for sensor and atmospheric 
influences. 
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Fig. 2. Methodology  

Training Data Collection: A representative set of training data is essential for training the random forest 
classifier. Ground truth data, collected through field surveys or existing high-quality reference datasets, 
should be used to label the training samples. These labeled samples should cover the full range of land 
cover classes present in the study area. Care must be taken to ensure an adequate number of samples for 
each class, avoiding bias in the classifier towards overrepresented classes. 

Random Forest Classification: The heart of our analysis involves the application of a machine learning-
based RF classifier to the pre-processed and feature-selected datasets. The classifier will be trained using 
the labeled training samples, learning the relationships between the selected features and the corresponding 
land cover classes. The algorithm's ability to handle complex and non-linear relationships makes it well-
suited for classifying remotely sensed data. The resulting classification map will provide a detailed 
representation of land cover types in the study area. 

Change Detection Analysis: To detect changes over time, a comparative analysis is performed between 
classification results from different time points. The classified maps for each time period are compared 
pixel-wise to identify areas of change. Post-classification change detection techniques may be applied, such 
as image differencing or the calculation of vegetation indices for change assessment. This step allows for 
the identification and characterization of land cover changes, such as urban expansion, deforestation, or 
agricultural land conversion. 

Accuracy Assessment and Validation: The final step involves assessing the accuracy of the classification 
and change detection results. This is done by comparing the classified maps with independent validation 
datasets or ground truth data not used during the training phase. Accuracy metrics, such as overall accuracy, 
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producer's accuracy, and user's accuracy, are calculated to quantify the reliability of the classification. This 
step ensures the robustness of the analysis and provides insights into the effectiveness of the random forest 
classifier in capturing temporal changes in the remotely sensed data. 

 

6. Random Forest (RF) Classifier  

RF classifier has emerged as a powerful tool for the classification and change detection analysis of remotely 
sensed data. In the view of Earth observation, where satellite imagery plays a crucial role, the RF algorithm 
stands out for its versatility and robustness. Comprising an ensemble of decision trees, RF leverages the 
principle of bagging (bootstrap aggregating) to construct multiple trees, each trained on a subset of the data. 
This diversity in the ensemble enhances the model's generalization capabilities, making it well-suited for 
handling the complex and high-dimensional nature of remote sensing datasets. 

In the context of classification, RF excels in distinguishing between land cover classes, a 
fundamental task in remote sensing applications. The algorithm's ability to consider a multitude of spectral, 
spatial, and temporal features allows for more accurate and comprehensive classification outcomes. 
Additionally, the RF model provides information about feature importance, aiding in the interpretation of 
the classification results and enabling users to understand the key factors influencing land cover 
distinctions. Change detection, a critical aspect of monitoring environmental dynamics, benefits 
significantly from the Random Forest classifier. By comparing classifications from different time points, 
RF can identify changes in land cover with high precision. The ensemble nature of the algorithm enhances 
its sensitivity to subtle alterations in the landscape, making it particularly effective for detecting land cover 
changes caused by natural phenomena or human activities. 

The RF resistance to overfitting and capacity to handle noisy data contribute to its reliability in 
remote sensing analyses. The algorithm accommodates a wide range of input data types, such as 
multispectral or hyperspectral imagery, as well as ancillary information like topographic and meteorological 
data. This adaptability makes it a versatile choice for various remote sensing applications, from monitoring 
urban expansion to assessing deforestation. In summary, the RF classifier has proven to be an invaluable 
tool for classification and change detection analyses of remotely sensed data. Its ensemble-based approach, 
feature importance insights, and adaptability to different data types contribute to its widespread use in Earth 
observation studies. Whether applied to monitor land cover changes, map vegetation types, or assess 
environmental impacts, the RF algorithm stands as a robust and reliable solution in the ever-evolving field 
of remote sensing. The working principle of the random forest classifier is shown in Fig. 3.  
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Fig. 3. Working principle of the random forest classifier 

Ensemble Learning: Random Forest is an ensemble of decision trees. Ensemble learning combines the 
predictions of multiple models to improve overall accuracy and robustness. In the case of Random Forest, 
it builds a forest of decision trees and merges their outputs to make a more informed and reliable prediction. 

