

Original Research

Estimation of Above-Ground Biomass and Sequestered Carbon At Two Elevations in A Tropical Forest in Tingo María, Peru

David Prudencio Quispe-Janampa¹, Jairo Edson Gutiérrez-Collao^{2†}, Julio Miguel Angeles-Suazo², Evelyn Ruth Palomino Santos³, Wilfredo Tello-Zevallos¹ and Rodrigo Ponce Escobal⁴

¹ Universidad Nacional Agraria de la Selva, Facultad de Recursos Naturales Renovables, Escuela Profesional de Ingeniería Forestal, Tingo María, Peru

² Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Facultad de Ingeniería, Escuela Profesional de Ingeniería Forestal y Ambiental, Pampas, Peru

³ Universidad Nacional del Centro del Perú, Facultad de Ciencias Forestales y del Ambiente, Peru

⁴ Universidad Nacional Daniel Alcides Carrión, Facultad de ciencias agropecuarias. Escuela de Formación profesional de agronomía. Cerro de Pasco, Perú

†Corresponding author: Jairo Edson Gutiérrez-Collao; jairo.gutierrez@unat.edu.pe

ORCID IDs of Authors

<https://orcid.org/0000-0003-2439-5556>

<https://orcid.org/0000-0001-8984-6245>

<https://orcid.org/0000-0001-8327-9032>

<https://orcid.org/0009-0003-5991-2899>

<https://orcid.org/0000-0002-8659-1715>

<https://orcid.org/0009-0007-0178-9575>

Key Words	Above-ground biomass, Species diversity, Tree category, Tree density, Wood density
DOI	https://doi.org/10.46488/NEPT.2026.v25i02.D1851 (DOI will be active only after the final publication of the paper)
Citation for the Paper	Quispe-Janampa, D.P., Gutiérrez-Collao, J.E., Angeles-Suazo, J.M., Palomino Santos, E.R., Tello-Zevallos, W. and Ponce Escobal, R., 2026. Estimation of above-ground biomass and sequestered carbon at two elevations in a tropical forest in Tingo María, Peru. <i>Nature Environment and Pollution Technology</i> , 25(2), D1851. https://doi.org/10.46488/NEPT.2026.v25i02.D1851

ABSTRACT

Climate change is one of the main ecological issues worldwide, and to understand its impacts, it is essential to analyze above-ground biomass and sequestered carbon in tropical forests, as well as their role in climate change mitigation. The objective of the study was to determine the above-ground biomass and sequestered carbon in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill) of a tropical forest in the central Peruvian Amazon, based on species diversity, tree density, wood density, and forest structure. The study was conducted in two permanent measurement plots located at different elevations. Data collection was

carried out using the Field Map Data Collector program on a laptop computer. Diameter at breast height (DBH) and total tree height were measured in individuals classified into two developmental categories: "stem trees" and "mature trees." Higher values of species diversity (3.9), uniform angle index (0.88), and dominance index (0.43) were recorded at the lowest elevation (low hill). In contrast, the highest elevation (high hill) had higher values for crown diameter (9.7), crown volume (518.2), species mixture index (0.93), average above-ground biomass (3.21) and total above-ground biomass (234.02), as well as average carbon sequestration (1.6) and total carbon sequestration (117.01). In conclusion, the study found that altitude, development category, species diversity, and tree density significantly influence the amount of carbon sequestered.

INTRODUCTION

Climate change is one of the main environmental challenges worldwide. Carbon dioxide is considered the primary greenhouse gas among the four that most significantly contribute to global warming. These include carbon dioxide (CO₂) (81%), methane (CH₄) (10%), nitrous oxide (N₂O) (7%), and halogenated gases such as chlorofluorocarbons (CFCs) (3%) (Houghton, 2007). Atmospheric CO₂ levels have increased from pre-industrial concentrations of roughly 280 parts per million (ppm) to about 419 ppm globally (Bruhwiler *et al.*, 2021). To understand its impacts, it is essential to analyze the above-ground biomass of forests (Winsemius *et al.*, 2024), particularly that of old and intact tropical rainforests, whose carbon sequestration potential is progressively declining, mainly as a consequence of climate change (Heinrich *et al.*, 2023). In this context, carbon dioxide capture and carbon sequestration play a crucial role in mitigating climate change (Raihan *et al.*, 2021; Tadese *et al.*, 2023). In fact, a 40 to 50% reduction in carbon sequestration and storage capacity has been reported in these ecosystems (Cuni-Sanchez *et al.*, 2021), highlighting significant dynamic variations in carbon sequestration that directly affect atmospheric carbon dioxide concentrations (Ma *et al.*, 2025).

A deeper understanding of how forest biomass and tree growth vary in relation to soil nutrient availability is essential for producing more accurate estimates of carbon stocks and carbon sequestration in tropical forests than those currently available (Paoli, Curran and Slik, 2008). Forest biomass refers to the total weight of organic material either fresh or dry found within a specific forest area over a given time period. Because it stores carbon, biomass serves as a key indicator for assessing forest productivity, stability, and sustainability (Cazzolla Gatti *et al.*, 2015). Tropical forests, being the most diverse and productive ecosystems on Earth, play a critical role in global carbon and water cycles, as well as in preserving biodiversity (Gonzalez, Blundo and Carrilla, 2021). Also, temperature and precipitation are key climatic factors that influence environmental conditions affecting surface forest carbon stocks. Forest structure shaped by species distribution, composition, and density is sensitive to climate-driven changes, which in turn affect forest productivity and ecological function (Rawat *et al.*, 2020). Tropical forests serve as a major carbon sink (Lal, 2005; Pan *et al.*, 2011). Although they provide the essential ecosystem service of carbon sequestration, these forests are increasingly degraded by activities such as selective logging (Eguiguren *et al.*, 2020) or completely cleared due to land-use changes for agriculture and livestock. In South America, deforestation accounts for a significant share of greenhouse gas emissions (De Sy *et al.*, 2015; Erb *et al.*, 2018). In Peru, a country with extensive forest cover, tropical forests play a fundamental role in carbon capture and storage (Cuellar and Salazar, 2016). In this context, numerous studies have been conducted to estimate forest biomass using methodologies based on permanent plots, temporary plots (Corral-Rivas *et al.*, 2009). These have become a key strategy for the periodic monitoring of forest structural dynamics, enabling a comprehensive assessment of forest ecosystem functioning and its carbon sources (Gutiérrez *et al.*, 2015). They serve as an

