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ABSTRACT 

(1) Background: Understanding how tidal fluctuations affect water quality in estuarine and mangrove-influenced 

aquaculture zones is essential for healthy and productive ponds. This study investigated how key water quality 

parameters respond to tidal changes in the Tanah Mea estuary, Central Sulawesi, Indonesia. (2) Methods: A PC-

based real-time Water Quality Monitoring System (WQMS) and IoT sensors were deployed in situ to record high-

frequency data, while Open-Flows Flood software was used to simulate the spatial distribution of temperature, 

salinity, nitrite, and dissolved oxygen (DO) during the tidal cycles. Correlation analyses (Pearson and Spearman, 

corrected for autocorrelation) were employed to quantify the relationship between water level and each measured 

parameter. (3) Results: Continuous monitoring from March to April 2025 yielded 9,537 valid observations. The 

results showed strong inverse correlations between tidal height and both pH and DO, with weaker relationships for 

nitrite, temperature, and salinity, while EC exhibited minimal correlation with tides. Spatial simulations indicated 

clear gradients of DO and salinity from upstream to open waters, with dilution and oxygenation improving further 
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from the estuary. However, DO values from WQMS did not fully align with modern patterns. (4) Conclusion: Tidal 

dynamics play a key role in shaping estuarine water quality. Integrating real-time monitoring and 3D modelling 

provides complementary insights and supports practical recommendations for sustainable aquaculture, specifically 

scheduling pond water intake shortly after low tide to maximize DO and minimize nitrite levels. 

INTRODUCTION 

Mangrove ecosystems in Indonesia are among the most diverse and extensive in the world, playing a crucial 

role in supporting both marine and terrestrial biodiversity (Rahman et al., 2024). It helps maintain the ecological 

balance of the coast by protecting shorelines from storms like tsunamis, stabilizing sediments, and supporting 

nutrient cycles. It also acts as a biological filter by trapping sediments and absorbing pollutants from land-based 

waste (Lam et al., 2023). Tidal dynamics significantly influence the mangrove ecosystem by regulating the 

distribution of nutrients, sediment movement, and salinity, which are essential for ecological balance and sup-

porting the growth of mangroves. Studies have shown that an increase in rainfall and terrestrial runoff may 

lower salinity levels, which ultimately enhance the growth and productivity of certain mangrove species (Singh, 

Thirumurugan, and Prabakaran, 2024). Conversely, reduction of rainfall may lead to increased salinity, which 

potentially results in decreased productivity and shifts in the composition of species due to intensified compe-

tition (Singh, 2020). This highlights the vital role of the tidal zone in maintaining the ecological stability of 

mangrove ecosystems. 

Several studies have reported a strong correlation between mangrove density and water quality indices. 

Areas with a higher density of mangrove tend to exhibit improved water conditions, which in turn promotes the 

presence of aquatic organisms, such as plankton, a key component of the food web’s ecosystem (Palit et al., 

2022). Moreover, mangrove habitats provide important breeding and nursery grounds for various marine spe-

cies, thereby contributing to the sustainability of fisheries and enhancing coastal biodiversity (Suharno and 

Saraswati, 2020).  

The transformation of land surrounding mangroves into shrimp ponds has a direct impact on water quality. 

Mangroves normally filter sediments and excessive nutrients, but their removal leads to runoff and pollution, 

degrading coastal waters and increasing the risk of eutrophication (Kusumaningtyas et al., 2022; Mitra and 

Sikder, 2023). Water quality needs to be analyzed frequently to ensure optimal environmental conditions for 

aquatic life, prevent risks related to pollution, and support sustainable aquaculture practices. Traditional ap-

proaches to measuring water quality involve manual sampling techniques, which often rely on laboratory anal-

yses. Despite their historical significance, these approaches have a number of drawbacks. For example, they are 

time-consuming, labor-intensive, and prone to human error, which could result in inaccurate data collection and 

insufficient coverage of water quality conditions in terms of time or space (Srivastava, Vaddadi and Sadistap, 

2018; Wang et al., 2018). Reliance on manual techniques can frequently impede timely reactions to pollution 

incidents because samples must be gathered, transported, and examined in a laboratory (Guo et al., 2020).  
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In order to ensure water sourced from the mangrove area remains stable for aquaculture, a reliable water 

quality measurement is required, particularly in a real-time monitoring system. It changes how water manage-

ment works by using cutting-edge technology like the Internet of Things (IoT) and various sensor types to 

measure parameters like turbidity, pH, temperature, and chemical concentrations continuously and instantane-

ously (Essamlali, Nhaila and El Khaili, 2024; Singh and Walingo, 2024; Abdelmoneim et al., 2025). This system 

not only provides immediate insights into water quality but also enables proactive strategies.  