Decision Trees: Each tree in the Random Forest is a decision tree. Decision trees split the input data based 
on features, recursively dividing it into subsets until a certain condition is met. The decision at each node 
is made by evaluating a feature, and the goal is to make the final decision (classification) at the tree's leaf 
nodes. 

Random Feature Selection: Randomness is introduced in Random Forest through the selection of a 
random subset of features for each decision tree. This helps to decorrelate the trees and avoid overfitting 
specific features in the dataset. The algorithm doesn't use the entire set of features for each tree, which 
increases the diversity of the trees in the ensemble. 

Bootstrap Sampling: Another source of randomness is introduced through bootstrap sampling, also known 
as bagging (Bootstrap Aggregating). Random Forest builds each tree on a different subset of the training 
data, sampled with replacement. This means that some instances may be repeated in the subset, while others 
may be left out. 

Voting or Averaging: Once all the decision trees are built, predictions are made for each tree. In 
classification, the final prediction is often determined by a majority vote among the trees (for binary 
classification, it's a simple majority). For regression tasks, the predictions are averaged. 

Robustness and Generalization: The combination of multiple trees and the randomness introduced in 
feature selection and data sampling makes Random Forest robust and less prone to overfitting. It can handle 
noisy data and outliers better than individual decision trees. 

Feature Importance: Random Forest provides a measure of feature importance based on how often a 
feature is used to split the data across all trees. This can be valuable in understanding the significance of 
different features in the classification process. 

Change Detection Analysis: In the context of change detection, random forest can be applied by training 
the model on historical data representing different classes (e.g., land cover types) and then using the trained 
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model to classify new or updated data. Changes can be detected by comparing classifications over different 
time periods. 

Overall, the Random Forest classifier's strength lies in its ability to create a robust and accurate model by 
combining multiple decision trees and introducing randomness through feature selection and data sampling. 
This makes it well-suited for classification tasks, including change detection analysis in various domains. 

 

7. Results and Discussion 

7.1 LULC Classification and Assessment  

The study identified and delineated various land cover classes across the study area. The prominent land 
cover classes included built-up areas, water bodies, cultivated land, fallow land, scrubland, vegetation, and 
forest. In the analysis of LULC for the year 2010, the classified maps revealed distinctive patterns across 
various categories. The built-up areas exhibited a significant expansion, indicating urbanization and 
infrastructure development. Water bodies were identified with precision, reflecting the spatial distribution 
of lakes, rivers, and other aquatic features. Cultivated lands showcased a mix of agricultural activities, 
highlighting the regions contributing to food production. Fallow lands, scrub lands, and vegetation were 
discerned, providing insights into transitional and natural landscapes. Forest cover was evident, 
emphasizing the importance of preserving biodiversity and ecological balance. The comprehensive 
classification of LULC in 2010 laid the foundation for understanding the baseline landscape and served as 
a valuable reference point for subsequent years.  

Fast forward to the year 2020, the classified maps depicted dynamic changes in LULC, indicative 
of evolving environmental and societal factors. Built-up areas exhibited continued expansion, illustrating 
ongoing urban development. Water bodies maintain their distinct presence, crucial for monitoring aquatic 
ecosystems and water resource management. Cultivated lands showcased alterations in land use patterns, 
reflecting changes in agricultural practices. The identification of fallow lands, scrub lands, and vegetation 
highlighted areas undergoing transition or ecological restoration efforts. Notably, the forest cover exhibited 
fluctuations, underlining the importance of conservation efforts amidst increasing anthropogenic pressures. 
The comparative analysis between the 2010 and 2020 classified maps unveiled trends in land use dynamics, 
providing valuable insights for informed decision-making in the realms of urban planning, environmental 
conservation, and sustainable resource management. The classified map of the Mysuru district for the years 
2010 and 2020 is shown in Fig.  4 and Fig.  5 respectively. The LULC assessment has been carried out for 
both the classified map and corresponding assessment results of both years is shown in Table 2. The total 
geographical area of Mysuru district is 6307 sq. km. 