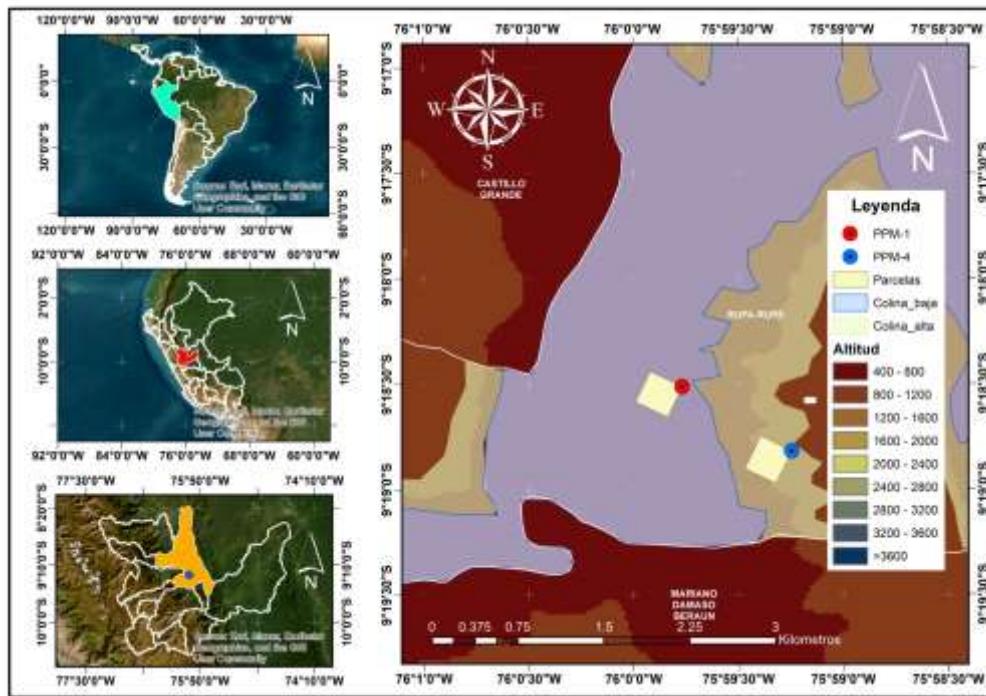
essential baseline for the development of conservation, management, and research plans, while also allowing for the analysis of the significant influence of tree diversity on above-ground biomass carbon - particularly within a context of high uncertainty regarding the complex interactions among species diversity, forest structure, and sequestered carbon (Li, Liu and Jin, 2022).

The calculation of carbon sequestration in living trees is based on the estimation of above-ground biomass, which is obtained using allometric equations that incorporate individual vegetation characteristics (Fernández-Guisuraga *et al.*, 2024). Consequently, the accurate estimation of biomass is essential both for assessing carbon emissions and for understanding the potential release of carbon into the atmosphere (Brown, 1997).

The study of forest area structure is crucial for sustainable forest management, as this structure is expressed through spatial attributes (such as tree distribution and interspecific competition) and non-spatial attributes (such as dominance or degree of mixing) (Hui *et al.*, 2019; Ma *et al.*, 2023). These attributes, together with tree species richness and forest area density, significantly influence carbon sequestration in forest ecosystems (Strassburg *et al.*, 2010; Mensah *et al.*, 2016; Zhang, Chen and Taylor, 2017; Lan *et al.*, 2019).

This influence is explained by the interactions that species establish with key ecological factors, such as soil nutrients, water availability, and access to sunlight, which directly regulate the carbon capture capacity in forests (Shirima *et al.*, 2015). However, it is important to note that these processes can vary substantially depending on the type of ecosystem and its specific environmental conditions (Lan *et al.*, 2019; Yuan *et al.*, 2021). In this regard, some studies suggest that there may be a negative correlation between carbon storage and forest area density (Wang *et al.*, 2022), which is attributed to increased intraspecific competition in denser areas, thereby limiting individual tree growth and, consequently, their potential for biomass and carbon accumulation.

Under this approach, a comprehensive study that systematically examines the mechanisms influencing sequestered carbon in forest ecosystems has yet to be developed. In particular, there is a lack of research that jointly analyzes the relationship between species diversity, tree density, wood density, forest structure, above-ground biomass, and sequestered carbon.


This study examined the following: (1) determination of species diversity, tree density, wood density, and forest structure at two elevations (lower hill and upper hill) of a Peruvian tropical forest; (2) determination of above-ground biomass with commercial value in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill) of a Peruvian tropical forest; (3) determination of carbon stored in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill) of a Peruvian tropical forest; (4) analysis of the relationships between species diversity, tree density, wood density, and forest structure with sequestered carbon in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill) of a Peruvian tropical forest.

2. MATERIALS AND METHODS

2.1 Study Area

The sample-sized stem trees and mature trees were randomly selected from permanent measurement plots established at two elevations in a tropical forest located in the city of Tingo María, Huánuco region, Peru. The first plot was established at an elevation of 735 m ($9^{\circ} 18' 30.84''$ E – $75^{\circ} 59' 40.84''$ N), and the second plot was established at an elevation of 875 m ($9^{\circ} 18' 49.14''$ E – $75^{\circ} 59' 14.67''$ N). The elevations were defined using GIS software, through which slope, altitude, and physiographic maps were generated. In the study area, a humid tropical climate prevails, with two main climatic seasons: dry and rainy. According to meteorological data, the mean annual

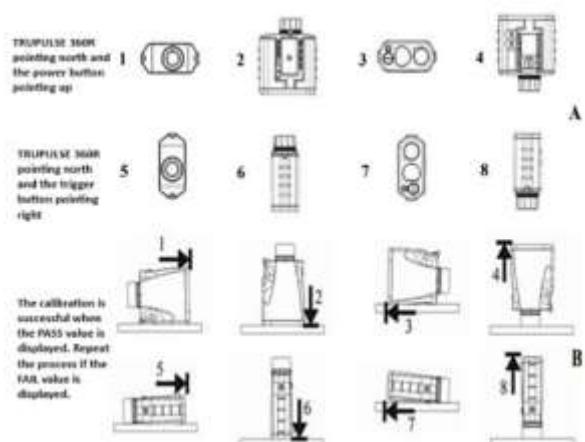
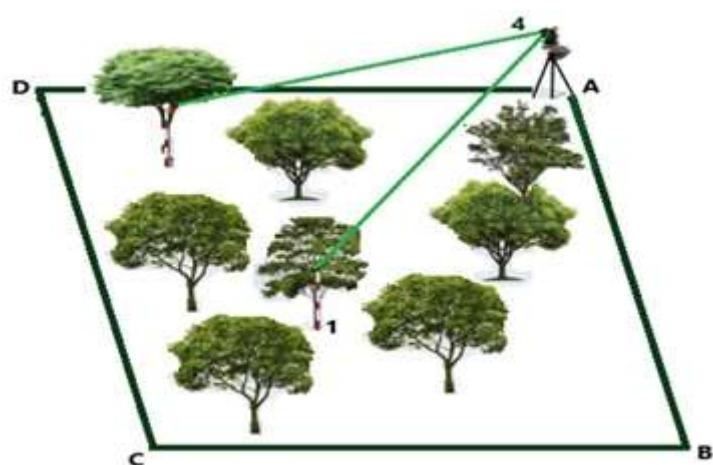

temperature is 24 °C, the average annual precipitation is 2300 mm, and the mean relative humidity exceeds 80%. The distribution of the permanent plots at the two elevations is shown in Fig. 1.

Fig. 1: Distribution of permanent measurement plots at the two elevations.


2.2 Experimental Data

Individual trees with a diameter over bark at breast height (DBH) equal to or greater than 10 cm were analyzed, distributed in 10,000 m² plots, each composed of 50 subplots of 400 m² (Phillips *et al.*, 2016). The DBH measurement was conducted using a specialized diameter tape, model 283D/5m from Forestry Suppliers Inc®. For this purpose, the radiation method was used, which consisted of recording the relative reference coordinates X, Y, and Z from a fixed point known as the “radiation post” (Salazar Espinoza, 2018). Likewise, the Field Map Data Collector software, installed on a laptop, was used in conjunction with specialized equipment, including the TruPulse 360R laser rangefinder, the ARMOR, a tripod, an electronic compass, an electronic inclinometer, and a reflector. The latter was placed at the base of the evaluated individuals, as illustrated in Fig. 2.