This study addresses the question, “How do tidal fluctuations regulate key water quality parameters in mangrove 

estuaries, and what are the implications for aquaculture water intake management?”. To answer this challenge, we 

explore how tidal changes affect water quality in mangrove areas that supply water to nearby aquaculture or shrimp 

ponds in Central Sulawesi, Indonesia. By closely monitoring how key water quality parameters, such as salinity, 

pH, dissolved oxygen, nitrite, and temperature, shift during tidal phases, we aim to better understand when condi-

tions are most suitable for drawing water into the ponds. The goal is to help farmers manage their water more 

effectively, reduce environmental risks, and support more sustainable aquaculture practices that work in harmony 

with natural coastal systems.  

2. MATERIALS AND METHODS 

Study site 

This study was conducted in a mangrove estuarine area located in Tanah Mea, Central Sulawesi, Indonesia, 

which serves as a primary water source for traditional aquaculture ponds in the surrounding region. The site was 

selected based on its ecological classification as a river-mouth mangrove system with active tidal exchange. The 

presence of dense mangrove vegetation was confirmed by field verification and satellite imagery. The coordi-

nates of the monitoring station are –0.6873734, 119.7779482, as shown in Fig. 1. 

 

Fig. 1: Bathymetry map for WQMS in mangrove estuary near traditional aquaculture ponds. (Red dot: sample point for 3D hydro-

dynamic study; red location pin: WQMS location; yellow solid line: mangrove estuarine; yellow dashed line: traditional aquacul-

ture area). The image was generated using QGIS. 
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Water Quality and Tidal Monitoring 

Water quality parameters in this study were measured using WQMS (Water Quality Measuring System) 

tools, which contain DO, temperature, salinity, and pH sensors, while tidal fluctuations were monitored using a 

water level sensor (Indosat Ooredoo-PT. Nocola IoT Solution). The collected data were processed using a built-

in computational system and recorded every minute onto a flash drive. In order to enable real-time monitoring, 

the recorded data were transmitted to a website via 4G LTE communication, utilizing a Modbus protocol 

installed within a dedicated panel box. The entire monitoring system was powered by a solar panel, making it 

suitable for remote coastal or mangrove locations where conventional grid electricity is not available (Fig. 2). 

 

 

 

Fig. 2: Schematic diagram of the water quality and tidal monitoring system (1. Solar panel, 2. Panel box, 3. Water level sensor, 4. 

WQMS sensor, 5. Fluxbox controller, 6. Solar charge controller, 7. Controller box, 8. Battery) 

The specifications of the sensors used for measuring water quality and tidal levels are summarized in Table 1. 

Table 1: Specifications of sensors used for measuring water quality parameters and water level. 

Parameter DO Temperature Salinity pH Water Level Nitrite 
Measuring Range 0–20 mg/L 0–50 °C 0–5000 µS/cm 0–14 pH 25–750 cm 0.1-1000 mg/L 
Accuracy ±0.4 mg/L ±0.5 °C ±1 µS/cm ±0.1 pH ±(1 cm + S × 0.3%) ± 2.5% 

Resolution 0.01 mg/L 0.1 °C ±1.5% F.S. 0.01 pH — 0.1 mg/L 

Energy captured by solar panels was stored in a sealed lead-acid battery housed within the panel box, which 

ensures uninterrupted operation of the system during nighttime or cloudy/rainy days. The design allows for 

autonomous, long-term operation in the field with minimal maintenance. 
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Data collection and statistical analysis 

Sensor data were collected at one-minute intervals and exported in .csv format. Prior to analysis, the data 

were cleaned by removing outliers and missing values through interquartile range-based filtering and manual 

inspection. 

Because monitoring was conducted at 1-minute intervals (N = 9,537 valid observations after quality control), 

we tested all time-series variables for serial dependence and corrected the correlation analyses accordingly. Lag-1 

autocorrelations (r₁) were obtained from the autocorrelation function (ACF) plots for each parameter. For 

pairwise correlation tests with water level, we estimated the effective sample size (N_eff) (Pyper and Peterman, 

1998): 

𝑵𝒆𝒇𝒇 = 𝑵.
𝟏−𝒓𝟏,𝒙𝒓𝟏,𝒚

𝟏+𝒓𝟏,𝒙𝒓𝟏,𝒚
           (1) 

where are the lag-1 autocorrelations of the two series, and N is the raw number of observations.  

To evaluate the strength and direction of the relationship between tidal height and individual water quality 

parameters, both Pearson product-moment correlation and Spearman rank correlation analyses were performed 

using Free Statistics Software by Office for Research, Development and Education (ORDE) (Wessa, 2025). 