 

 
 



11 
 

 

Fig. 4. LULC classified map of the Mysuru district for the year 2010 

 

Fig. 5. LULC classified map of the Mysuru district for the year 2020 
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Table 2. Assessment of LULC classes 
 

 
Class Name 

2010 2020 Change in area (sq. 
km) Area (in Sq. Km) Area (in sq. Km) 

Built-up 292.24 411.78 119.54 
Water bodies  287.55 346.92 59.37 

Cultivated land 2986 3751.12 765.12 
Fallow land 1096.51 123.26 -973.25 

Scrubland 91.6 112.45 20.85 
Vegetation  554.4 628.65 74.25 

Forest  996.25 932.12 -64.13 
 

 

7.2 Performance Analysis  

The Random Forest classifier demonstrated commendable accuracy in LULC mapping for both 
time periods. The classification accuracy was measured at 86.56% for the year 2010 and exhibited 
improvement to 88.42% in 2020 as shown in Table 3. This upward trend in accuracy indicates the 
robustness of the classification model, suggesting its efficacy in capturing changes in land cover 
over time. The increase in accuracy from 2010 to 2020 underscores the classifier's ability to adapt 
and enhance performance, likely attributed to improvements in training data and model 
optimization. This increase in classification accuracy reflects the effectiveness of the chosen 
methodology in capturing land use and land cover changes over the decade. The higher accuracy 
in 2020 suggests the model's ability to adapt to the evolving landscape, highlighting its robustness 
in handling temporal variations. The other performance parameters such precision, recall, and F1is 
also calculated for the both the classified images. The Table 3 compares the performance of a RF 
model using satellite images from two different years, 2010 and 2020 respectively. For 2010 
classified data, the model achieved a precision of 85%, recall of 84%, F1 score of 86%, with an 
accuracy of 86.56% and a Kappa value of 85.86%. While 2020 classified data, the model slightly 
improved with a precision of 86%, recall of 85%, F1 score of 86%, with a higher accuracy of 
88.42% and the same Kappa value of 85.86%. 

Table 3. Accuracy assessment results 
Model Satellite 

Images 
Precision  Recall  F1  

 
Accuracy 
(%)  

Kappa 
Value 

RF LISS-III 2010 85 84 86 86.56 % 85.86% 
LISS-III 2020 86 85 86 88.42 % 86.32% 
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Further, the performance of the RF classifier is compared with other classification methods as 
shown in Table 4. The Table 4 compares different classifiers used in studies by various author, 
focusing on their performance with 2010 and 2020 data. The classifiers listed include Mnlogit 
model, RAVNet, Deep Learning (DL), Support Vector Machine (SVM), Multilayer Perceptron 
Classifier (MLC), and Weighted Random Forest (WRF).  The comparison results shows that, ours 
RF provides highest of 88.42%. 

Table. 4 Comparison analysis of different classification methods  

# RF 
 

Benyamin 
Hosseiny 

et al 
(2022)  

Ram 
Kumar Sin

gh et al., 
(2021)  

Sudhaka
r Sengan 

et al., 
(2022)  

Bryan Senc
aki et al., 

(2023)  

Mandla 
Dlamini et 
al., (2021)  

GN 
Vivekanan
da et al., 
(2021)  

Classifier 2010 
Data  

2020 
Data 

Mnlogit 
model 

RAVNet DL SVM MLC WRF 

Accuracy (%)  86.56 88.42 86 81 73.3 82.83 87.46 85.30 
Kappa 
Value 

85.86 86.32 NA NA NA 0.81 0.857 0.87 

 