Fig. 2: Methodology for locating the evaluated individuals.

For tree individuals with buttress roots extending up to 1.30 m in height, the diameter was measured at a height of 0.5 m above the start of these roots. In the case of trees with deformities at the standard measurement height (1.30 m), the diameter was recorded 2 cm below the deformity. Similarly, for trees located on sloped terrain, the diameter was measured at 1.30 m along the direction of the greatest slope. Finally, for leaning trees, the diameter measurement was taken at 1.30 m from the point of inflection of the trunk. The height was determined using the Field Map system (TruPulse 360R) by directing a laser shot at the base of the trees and then at the apical part of the crown. The data were automatically stored in the Field Map Data Collector software. Additionally, precision instruments were used to complement the measurements: the laser rangefinder was employed to record the horizontal distances to the sampled individuals, while the electronic inclinometer was used to determine the inclination angles at both the base and the apical part of each tree. Subsequently, as shown in Fig. 3, the collected data were exported from the Field Map Project Manager to a spreadsheet in dBase format, compatible with Microsoft Excel, for further analysis. The tree species in the evaluated plots were certified by the Missouri Botanical Garden – HOXA Herbarium.

Fig. 3: Calibration procedure: A: Horizontal angle; B: Inclinometer sensor. Source: Adapted from Lasertech (2005)

2.3 Species Diversity, Tree Density, Wood Density, and Forest Structure

The quantification of tree species diversity at the two elevations was carried out using the Shannon-Wiener index (Shannon and Weaver, 1949), whose Equation 1 is as follows:

$$H' = - \sum (p_i \ln p_i) \quad (1)$$

The variable H' represents the species diversity index for each plot, where p_i denotes the relative abundance of species i within the overall population

Tree density refers to the degree of occupancy of individuals within the evaluated plots at a specific point in time (Hernández Ramos *et al.*, 2013).

The structural conditions of the forest area at both elevations include spatial structure and crown structure. Crown volume is an essential metric for describing tree crowns, as it has a direct impact on biomass generation and significantly contributes to ecosystem services like sequestered carbon (Zhu, Kleinn and Nölke, 2021). To describe these conditions, commonly used metrics such as crown diameter and crown volume were applied, using Equations 2 and 3.

$$CD = \frac{1}{2} (CD1 + CD2) \quad (2)$$

$$CV = CS \times CH \times CD_{\max}^2 \quad (3)$$

Where $CD1$ represents the crown measurement in the east-west direction, and $CD2$ represents the crown measurement in the north-south direction. CS indicates the crown shape; CH refers to the crown height, and CD_{\max} denotes the maximum crown diameter value for each tree individual (Zhu, Kleinn and Nölke, 2021).

The spatial structural parameters were also analyzed using the Wi (Aguirre *et al.*, 2003), the Mi , and the neighborhood Ui (Hui *et al.*, 2019), applying Equations 4, 5, and 6, respectively.

These indicators allow for the characterization of the spatial distribution pattern of individual trees, the assessment of the degree of isolation among species, and the determination of size differentiation, taking into account different structural classes and conditions of the forest (Hui *et al.*, 2019).

$$Wi = \frac{1}{n} \sum_{j=1}^n v_{ij} \quad (4)$$

Where v_{ij} equals 1 when the angle α between two neighboring tree individuals is less than or equal to the standard angle $\alpha=72^\circ$; otherwise, it takes the value of 0. This parameter indicates the regularity or irregularity in the spatial distribution of tree individuals (Pommerening, 2002; Aguirre *et al.*, 2003).

$$Mi = \frac{1}{n} \sum_{j=1}^n v_{ij} \quad (5)$$

Where, $0 \leq Mi \leq 1$, v_{ij} equals 0 when tree individual j is of the same species as the reference tree individual i , and will be 1 otherwise. This parameter indicates the diversity in spatial distribution (Graciano-ávila *et al.*, 2020).

$$U_i = \frac{1}{n} \sum_{j=1}^n v_{ij} \quad (6)$$

Where, $0 \leq U_i \leq 1$, v_{ij} will be equal to 1 if tree individual j is smaller than tree individual i (the reference tree), and 0 otherwise. This parameter indicates the relative dominance of a species in its immediate environment, through variables such as height or diameter (Graciano-ávila *et al.*, 2020).

2.4 Above-Ground Biomass Values

Above-ground biomass was calculated using an allometric equation that considers three variables: total height, diameter at breast height, and basic wood density. This equation is applicable to tropical forest areas with an annual precipitation exceeding 3500 mm (Chave *et al.*, 2014). The above-ground biomass was initially obtained in kilograms and then converted to tons. For this calculation, Equation 7 was used:

$$AGB = 0.0673 \times (\rho D^2 H)^{0.976} \quad (7)$$

Where, AGB is the above-ground biomass (kg); ρ is the basic wood density (g cm^{-3}); D is the diameter at breast height (cm); and H is the total height (m).

2.5 Sequestered Carbon Calculation

Studies on sequestered carbon in tropical forests commonly use a conversion factor of 0.5 to estimate carbon content from above-ground biomass. This value is based on the assumption that approximately 50% of the total biomass of living trees corresponds to carbon (Yepes *et al.*, 2011). Based on this, Equation 8 was applied to calculate the sequestered carbon.

$$SC = AGB \times 0.5 \quad (8)$$

Where SC is the sequestered carbon (kg); AGB is the above-ground biomass (kg); and 0.5 is the conversion factor.

2.6 Statistical Analysis

To study the complex relationships between species diversity, tree density, wood density, and forest structure with above-ground biomass and sequestered carbon, correlation analysis and multiple regression analysis were statistically applied. The statistical software Past version 4.5.1 was used.

3. RESULTS

3.1 Determination of Species Diversity, Tree Density, Wood Density, And Forest Structure at Two Elevations (Lower Hill and Upper Hill)

The t-student test revealed statistically significant differences ($p < 0.05$) between the two elevations in the variables species diversity, crown diameter (CD), crown volume (CV). In contrast, no statistically significant differences were found in the uniform angle index (W_i), the mixture degree (M_i), or the dominance degree (U_i) ($p > 0.05$). The lower hill elevation showed the highest values in species diversity, while the upper hill recorded the highest values in CD and CV (Tab. 1). Additionally, the lower hill recorded a higher number of individuals (680), while the upper hill exhibited greater species richness (114).

Table 1: t-student test ($p < 0.05$) for SD: species diversity; CD: crown diameter; CV: crown volume; Wi: uniform angle index; Mi: mixture degree; Ui: dominance index.