 

3D hydrodynamic modelling 

The water quality parameter distribution model utilized the biogeochemical module found in OpenFlows 

Flood (Bentley), employing a volume-based approach with generic vertical discretization using the z-sigma 

vertical coordination type. The model was built using the Navier-Stokes equations with Boussinesq and hydro-

static approaches for the continuity equation, momentum equations as follows: 
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where: u, v, and w are the velocities in the x, y, and z directions (m/s), f is the Coriolis parameter (rad/s), νH and 

νt are the coefficients of horizontal and vertical turbulent viscosity (m²/s), p is the pressure (Pa), ρ0 is the 

reference density (kg/m³). 
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To observe the spatial distribution of water quality parameters, a water quality model was created based on 

input data obtained from WQMS tools. This model encompasses the river flow and the sea in front of the river 

mouth, as presented in Error! Reference source not found.. The hydrodynamic model was executed on a 

horizontal grid with a resolution of 0.0001° × 0.0001° (≈ 11.1 m × 11.1 m). The vertical coordinate system 

employed a z-sigma framework with a single depth-averaged layer. Turbulence was represented using the 

Smagorinsky formulation. Boundary forcing consisted of harmonic tidal constituents at the open boundary and 

river discharge at the upstream boundary. This configuration enables the model to capture horizontal advection 

and tidal propagation at high spatial resolution; however, being depth-averaged, it does not resolve vertical 

stratification within the water column. Model outputs compared with WQMS observations correspond to the cell-

averaged DO and other variables at the grid node nearest to the sensor location.  

Table 2. shows input based on the measurements from the installed WQMS device. The model was 

generated by tides with tidal constants as shown in Table 3. The upstream boundary of the model represents the 

riverine inflow characterized by freshwater (salinity ≈ 0.01 PSU), whereas the WQMS station is located near the 

estuary mouth under strong tidal influence, where observed salinity ranges from 18 to 30 PSU. This natural 

salinity gradient was reproduced by the model to represent mixing between riverine and marine water masses. 

Table 2: River discharge parameters for model input. 

No. Parameter Value Unit 

1 Discharge 30 m³/s 

2 Salinity 0.01 psu 

3 Temperature 25 C 

4 Oxygen 4 mg/L 

5 Nitrite 0.04 mg/L 

Table 3: Tidal Generation Constant Model 

Constituent Amplitude Phase 

M2 0.533325 -76.7706 

S2 0.410785 -26.6992 

K1 0.20178 150.2 

K2 0.120774 -24.1747 

N2 0.0771338 -84.739 

2N2 0.0140409 -98.2157 

O1 0.152388 127.784 

Q1 0.066478 145.672 

P1 0.0361863 118.223 

M4 0 0 

Mf 0.012547 12.7545 

Mm 0.00753131 9.2493 

Mtm 0.00214811 14.2702 

MSqm 0.000306124 13.5703 
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3. RESULTS AND DISCUSSION  

We have examined how tidal fluctuations influence key water quality parameters in our research location. 

Through continuous real-time monitoring for several weeks, detailed data related to ecological relevance and 

direct impact on aquaculture operations were collected on water level, dissolved oxygen, pH, salinity, temper-

ature, nitrite, and electrical conductivity (Fig. 3). Autocorrelation and scatter plot analyses are presented in Fig. 

4 and Fig. 5, summary of statistical analyses is presented in   

 

 

Table 4:  
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Fig. 3: Temporal dynamics of (a) dissolved oxygen; (b) pH; (c) salinity; (d) temperature; (e) nitrite; (f) EC against 

water levels observed from March to April 2025. 

ACF and PCF analyses revealed strong serial dependence across all measured parameters (Fig. 4). The ACF 

exhibited slow, gradually decaying correlations, particularly for DO, pH, salinity, temperature, and nitrite, in-

dicating that these variables changed progressively through time rather than randomly from one minute to the 

next. In contrast, water level displayed a clear cyclic pattern consistent with the semidiurnal tidal cycle (Fig. 4a). 

The lag-1 autocorrelation coefficients (r1) ranged from 0.77 for EC to above 0.98 for temperature and nitrite ( 
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Table 4). Such high r1 values confirmed that successive 1-minute observations were not statistically independent, 

which would artificially inflate the degrees of freedom in uncorrected correlation tests. The PCAF plots further 

demonstrated that most of the temporal dependence could be explained by 1 to 2 preceding time steps, support-

ing the use of lag-1 coefficients to estimate N_eff.  

To correct for this temporal autocorrelation, we applied the Pyper and Peterman adjustment based on the ob-

served r1 of each variable (Pyper and Peterman, 1998). The resulting N_eff were substantially smaller than the 

raw sample size (9537), typically ranging between 680 and 1800 depending on each variable’s persistence, 

which allowed more realistic significance testing of tidal relationship. 
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Fig. 4: Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) analysis of (a) water level, (b) DO, 

(c) pH, (d) salinity, (e) temperature, (f) nitrite, and (g) EC. 