7.2 Temporal Changes in LULC 

 The comparison of LULC maps for 2010 and 2020 revealed significant temporal changes in Mysuru 
district. Urban expansion, agricultural transformations, and alterations in natural vegetation were notable 
trends. The increase in classification accuracy facilitated the identification of subtle changes, allowing for 
a more nuanced understanding of how human activities and natural processes have influenced the landscape 
over the decade. This insight is crucial for informed land management and sustainable development 
planning. The analysis of the classified maps reveals significant changes in land use and land cover patterns 
within Mysuru district over the study period. Urban expansion, agricultural transitions, and alterations in 
natural land covers are evident. The increase in accuracy not only indicates the model's improved 
performance but also enhances our understanding of the dynamics shaping the landscape. The identification 
of specific land cover changes, such as urban encroachment or alterations in vegetation types, can be crucial 
for informed land management and policy decisions. 

 

7.3 Urbanization and Agricultural Dynamics 

The study identified a substantial increase in urban areas, reflecting the rapid pace of urbanization in 
Mysuru district. This expansion is evident in the conversion of agricultural land and natural vegetation to 
built-up areas. Conversely, certain regions experienced agricultural intensification, possibly indicating 
shifts in crop patterns or land management practices. The Random Forest classifier proved effective in 
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distinguishing between these land cover types, providing valuable information for urban planning, 
agricultural policy, and environmental conservation efforts. 

 
7.4 Implications for Sustainable Land Management 

 The accurate classification of LULC in the Mysuru district using the random forest classifier has important 
implications for sustainable land management and urban planning. The identification of areas experiencing 
rapid change allows policymakers to target conservation efforts or plan for infrastructure development. The 
observed trends in land use and land cover alterations can inform strategies to mitigate environmental 
impacts and promote sustainable practices. This study provides a valuable foundation for ongoing 
monitoring efforts and emphasizes the importance of regularly updating land cover classifications to capture 
dynamic changes in the landscape. 

 

7.5 Challenges and Limitations 

 Despite the overall success of the RF classifier, some challenges were encountered during the classification 
process. These challenges included the presence of spectral confusion in certain land cover classes and the 
need for careful consideration of spectral signatures. Additionally, cloud cover and atmospheric conditions 
in the satellite imagery posed constraints, emphasizing the importance of preprocessing techniques to 
mitigate these effects. Addressing these challenges is crucial for further improving the accuracy and 
reliability of LULC classifications. The resolution of the satellite data used in this study is 23.5m. However, 
classification accuracy can be further improved using of high-resolution data.  

 

7.6 Implications and Future Directions 

The results of this study have implications for land management, environmental monitoring, and urban 
planning in Mysuru district. The high accuracy achieved by the Random Forest classifier underscores its 
suitability for mapping and monitoring land cover changes. Future research should explore the integration 
of additional data sources, such as multi-sensor satellite imagery or ancillary data, to enhance classification 
accuracy further. Additionally, employing advanced machine learning techniques and incorporating 
ground-truth data could contribute to a more comprehensive understanding of the dynamic LULC patterns 
in the region. 

 

8. Conclusion  

This research has demonstrated the efficiency of employing a machine learning-based random forest 
classifier for the classification and change detection of remotely sensed data. The utilization of a robust 
random forest algorithm has allowed for accurate and efficient classification of land cover classes, 
providing a valuable tool for applications such as environmental monitoring, urban planning, and resource 
management. The findings of this study show the importance of leveraging machine learning techniques, 
particularly the random forest classifier, in the field of remote sensing. The classifier achieved a 
classification accuracy of 86.56% for the 2010 data and 88.42% for the 2020 data, demonstrating 
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an improvement in classification performance over the decade. The achieved high classification 
accuracy and sensitivity to temporal changes highlight the potential of this methodology for addressing the 
challenges associated with analyzing large-scale and dynamic environmental datasets. Future research 
could explore additional refinements and extensions of this methodology, as well as its application to 
different geographic regions and environmental contexts, to further advance the capabilities of machine 
learning in remote sensing applications. 
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