Elevation	SD	CD	CV	Wi	Mi	Ui
Lower Hill	$3.9 \pm 0.0a$	$9.3 \pm 3.0a$	$460.4 \pm 272.2a$	$0.88 \pm 0.2a$	$0.92 \pm 0.2a$	$0.43 \pm 0.4a$
Upper Hill	$3.6 \pm 0.0b$	$9.7 \pm 3.2b$	$518.2 \pm 348.9b$	$0.76 \pm 0.2b$	$0.93 \pm 0.2a$	$0.42 \pm 0.3a$

Values on each horizontal line followed by the same letter do not differ significantly ($p = 0.05$)

3.2 Determination of Above-Ground Biomass With Commercial Value in Two Development Categories (Stem Tree And Mature Tree) AND At Two Elevations (Lower Hill and Upper Hill)

The t-student test revealed statistically significant differences ($p < 0.05$) in both average above-ground biomass (AGB) and total above-ground biomass between the two elevations and between the developmental categories. The "upper hill" elevation and the "mature trees" category recorded the highest values in both average and total above-ground biomass. However, in the "lower hill" elevation, the stem tree category showed higher total above-ground biomass values (Tab. 2).

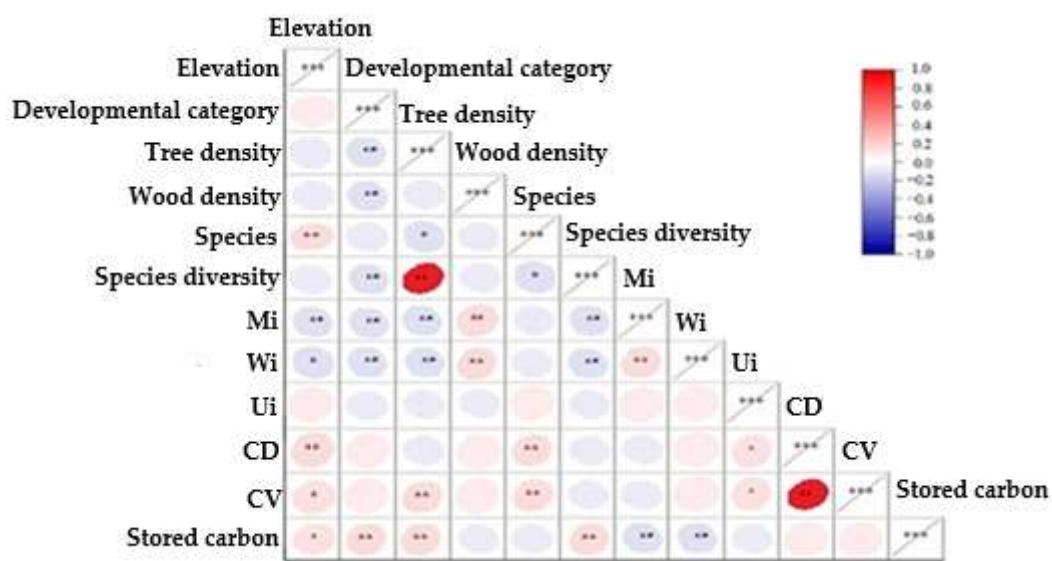
Table 2: t-student test ($p < 0.05$) for above-ground biomass in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill).

Elevation	Developmental category	Average above-ground biomass (t)		Total above-ground biomass (t)	
Lower hill	Stem tree	$0.22 \pm 0.42a$		141.89a	
	Mature tree	$1.51 \pm 0.44b$	$0.32 \pm 0.42a$	72.49b	214.38a
Upper hill	Stem tree	$0.32 \pm 1.46a$		153.61a	
	Mature tree	$3.21 \pm 1.75b$	$0.70 \pm 1.72b$	234.02b	387.64b

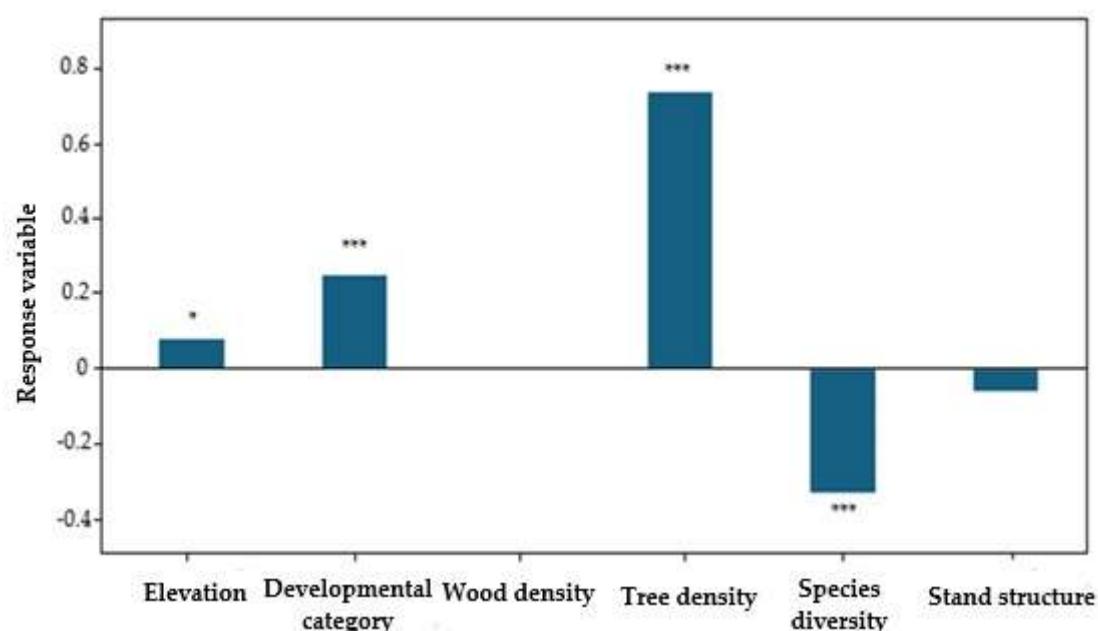
Values on each horizontal line followed by the same letter do not differ significantly ($p = 0.05$)

3.3 Determination of sequestered carbon in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill)

The t-student test revealed statistically significant differences ($p < 0.05$) in both sequestered carbon (SC) and total sequestered carbon between the two elevations and between the developmental categories. The "upper hill" elevation and the "mature trees" category recorded the highest values in both average and total sequestered carbon. However, in the "lower hill" elevation, the stem tree category showed higher total sequestered carbon values (Tab. 3).


Table 3: t-student test ($p < 0.05$) for sequestered carbon in two development categories (stem tree and mature tree) and at two elevations (lower hill and upper hill).

Elevation	Developmental category	Average sequestered carbon (t)		Total sequestered carbon (t)	
Lower hill	Stem tree	$0.11 \pm 0.21a$		70.94a	
	Mature tree	$0.76 \pm 0.22b$	$0.16 \pm 0.21a$	36.25b	107.19a
Upper hill	Stem tree	$0.16 \pm 0.73a$		76.81a	
	Mature tree	$1.60 \pm 0.87b$	$0.35 \pm 0.86b$	117.01b	193.82b


Values on each horizontal line followed by the same letter do not differ significantly ($p = 0.05$)

3.4 Analysis of the Relationships Between Species Diversity, Tree Density, Wood Density, and Forest Structure With Sequestered Carbon in Two Development Categories (Stem Tree and Mature Tree) And at Two Elevations (Lower Hill And Upper Hill)

The Pearson correlation analysis revealed a significant positive association between elevation and sequestered carbon ($p < 0.05$), as well as a highly significant positive association between developmental category, tree density, and species diversity with sequestered carbon ($p < 0.01$). In contrast, a highly significant negative association was found between mixture degree (Mi) and uniform angle index (Wi) with sequestered carbon ($p < 0.01$). Additionally, a highly significant positive association was observed between tree density and species diversity ($R^2=0.82$) ($p < 0.01$), also the degree of correlation greater than 0.8 between CV with CD (Fig. 4). Elevation, developmental category, species diversity, and tree density had a significant direct effect on sequestered carbon (Fig. 5).