  

 

 

Table 4: Pearson (linear) and Spearman (rank) correlations between tidal height (water level) and six water‑quality variables (N complete = 

9537) 

Parameter  r1 level r1 var N_eff Pearson r Spearman ρ Direction 
Strength (ra

nk) 

DO 0.903 0.942 769 
 –0.663 (p < 

0.0001) 

 –0.764 (p < 

0.0001) 
Negative 

pH 0.903 0.9393 783 
 –0.575 (p < 

0.0001) 

 –0.700 (p < 

0.0001) 
Negative 

Salinity 0.903 0.9784 589 
 –0.274 (p < 
0.0001) 

 –0.385 (p < 
0.0001) 

Negative 

Temperature 0.903 0.9846 560 
  +0.148 (p < 

0.0001) 

  +0.286 (p < 

0.0001) 
Positive 

Nitrite 0.903 0.9852 557 
 –0.226 (p < 

0.0001) 

 –0.280 (p < 

0.0001) 
Negative 

EC 0.903 0.7727 1698 
 –0.088 (p < 

0.0001) 

 –0.260 (p < 

0.0001) 
Negative 

 

Fig. 5: Scatter plot between water level and (a) dissolved oxygen, (b) pH, (c) salinity, (d) temperature, (e) nitrite, and (f) 

EC. 

3.1. Real-time effect of tidal changes on water quality 

3.1.1. Water level 

The water level sensor used in this study works by measuring hydrostatic pressure, which tells how high the 

water column is above the sensor. The pressure on the sensor changes as the water level changes with the tides. 

Then, this pressure is turned into an electrical signal, which is adjusted and turned into a reading of the water level 
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in centimeters. The sensor was able to accurately record the semidiurnal tidal cycle, which showed that water levels 

rose and fell about twice a day. As seen in Fig. 3a – 3f, the highest point is over 200 cm during high tide, and the 

lowest point is about 30 cm during low tide. High-resolution time series data obtained from sensors demonstrates 

its sensitivity and stability, making it crucial for monitoring changes in environments like mangrove estuaries, 

where rapid changes can impact water quality. 

3.1.2. Dissolved Oxygen (DO) 

The amount of DO in the mangrove area fluctuated with the tides, ranging from 5.6 to 7.8 mg/L (Fig. 3a). 

Higher concentrations were consistently recorded during low tide, suggesting enhanced oxygenation from fresh-

water inflows and turbulence. During high tide, seawater enters and becomes warmer and calmer, reducing its 

capacity to dissolve oxygen, particularly since seawater carries less oxygen than cooler, oxygen-rich upland 

freshwater.  

Statistical analysis confirmed this pattern, revealing a strong negative correlation between water level and 

DO. Pearson correlation showed a strong negative correlation (r = –0.663), and Spearman confirmed this with an 

even stronger correlation(ρ = –0.764). This pattern is visually evident in Fig. 5a, where DO levels are higher dur-

ing low tide. The tight clustering of data points along a downward curve reinforces the strength and consistency 

of this inverse relationship. Previous studies reported that DO levels below 5 mg/L are stressful to shrimp/fish 

(Patkaew et al., 2024). In contrast, our data showed that DO during low tide was consistently >6 mg/L, thereby 

supporting its suitability for water intake timing. 

In addition to hydrodynamic mixing, biological processes also influence DO variability during the tidal cy-

cle. Light penetration and water depth fluctuate with tides, which in turn affect photosynthetic activity by organ-

isms such as phytoplankton and microalgae, as well as respiration by bacteria (Magni and Montani, 2004). Fur-

thermore, DO levels have been found to correlate positively with chlorophyll-a concentrations and are subject to 

semi-diurnal tidal rhythms that influence oxygen dynamics and overall water quality in tidal creeks (MacPherson, 

Cahoon and Mallin, 2007).  

Overall, our findings suggest that DO concentrations peak during low tide, when turbulence and freshwater 

inflows enhance aeration. These results strongly support the recommendation that pond water intake should occur 

during or shortly after low tide, when DO is at its most favorable level for aquaculture.  

3.1.3. pH 

The changes in pH levels in relation to tidal fluctuations are presented in Fig. 3b. The pH showed moderate 

fluctuations, typically ranging from 7.6 during high tide to 8.2 at low tide, with slightly higher values recorded 

when the water level was low. This decrease in pH during high tide is likely due to the buffering capacity of sea-

water, which tends to be more acidic compared to freshwater sources. In contrast, lower water levels allow 

greater influence from riverine and land-based inputs, which are generally more alkaline due to surrounding 

catchment characteristics.  
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Statistical analysis confirmed this pattern, with both Pearson (r = –0.575) and Spearman (ρ = –0.7) showing 

a strong negative relationship with water level ( 

 

 

Table 4). This relationship is also clearly reflected in Fig. 5b, where data points show a distinct downward 

slope. The mixing of seawater and freshwater during tidal changes leads to observable pH oscillations, with a 

phase lag behind tidal fluctuations. Moreover, biological activity such as aerobic respiration by aquatic organisms 

consumes DO and releases CO₂, which forms carbonic acid, thereby lowering the pH (Liu, Jiao and Liang, 2018). 

Additionally, local geological formations, vegetation types, and land use activities influence baseline alkalinity or 

acidity in the system (Omarjee et al., 2021). A study in Vietnam reported that mangrove stand age also signifi-

cantly influenced pond pH, where older stands tended to slightly decrease pH due to organic matter decomposi-

tion and sulfide oxidation, but values remained within the optimal range for shrimp culture (Ngo et al., 2022). 

Fluctuations in pH can have significant implications for aquaculture systems, as levels outside the optimal 

range may induce stress in cultured species and alter nutrient bioavailability, particularly for key compounds like 

ammonia and phosphate (Boyd, Tucker and Viriyatum, 2011). From our study, the consistent and predictable pat-

tern of pH in response to tides makes it a reliable indicator of tidal influence, and a critical parameter to monitor 

for water quality management on mangrove-connected aquaculture zones 

3.1.4. Salinity 

Salinity data showed one of the clearest and most consistent responses to tidal changes throughout the moni-

toring period (Fig. 3c). Values ranged between 18 and 30 PSU, increasing noticeably during high tide as seawater 

intruded into the mangrove area and decreasing during low tide when freshwater from upstream sources became 

more dominant. This pattern closely aligns with expected estuarine mixing dynamics typically observed in coastal 

mangrove environments, where the balance between freshwater inflow and tidal intrusion controls the salinity 

gradient.  

Pearson’s correlation was r = –0.274, suggesting a moderate linear relationship, while Spearman’s rank cor-

relation (ρ = –0.385) indicated a stronger and more consistent monotonic trend. Although not perfectly linear, the 

pattern was reliably present across the data set. The increase in salinity during high tide and its dilution during 

low tide, as previously reported, support our data (Atekwana et al., 2022; S. and N. Z, 2024).  

For aquaculture practitioners, understanding and anticipating these salinity shifts is essential. Drawing water 

into ponds during periods of extremely high or low salinity can disrupt the osmotic balance of aquatic species, 

which may lead to stress, slower growth, or even mortality. Salinity outside optimal ranges can impair the physio-

logical performance of cultured species and reduce survival rates (Liang et al., 2023). Therefore, timing water 

intake in alignment with natural tidal rhythms is a fundamental aspect of sustainable and adaptive pond manage-

ment in an estuarine environment. 

3.1.5. Temperature 
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As shown in Fig. 3g, water temperature in the mangrove area ranged from 27°C and 33°C, fluctuating within 

a relatively narrow yet ecologically meaningful range. A slight increase in temperature was consistently observed 

during high tide, likely due to the intrusion of sun-warmed seawater from offshore areas. In contrast, cooler tem-

peratures recorded during low tide may reflect the influence of freshwater from upstream regions or rainfall 

events.  

Statistically, while the Pearson correlation between temperature and water level was significant but weak (r 

= 0.148, p < 0.001), the Spearman correlation was weak-moderate (ρ = 0.286, p < 0.001), suggesting a consistent 

monotonic trend, where warmer temperatures tend to coincide with higher water levels, as further visualized in 

Fig. 5d.  

Although these temperature shifts may seem subtle, they are not without consequence. Even minor thermal 

changes can influence DO solubility, alter metabolic rates, and affect the stress tolerance of aquaculture species. In 

sensitive environments such as mangroves, temperature plays a crucial role in determining the health and distribu-

tion of both flora and fauna. For instance, studies from Florida’s Gulf Coast have shown that rising temperatures 

are linked to the poleward expansion of mangrove forests, with increases in canopy height and coverage as mini-

mum temperatures rise (Kang, Kaplan and Osland, 2024). Similarly, in the Kali Estuary, fluctuations in water 

temperature are closely associated with changes in salinity, pH, and nutrient concentrations, underscoring the in-

terdependence of hydrographic parameters (Xie et al., 2014). Given its subtle but influential role in the aquatic 

environment, water temperature remains an important parameter to monitor, particularly with tidal dynamics and 

overall water quality stability in mangrove-connected aquaculture systems. 