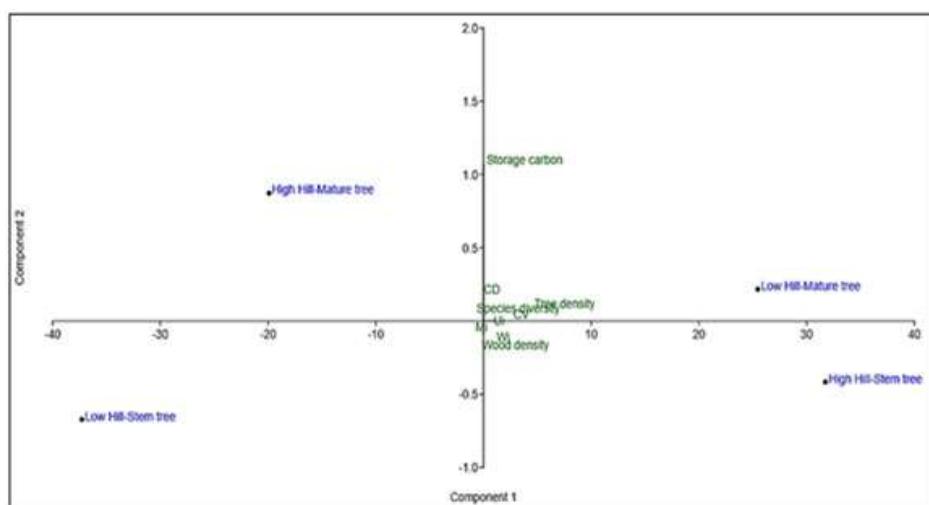
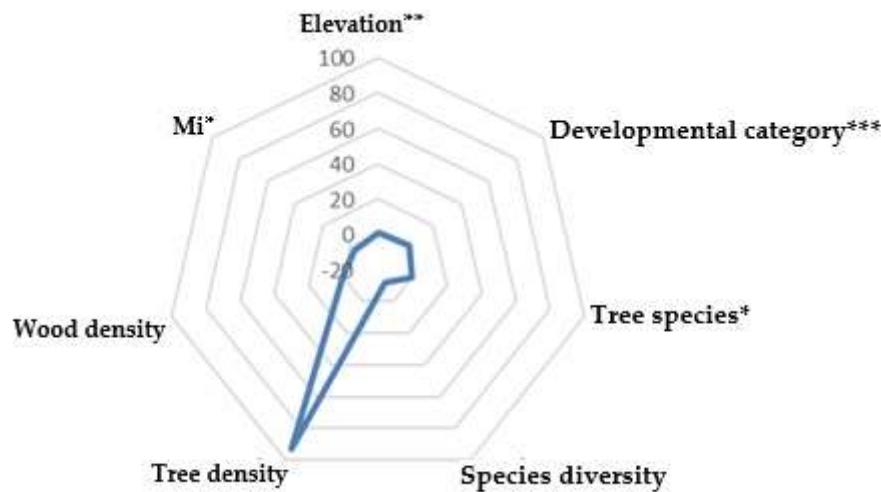


Fig. 4: Correlation analysis of structural factors, tree density, wood density, diversity, and sequestered carbon across the two elevations and two developmental categories. * indicates a significance level of 0.05; ** indicates a significance level of 0.01. Mi: mixture degree; Wi: uniform angle index; Ui: dominance index; CD: crown diameter; CV: crown volume


Fig. 5: Direct and indirect effects of the explanatory variables (elevation, developmental category, species diversity, and tree density) on the response variable (sequestered carbon) in the best-fitting statistical model. * and *** indicate significance levels of 0.05 and 0.001, respectively.

The biplot of the Principal Component Analysis (PCA) of sequestered carbon and other variables at each elevation (lower hill and upper hill). The PCA explains 99.90% of the total variability in the first two principal components (PCs), with PC1 accounting for 99.86% and PC2 for 0.04%. A strong positive association is observed between sequestered carbon, upper hill, and mature tree. In contrast, variables such as species diversity, wood density, mixture degree (Mi), uniform angle index (Wi), dominance index (Ui), crown diameter (CD), and tree density are located near the origin of the plot, suggesting that they do not show significant differences between elevations (Fig. 6)

Fig. 6: Biplot of Principal Component Analysis (PCA) by elevation of storage carbon, wood density, tree density and species diversity.

The results indicated that variables such as elevation, developmental category, tree species, and mixture degree (Mi) significantly influenced sequestered carbon ($R^2 = 0.479$; $p < 0.05$, $p < 0.01$, and $p < 0.001$; Fig. 7). Among these, tree density showed the greatest influence on the response variable.

Fig. 7: Multiple regression analysis of the developmental category, species diversity, tree species, wood density, elevation, mixture degree (Mi) and tree density.

* indicates a significance level of 0.05; ** indicates a significance level of 0.01; *** indicates a significance level of 0.001. Mi: mixture degree; Wi: uniform angle index; Ui: dominance degree; CD: crown diameter; CV: crown volume.

4. DISCUSSION

Sustainable forest management is guided by predicting the potential and rate of carbon storage resulting from the relationships between the structural characteristics of forest areas, tree density, and carbon storage at a regional scale; as well as the influence together with crown diameter and clustering degree on the association between species diversity and the stability of forest areas (Ma *et al.*, 2025). Regarding the structural characteristics of the two elevations, the relationships of mixture degree (Mi), uniform angle index (Wi), and dominance index (Ui) are notable for their relevance in regulating competition status, crown formation, as well as seedling growth and survival (Dong, Wei and Liu, 2020). The results for the mixture degree (Mi) indicate a higher species mixture in the upper hill; however, both elevations exhibit a very high degree of mixture. This finding is consistent with the studies of Rubio-Camacho *et al.*, (2017) and (Solís Moreno *et al.*, 2016), who reported high mixture values in protected natural areas. On the other hand, the uniform angle index (Wi) indicates a highly clustered distribution of individuals in the lower hill and a clustered distribution in the upper hill, with values close to 1 and 0.75, respectively. This classification contrasts with findings from several studies, which state that in natural forests or those with minimal disturbance, the spatial distribution of trees tends to be random (Aguirre *et al.*, 2003).

The dominance index (Ui) reveals that both elevations exhibit height heterogeneity, being classified as codominant since the values obtained are close to 0.50. This suggests that two neighboring trees are taller than the reference tree, which can be attributed to competition among individual trees for resources such as light, water, and nutrients (Pommerening, 2002; Li *et al.*, 2012).

Regarding tree density, its influence on the efficiency of space utilization by individual trees, as well as on their morphology and growth, was confirmed. This is because the results show that higher tree density is associated with lower averages of sequestered carbon and total sequestered carbon, as a result of increased competition among trees and reduced crown volume, which limits their ability to capture essential resources such as light and heat (Liu *et al.*, 2018).

In the upper hill, a higher percentage of large-sized individuals was recorded (88.5% with heights over 12.9 m), supporting the conclusions of (Thom and Keeton, 2019), who indicated that tree density influences carbon storage, which is enhanced by the size of the trees. Likewise, in agreement with our results, the mature tree category showed the highest average amount of sequestered carbon, likely due to their ability to acquire and utilize greater amounts of nutrients through a well developed root system and crown structure key factors in carbon storage (Mensah, du Toit and Seifert, 2018). However, the effects of the stem tree category should not be underestimated, as in forest areas with a high number of individuals in this category, along with large and scattered trees, the forest's aboveground biomass remains stable (Boucher *et al.*, 2021). On the other hand, the study results indicate that 29.2% of the individuals had wood densities below 0.50 kg cm^{-3} , yet they accounted for 49% of the total above-ground biomass and total sequestered carbon. These findings support the results of (Mensah *et al.*, 2016), who demonstrated that species with low wood density tend to have higher above-ground biomass. This is partly explained by the faster growth of species with lower density (Wright *et al.*, 2010). Our results also reveal a highly significant positive correlation between sequestered carbon and species diversity, which differs from the findings reported by (Ma *et al.*, 2025), likely due to natural disturbances such as variations in tree density across elevations. Nonetheless, a significant and direct influence of species diversity on carbon sequestration was identified, in line with the findings of (Ma *et al.*, 2025) and (Shirima *et al.*, 2011) in various high-altitude forest communities. Furthermore, our results confirm the findings of (Zhao *et al.*, 2020), showing that site conditions at each elevation directly influence productivity. This is because forest density and species diversity likely affect the stability of forest areas, which in turn impacts carbon storage (Ma *et al.*, 2025). Variations in forest biomass may be linked to the interaction of abiotic factors such as temperature, precipitation, and nutrient availability (Rutishauser *et al.*, 2015); to factors affecting vegetation regeneration, like landslides (Myster, 2020); or to species-specific traits such as wood density (Keeling and Phillips, 2007). On the other hand, the high carbon content stored in the montane forest may be attributed to its greater basal area compared to lower elevation forests. As noted by (Cueva, Lozano and Yaguana, 2019; Jadán *et al.*, 2020), elevation tends to increase both forest density and basal area, which in turn leads to higher aboveground biomass. Additionally, differences in carbon stocks among forest species are influenced by factors such as tree diameter, age, wood density, and forest type (Brown, 1997; Chave *et al.*, 2006). Rojas-Vargas *et al.*, (2019) also pointed out that carbon sequestration in ecosystems is closely linked to floristic composition, tree age, and wood density.

5. CONCLUSIONS

The effect of elevation has been recognized as an important factor in sustainable forest management. Regarding the structure of forest areas at each elevation, it is important to highlight the significant impacts of the mixing degree (Mi), the uniform angle index (Wi), and the crown diameter (CD) on forest dynamics. However, in this study, forest structure did not show a significant direct or indirect effect on sequestered carbon, suggesting that other factors such as tree density, species diversity, and development stage play a more substantial role in carbon storage. It is worth noting that tree density was the variable with the greatest direct influence on sequestered carbon, while elevation and species diversity also demonstrated significant positive associations with this process. Together, these results provide a solid scientific foundation for future research on carbon reservoirs in forest areas and offer valuable guidance for decision making in sustainable forest management, thereby promoting the conservation and efficient use of forest resources across different elevations. For the Peruvian Amazon, integrating these factors into conservation and restoration strategies will optimize carbon sequestration and contribute to national climate commitments. Adaptive management that prioritizes forest density and maintenance will promote ecological sustainability and the well-being of local communities.

Author Contributions: For research articles with multiple authors, include a brief paragraph outlining each author's contributions using the following format: "Conceptualization, D.Q.J, J.G.C, J.A.S, E.P.S, W.T.Z and R.P.E.; methodology, D.Q.J, J.G.C, J.A.S, E.P.S, W.T.Z and R.P.E.; software, D.Q.J, J.G.C; validation, D.Q.J, J.G.C.; formal analysis, D.Q.J, J.G.C.; investigation, D.Q.J, J.G.C, J.A.S, E.P.S, W.T.Z and R.P.E.; data curation, D.Q.J, J.G.C.; writing—original draft preparation, D.Q.J, J.G.C, J.A.S, E.P.S, W.T.Z and R.P.E.; writing—review and editing, D.Q.J, J.G.C, J.A.S, E.P.S, W.T.Z and R.P.E.; visualization, D.Q.J, J.G.C, J.A.S, E.P.S, W.T.Z and R.P.E.; supervision, D.Q.J, J.G.C. All authors have read and agreed to the published version of the manuscript."

Funding: "This research received no external funding"

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

REFERENCES

1. Aguirre, O., Hui, G., Von Gadow, K., & Jiménez, J. (2003). An analysis of spatial forest structure using neighbourhood-based variables. *Forest Ecology and Management*, 183(1–3). [https://doi.org/10.1016/S0378-1127\(03\)00102-6](https://doi.org/10.1016/S0378-1127(03)00102-6)
2. Alonso Rubio-Camacho, E., Aurelio Gonzalez-Tagle, M., Himmelsbach, W., Yemilet Avila-Flores, D., Alanis-Rodriguez, E., & Jimenez-Perez, J. (2017). Spatial distribution patterns of trees in a mixed pine-oak forest of Northeastern Mexico. *REVISTA MEXICANA DE BIODIVERSIDAD*, 88(1).
3. Boucher, Y., Auger, I., Arseneault, D., Elzein, T., & Sirois, L. (2021). Long-term (1925–2015) forest structure reorganization in an actively managed temperate-boreal forest region of eastern North America. *Forest Ecology and Management*, 481. <https://doi.org/10.1016/j.foreco.2020.118744>

4. Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. *FAO Forestry Paper, 134*(August).
5. Bruhwiler, L., Basu, S., Butler, J. H., Chatterjee, A., Dlugokencky, E., Kenney, M. A., McComiskey, A., Montzka, S. A., & Stanitski, D. (2021). Observations of greenhouse gases as climate indicators. *Climatic Change, 165*(1–2). <https://doi.org/10.1007/s10584-021-03001-7>
6. Cazzolla Gatti, R., Castaldi, S., Lindsell, J. A., Coomes, D. A., Marchetti, M., Maesano, M., Di Paola, A., Paparella, F., & Valentini, R. (2015). The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. *Ecological Research, 30*(1). <https://doi.org/10.1007/s11284-014-1217-3>
7. Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., Hans Steege, T. E. R., & Webb, C. O. (2006). Regional and phylogenetic variation of wood density across 2456 neotropical tree species. *Ecological Applications, 16*(6). [https://doi.org/10.1890/1051-0761\(2006\)016\[2356:RAPVOW\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2)
8. Chave, J., Réjou-Méchain, M., Bürquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., ... Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. *Global Change Biology, 20*(10). <https://doi.org/10.1111/gcb.12629>
9. Corral-Rivas, J. J., Vargas Larreta, B., Wehenkel, C., Aguirre-Calderón, O. A., Álvarez-González, J. G., & Rojo-Alboreca, A. (2009). Guía para el establecimiento de sitios de investigación forestal y de suelos en bosques del estado de Durango. *Editorial de La Universidad Juárez Del Estado de Durango., Octubre 2017, 54p.* <https://www.researchgate.net/publication/305640430%0AGuía>
10. Cuellar, J., & Salazar, E. (2016). Dinamica del carbono almacenado en los diferentes sistemas de uso de la tierra del perú;base para una estrategia de mitigación ante cambio climatico. *Conafor, 5.* <http://www.inia.gob.pehttp://www.inia.gob.pe>
11. Cueva, E., Lozano, D., & Yaguana, C. (2019). Effect of the altitudinal gradient in the floristic composition, structure and arboreal biomass of the andean dry forest, Loja, Ecuador. *Bosque, 40*(3). <https://doi.org/10.4067/S0717-92002019000300365>
12. Cuni-Sánchez, A., Sullivan, M. J. P., Platts, P. J., Lewis, S. L., Marchant, R., Imani, G., Hubau, W., Abiem,