3.1.6. Nitrite 

Nitrite concentrations remained relatively low throughout the monitoring period, typically between 0.015 

and 0.035 mg/L, yet showed a predictable increase several hours after low tide (Fig. 3e). This delayed rise is most 

likely driven by sediment resuspension and intensified microbial activity, as the receding tide may expose and 

mobilize organic matter trapped in the benthic substrate. Although nitrite levels exhibited only a weak relation-

ship with water level, with both Pearson and Spearman correlations (see   

 

 

Table 4:), the scatter plot revealed a broad dispersion of data points, with only a slight tendency for nitrite to 

increase following low tide (Fig. 5e).  

Our pattern aligns with findings from other recent studies. DO fluctuations and nitrite accumulation driven 

by tidal mixing, organic-matter decomposition, and sediment fluxes have also been reported in other tropical es-

tuarine and mangrove systems. For example, tidal mixing shapes how mangroves exchange nutrients with the 

estuary by influencing oxygen levels and redox conditions, which in turn govern the transformation between am-

monium, nitrite, and nitrate and affect the system’s overall nutrient balance (Wang et al., 2021). Furthermore, 

sediment resuspension during tidal cycles significantly enhances nutrient release, including nitrites, into the water 
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column in estuarine systems (Rios-Yunes et al., 2023). Similarly, another study observed that nitrite-reducing and 

nitrifying bacteria become highly active during the transition between exposed and submerged conditions, lead-

ing to an episodic pulse of nitrite in intertidal sediments (Chen et al., 2021).  

Although nitrite concentrations in this study remained within safe limits for aquaculture, the consistent post-

ebb increase emphasizes a potential risk if water is drawn into ponds during this window. Therefore, while tidal 

height alone may not strongly predict nitrite behavior, the timing of microbial processes and sediment dynamics 

demonstrates the need for independent and frequent nitrite monitoring. Avoiding water intake shortly after low 

tide may help reduce nitrite accumulation.  

3.1.7. Electric conductivity (EC) 

Unlike other water quality parameters, EC showed little to no consistent connection to tidal fluctuations 

(Fig. 3f and 4f). EC is fundamentally linked to the concentration of ions within the water, with salinity, largely 

determined by the sodium chloride (Rameshkumar et al., 2019). In typical estuarine systems, tidal exchanges 

introduce predictable salinity gradients, leading to a positive correlation between water level, salinity, and EC 

(Rusydi, 2018). However, our data unveiled a more intricate scenario. The scatter plot displays a diffuse pattern, 

lacking any clear trend between water level and EC. This visual pattern is consistent with the statistical data (r = –

0.088 and ρ = –0.26), suggesting an indirect association. Furthermore, it suggests that the ionic composition of the 

water at our study site is subject to influences beyond simple tidal-driven salinity fluctuations.  

Indeed, natural aquatic systems rarely conform to simplified models. It is influenced by a combination of 

freshwater inflow, surface runoff, and possible anthropogenic discharges, all of which can significantly modify 

the ionic composition of water.  

3.2. 3D tidal and water quality model simulation 

In addition to field monitoring and statistical analysis, we used OpenFlow Flood 3D simulation to better 

understand how tidal movements behave within the seawater, mangrove, and aquaculture zone (Sabhan et al., 

2019). By feeding the model with actual topography, bathymetry, and real-time tidal data from the site, we 

were able to simulate how water moves through the system during different tidal phases and affects water 

quality.  

The model results show the spatial distribution of water quality parameters from the river, which is the 

raw water source for the pond in Tanah Mea village, to the open sea in the Makassar Strait. The results of the 

sample point (119.617423, -0.824804) at the river mouth show the relationship between tides and water qual-

ity parameters (Fig. 6). The type of tide at the research location is a mixed tide leaning towards a semi-diurnal 

with a Formzhal number of 0.375. 
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Fig. 6 Simulation of tidal fluctuations affecting (a) dissolved oxygen, (b) salinity, (c) temperature, and (d) nitrite. 

The simulation of DO during high tide shows a clear difference in oxygen levels from the river to the sea 

(Fig. 6a). In the upstream river, DO levels are relatively low (7.80-8.00 mg/L), most likely due to organic waste, 

domestic discharge, and nearby pond activities. This input contributes to increased biochemical oxygen demand, 

depleting the availability of oxygen for aquatic life (Cheng et al., 2024). Even when the tide brings seawater 

into the estuary, the DO levels do not improve much. This suggests that the incoming tidal water already mixes 

with poorer quality river water before it gets any closer to the ponds. In contrast, coastal and open sea regions 

show a rise in DO, visualized by yellow-red tones, driven by cleaner waters, stronger circulation, and wave-

induced aeration, all of which enhance the continuous replenishment of oxygen in the water column (Zhang et 

al., 2022). 