I., Adhikari, H., Albrecht, T., Altman, J., Amani, C., Aneseyee, A. B., Avitabile, V., Banin, L., Batumike, R., Bauters, M., Beeckman, H., Begne, S. K., ... Zibera, E. (2021). High aboveground carbon stock of African tropical montane forests. *Nature*, 596(7873). <https://doi.org/10.1038/s41586-021-03728-4>

13. Dong, L., Wei, H., & Liu, Z. (2020). Optimizing forest spatial structure with neighborhood-based indices: Four case studies from Northeast China. *Forests*, 11(4). <https://doi.org/10.3390/F11040413>

14. Eguiguren, P., Luna, T. O., Torres, B., Lippe, M., & Günter, S. (2020). Ecosystem service multifunctionality: Decline and recovery pathways in the Amazon and Chocó Lowland rainforests. *Sustainability (Switzerland)*, 12(18). <https://doi.org/10.3390/SU12187786>

15. Erb, K. H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., Pongratz, J., Thurner, M., & Luyssaert, S. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. *Nature*, 553(7686). <https://doi.org/10.1038/nature25138>

16. Fernández-Guisuraga, J. M., Calvo, L., Enterkine, J., Price, W. J., Dinkins, J. B., Jensen, K. S., Olson, P. J., & Arispe, S. A. (2024). Estimating vegetation and litter biomass fractions in rangelands using structure-from-motion and LiDAR datasets from unmanned aerial vehicles. *Landscape Ecology*, 39(10), 1–19. <https://doi.org/10.1007/s10980-024-01979-w>

17. Gonzalez, R., Blundo, C., & Carrilla, J. (2021). *Taking the Pulse of Earth's Tropical Forests using Networks of*. <https://www.elsevier.com/open-access/userlicense/1.0/>

18. Graciano-ávila, G., Alanís-Rodríguez, E., Rubio-Camacho, E. A., Valdecantos-dema, A., Aguirre-Calderón, O. A., González-Tagle, M. A., Treviño-Garza, E. J., Corral-Rivas, J. J., & Mora-Olivo, A. (2020). Composition and spatial structure of five associations of forests of *pinus durangensis*. *Madera y Bosques*, 26(2).

19. Gutiérrez, A., García, F., Rojas, S., & Castro, F. (2015). Permanent plot for monitoring in a galleria forest in Puerto Gaitan Meta. *Corpoica Cienc. Tecnol. Agropecu*, 16(1).

20. Heinrich, V. H. A., Vancutsem, C., Dalagnol, R., Rosan, T. M., Fawcett, D., Silva-Junior, C. H. L., Cassol, H. L. G., Achard, F., Jucker, T., Silva, C. A., House, J., Sitch, S., Hales, T. C., & Aragão, L. E. O. C. (2023). The carbon sink of secondary and degraded humid tropical forests. *Nature*, 615(7952). <https://doi.org/10.1038/s41586-022-05679-w>

21. Hernández Ramos, J., Magaña, J. J. G., Flores, H. J. M., GarcíaCuevas, X., Reyes, T. S., López, C. F., &

Ramos, A. H. (2013). Guía de densidad para manejo de bosques. *Revista Mexicana de Ciencias Forestales*, 4(19), 61–77.

22. Houghton, R. A. (2007). Balancing the global carbon budget. *Annual Review of Earth and Planetary Sciences*, 35. <https://doi.org/10.1146/annurev.earth.35.031306.140057>

23. Hui, G., Zhang, G., Zhao, Z., & Yang, A. (2019). Methods of Forest Structure Research: a Review. In *Current Forestry Reports* (Vol. 5, Issue 3). <https://doi.org/10.1007/s40725-019-00090-7>

24. Jadán, O., Toledo, C., Tepán, B., Cedillo, H., Peralta, Á., Zea, P., Castro, P., & Vaca, C. (2020). Forest communities in secondary high Andean forests (Azuay, Ecuador). *Natural Resources Conservation and Research*, 3(2). <https://doi.org/10.24294/nrcr.v3i2.1545>

25. Keeling, H. C., & Phillips, O. L. (2007). The global relationship between forest productivity and biomass. *Global Ecology and Biogeography*, 16(5). <https://doi.org/10.1111/j.1466-8238.2007.00314.x>

26. Lal, R. (2005). Forest soils and carbon sequestration. *Forest Ecology and Management*, 220(1–3). <https://doi.org/10.1016/j.foreco.2005.08.015>

27. Lan, X., Du, H., Song, T., Zeng, F., Peng, W., Liu, Y., Fan, Z., & Zhang, J. (2019). Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors. *Shengtai Xuebao*, 39(6). <https://doi.org/10.5846/stxb201803210557>

28. Li, Q., Liu, Z., & Jin, G. (2022). Impacts of stand density on tree crown structure and biomass: A global meta-analysis. *Agricultural and Forest Meteorology*, 326. <https://doi.org/10.1016/j.agrformet.2022.109181>

29. Li, Y., Hui, G., Zhao, Z., & Hu, Y. (2012). The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest. *Journal of Vegetation Science*, 23(6). <https://doi.org/10.1111/j.1654-1103.2012.01431.x>

30. Liu, Y. Q., Tian, Y. H., Song, H. Z., & Huang, W. L. (2018). DBH and stand density regulate intraspecific competition of *Larix gmelinii* in eastern Inner Mongolia. *Chinese Journal of Ecology*, 37(3). <https://doi.org/10.13292/j.1000-4890.201803.016>

31. Ma, Y., Eziz, A., Halik, Ü., Abliz, A., & Kurban, A. (2023). Precipitation and Temperature Influence the Relationship between Stand Structural Characteristics and Aboveground Biomass of Forests—A Meta-Analysis. In *Forests* (Vol. 14, Issue 5). <https://doi.org/10.3390/f14050896>

32. Ma, Y., Zhang, X., Jiang, R., Jiang, M., & Ju, J. (2025). Effects of Stand Structural Characteristics, Diversity,

and Stability on Carbon Storage Across Different Densities in Natural Forests: A Case Study in the Xiaolong Mountains, China. *Forests*, 16(1). <https://doi.org/10.3390/f16010071>