The salinity model reveals a clear gradient from the river to the sea (Fig. 6b). In the upstream river, salinity 

is low (22.3-23.8 PSU), reflecting the strong influence of freshwater. As water moves toward the river mouth, 

salinity rises slightly (23.8-25.3 PSU), indicating an active mixing zone between freshwater and incoming sea-

water (Monismith, 2017). During high tide, saltier seawater with a salinity of >26.8 PSU reaches the coast and 

partly enters the estuary with limited intrusion, resulting in domination of a moderate salinity level in the pond 

area (Guo et al., 2019).  

 The model of temperature distribution at high tide shows an increasing pattern from the upstream of the 

river to the open sea (Fig. 6c). In the upstream estuary, the temperature is relatively low (29.4–29.7°C) due to 

the influence of fresh water and vegetation, similar to the previously reported study (Shen et al., 2022). Entering 

the estuary, the temperature rises to 29.7–30.0°C due to the mixing of freshwater and seawater. In the open sea, 

temperatures increase significantly (30.3–30.6°C) due to exposure to sunlight and the shallowness of the waters, 

which allows rapid heating. This pattern shows a consistent temperature gradation from land to sea, confirming 

that tides, waves, and river inflow in our study play critical roles in determining temperature variations of the 

local estuarine, similar to the study in the San Francisco Estuary (Bashevkin and Mahardja, 2022).  
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The nitrite distribution model reflects a clear tidal-driven pattern (Fig. 6d). The elevated concentrations 

originated from southern river inflows, likely influenced by agricultural and aquaculture runoff. As this water 

reaches the estuary, nitrite levels remain relatively high (0.013–0.016 mg/L), even during high tide, when sea-

water enters inland canals and serves as raw water for nearby ponds. However, the seawater is already mixed 

with nitrite-rich river water, posing a contamination risk (Suratman et al., 2018). Further seaward, nitrite con-

centrations decline significantly (0.0055–0.009 mg/L), diluted by a larger volume of open seawater.  

Fig. 7 shows simulation models of tidal fluctuations against selected water quality parameters. Salinity 

fluctuates synchronously with the tides (Fig. 7b). When the tide is high, the salinity increases, signaling the 

entry of salt-rich seawater masses. Salinity, on the other hand, drops as the water recedes because fresh water 

from the river predominates. The surface temperature of the water also fluctuates, but with a weaker correlation 

to tides (Fig. 7c). There is a tendency for temperatures to rise at high tide, likely due to warmer seawater entering 

coastal areas. However, daily factors like solar radiation also influence temperature fluctuations. Nitrite levels 

tend to decrease at high tide and increase at low tide. This means that when seawater enters, the nitrite concen-

tration decreases due to the dilution effect. On the other hand, at low tide, nitrite-rich river water from domestic 

and agricultural waste is more dominant. DO exhibits a pattern that follows the ups and downs of the tides (Fig. 

7a). Generally, at high tides, DO levels increase, as seawater carries oxygen higher than the open sea. At low 

tide, the DO decreases because the river water entering the system has lower oxygen levels due to organic loads.  

These observed patterns confirm the importance of multivariate predictive analysis in forecasting changes 

in tidal-water quality parameters, particularly due to the unpredictable nature of climate change (Khosravi et 

al., 2023) 
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Fig. 7 simulation models of tidal fluctuations against (a) DO, (b) salinity, (c) temperature, (d) nitrite. 

To complement our findings obtained from WQMS-based monitoring and statistical analysis with those 

derived from 3D hydrodynamic simulation, we did a comparative summary. While each method offers a unique 

perspective, their integration allows for a more holistic interpretation of water quality dynamics under tidal 

influence. Table 5 below presents a synthesis of both approaches, highlighting areas of alignment and diver-

gence and offering practical insights for aquaculture water management in the Tanah Mea region. 

 

Table 5: Comparison of WQMS monitoring vs. 3D simulation results 

Parameter WQMS & statistical analysis 3D simulation mode Aquaculture recommendation 

DO Ranged from 5.6–7.8 mg/L; con-

sistently higher during low tide. 

Strong negative correlation (r = –

0.663; ρ = –0.764). 

Spatially lower upstream 

(7.80–8.00 mg/L), increases 

gradually toward the sea 

(up to 8.68 mg/L). 

Draw water during or after low tide to en-

sure higher oxygen levels and better pond 

aeration. 
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pH Slightly fluctuated between 7.6 

and 8.2; lower during high tide 

due to seawater buffering. Strong 

negative correlation. 

Not spatially simulated. Monitor pH routinely to maintain the opti-

mal range for nutrient availability and 

species tolerance. 

Salinity Ranged from 18 to 30 PSU; in-

creased during high tide and de-

creased during low tide. Moder-

ate negative correlation. 

Low upstream (22.3–23.8 

PSU), transitional in estuary 

(23.8–25.3 PSU), and high-

est near sea (>26.8 PSU). 

Avoid water intake during extreme salin-

ity levels; regulate timing based on tidal 

cycle. 

Temperature Ranged from 27°C to 33°C; 

slightly warmer during high tide. 

Weak correlation (r = 0.148), but 

clear Spearman trend. 

Cooler in rivers (29.4°C), 

warmer in the sea (30.6°C); 

reflects solar exposure and 

depth. 

Consider temperature trends, especially 

for species sensitive to thermal shifts. 

Nitrite Generally low (0.015–0.035 

mg/L); rises after low tide, possi-

bly from sediment resuspension. 

Weak correlation (r ≈ –0.226). 

High in rivers (0.016–0.020 

mg/L), diluted downstream; 

lowest near open sea 

(<0.009 mg/L). 

Avoid water intake shortly after low tide 

to reduce risk of nitrite buildup in ponds. 

EC Weak correlation with tides (r = 

–0.088); pattern inconsistent. 

Possibly affected by rainfall or 

runoff. 

Not explicitly modeled spa-

tially. 

Use EC only in combination with pH and 

salinity to assess overall water chemistry. 

The timing of water exchange is a critical factor in shrimp farming, as mangrove estuaries undergo tidal and 

biogeochemical fluctuations that influence water quality. For example, a study in a tidal mangrove creek in Aus-

tralia reported that shrimp farm effluent increased nutrient levels in the receiving creek, and stable isotope evidence 

showed that these impacts extended into the intake creek, highlighting potential risks for pond water replenishment 

(Costanzo, O’Donohue, and Dennison, 2004). Furthermore, mangroves regulate water intake by excluding salts at 

the root level, maintaining sources when available, thereby ensuring survival and productivity under saline condi-

tions (Reef and Lovelock, 2015). It is therefore recommended that water intake be scheduled during low tide or 

after effluent dilution, when water quality is more stable, dissolved oxygen concentrations are consistently higher, 

and conditions are more favorable for shrimp culture. 

The integration of real-time field monitoring using WQMS and spatial simulation through OpenFlows Flood 

provides a comprehensive understanding of the tidal influences on water quality in Tanah Mea enstuarine mangrove 

area. The 3D simulation complements the high-resolution temporal data provided by the WQMS system by visu-

alizing the spatial distribution of parameters such as temperature, nitrite, salinity, and DO during tidal movements. 

However, the observed DO patterns from the WQMS did not fully align with the modeled outputs, likely due to 

the depth-averaged assumption and omission of fine-scale local processes. During high tides, the incoming water 

may carry higher organic matter loads, stimulating aerobic microbial activity that increases oxygen consumption. 

In addition, elevated temperature or salinity during high tide may further reduce DO solubility. Local stratification 
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may also occur, as the WQMS sensor is near the estuary bottom, whereas the model represents depth-averaged 

values. These local and physical factors can explain the apparent discrepancies between the observed and modeled 

DO trends. Despite these differences, both datasets consistently captured key tidal patterns, which underscoring the 

complementary value of integrating field observation and hydrodynamic modeling. This dual approach improves 

our understanding of site-specific processes and supports practical recommendations for pond water management, 

particularly water intake during low tide phases when DO tends to be higher and nitrite concentrations lower.  

4. CONCLUSIONS 

This study demonstrated that tidal fluctuations significantly influence water quality dynamics in the Tanah 

Mea mangrove–estuarine system of Central Sulawesi. By integrating real-time monitoring using Water Quality 

Monitoring System (WQMS) sensors with spatial simulations in OpenFlows Flood, we identified clear and eco-

logically meaningful responses of temperature, dissolved oxygen (DO), pH, salinity, and nitrite to tidal changes. 

DO and pH tended to be higher during low tide, while salinity and temperature increased with high tide; however, 

the modeled DO patterns did not fully align with field observations, likely due to the depth-averaged model as-

sumption and unrepresented local processes such as benthic oxygen demand, stratification, and organic matter 

inputs during flood tides. Despite these discrepancies, both datasets consistently revealed key tidal patterns and 

spatial gradients across the estuary, highlighting the complementary value of combining empirical and modeling 

approaches. This integration enhances understanding of short-term and spatially variable water quality changes that 

are critical for aquaculture management—particularly for determining optimal water intake timing in shrimp and 

fish ponds—and provides a replicable framework for sustainable estuarine aquaculture management in other trop-

ical coastal systems. 
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