33. Mensah, S., du Toit, B., & Seifert, T. (2018). Diversity–biomass relationship across forest layers: implications for niche complementarity and selection effects. *Oecologia*, 187(3). <https://doi.org/10.1007/s00442-018-4144-0>

34. Mensah, S., Veldtman, R., Du Toit, B., Kakaï, R. G., & Seifert, T. (2016). Aboveground biomass and carbon in a South African Mistbelt forest and the relationships with tree species diversity and forest structures. *Forests*, 7(4). <https://doi.org/10.3390/f7040079>

35. Myster, R. W. (2020). Disturbance and Response in the Andean Cloud Forest: a Conceptual Review. *Botanical Review*, 86(2). <https://doi.org/10.1007/s12229-020-09219-x>

36. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world's forests. *Science*, 333(6045). <https://doi.org/10.1126/science.1201609>

37. Paoli, G. D., Curran, L. M., & Slik, J. W. F. (2008). Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. *Oecologia*, 155(2). <https://doi.org/10.1007/s00442-007-0906-9>

38. Phillips, O., Baker, T., Feldpausch, T., & Roel, B. (2016). Manual de campo para el establecimiento y la remediación de parcelas. *Rainfor*, 28. https://forestplots.net/upload/es/recursos/RAINFOR_field_manual_ES.pdf

39. Pommerening, A. (2002). Approaches to quantifying forest structures. *Forestry*, 75(3). <https://doi.org/10.1093/forestry/75.3.305>

40. Raihan, A., Begum, R. A., Said, M. N. M., & Pereira, J. J. (2021). Assessment of carbon stock in forest biomass and emission reduction potential in Malaysia. *Forests*, 12(10). <https://doi.org/10.3390/f12101294>

41. Rawat, M., Arunachalam, K., Arunachalam, A., Alatalo, J. M., Kumar, U., Simon, B., Hufnagel, L., Micheli, E., & Pandey, R. (2020). Relative contribution of plant traits and soil properties to the functioning of a temperate forest ecosystem in the Indian Himalayas. *Catena*, 194. <https://doi.org/10.1016/j.catena.2020.104671>

42. Rojas-Vargas, E. P., Silva-Agudelo, E. D., Guillén-Motta, A. Y., Motta-Delgado, P. A., & Herrera-Valencia, W. (2019). Carbono almacenado en estrato arbóreo de sistemas ganaderos y naturales del municipio de Albania, Caquetá, Colombia. *Ciencia y Agricultura*, 16(3), 35–46. <https://doi.org/10.19053/01228420.v16.n3.2019.9515>

43. Rutishauser, E., Héault, B., Baraloto, C., Blanc, L., Descroix, L., Sotta, E. D., Ferreira, J., Kanashiro, M., Mazzei, L., D’Oliveira, M. V. N., De Oliveira, L. C., Peña-Claros, M., Putz, F. E., Ruschel, A. R., Rodney, K., Roopsind, A., Shenkin, A., Da Silva, K. E., De Souza, C. R., ... Sist, P. (2015). Rapid tree carbon stock recovery in managed Amazonian forests. In *Current Biology* (Vol. 25, Issue 18). <https://doi.org/10.1016/j.cub.2015.07.034>

44. Salazar Espinoza, R. J. (2018). Coordenadas UTM (universal transverse mercator) obtenidas por factor combinado, plano topográfico Local LTM - PTL y geodesia geométrica tradicional GG. *Revista Tecnológica*, 14(20), 5. http://revistasbolivianas.umsa.bo/scielo.php?script=sci_arttext&pid=&lng=es&nrm=iso&tlang=es

45. Shannon, C. E., & Weaver, W. (1949). The Theory of Mathematical Communication. *Bell System Technical Journal*, 27, 379–429. https://pure.mpg.de/rest/items/item_2383164_3/component/file_2383163/content

46. Shirima, D. D., Munishi, P. K. T., Lewis, S. L., Burgess, N. D., Marshall, A. R., Balmford, A., Swetnam, R. D., & Zahabu, E. M. (2011). Carbon storage, structure and composition of miombo woodlands in Tanzania’s Eastern Arc Mountains. *African Journal of Ecology*, 49(3). <https://doi.org/10.1111/j.1365-2028.2011.01269.x>

47. Shirima, D. D., Totland, Ø., Munishi, P. K. T., & Moe, S. R. (2015). Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania. *Basic and Applied Ecology*, 16(3). <https://doi.org/10.1016/j.baae.2014.11.008>

48. Solís Moreno, R., Aguirre Calderón, O. A., Treviño Garza, E. J., Jiménez Pérez, J., Jurado Ybarra, E., & Corral-Rivas, J. (2016). Efecto de dos tratamientos silvícolas en la estructura de ecosistemas forestales en Durango, México. *Madera y Bosques*, 12(2). <https://doi.org/10.21829/myb.2006.1221242>

49. Strassburg, B. B. N., Kelly, A., Balmford, A., Davies, R. G., Gibbs, H. K., Lovett, A., Miles, L., Orme, C. D. L., Price, J., Turner, R. K., & Rodrigues, A. S. L. (2010). Global congruence of carbon storage and biodiversity in terrestrial ecosystems. In *Conservation Letters* (Vol. 3, Issue 2). <https://doi.org/10.1111/j.1755-263X.2009.00092.x>

50. Tadese, S., Soromessa, T., Aneseye, A. B., Gebeyehu, G., Noszczyk, T., & Kindu, M. (2023). The impact of

land cover change on the carbon stock of moist afromontane forests in the Majang Forest Biosphere Reserve. *Carbon Balance and Management*, 18(1). <https://doi.org/10.1186/s13021-023-00243-z>

51. Thom, D., & Keeton, W. S. (2019). Stand structure drives disparities in carbon storage in northern hardwood-conifer forests. *Forest Ecology and Management*, 442. <https://doi.org/10.1016/j.foreco.2019.03.053>

52. Wang, X., Huang, X., Wang, Y., Yu, P., & Guo, J. (2022). Impacts of Site Conditions and Stand Structure on the Biomass Allocation of Single Trees in Larch Plantations of Liupan Mountains of Northwest China. *Forests*, 13(2). <https://doi.org/10.3390/f13020177>

53. Winsemius, S., Babcock, C., Kane, V. R., Bormann, K. J., Safford, H. D., & Jin, Y. (2024). Improved aboveground biomass estimation and regional assessment with aerial lidar in California's subalpine forests. *Carbon Balance and Management*, 19(1). <https://doi.org/10.1186/s13021-024-00286-w>

54. Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., DíAz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth-mortality trade-off in tropical trees. *Ecology*, 91(12). <https://doi.org/10.1890/09-2335.1>

55. Yepes, A., Duque, Á., Navarrete, D., & Philips, J. (2011). *Protocolo para la estimación nacional y subnacional de biomasa de biomasa-carbono en Colombia* (Issue July). https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil_wars_12December2010.pdf%0Ahttps://thinkasia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625

56. Yuan, Z., Ali, A., Sanaei, A., Ruiz-Benito, P., Jucker, T., Fang, L., Bai, E., Ye, J., Lin, F., Fang, S., Hao, Z., & Wang, X. (2021). Few large trees, rather than plant diversity and acomposition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. *Forest Ecology and Management*, 481. <https://doi.org/10.1016/j.foreco.2020.118698>

57. Zhang, Y., Chen, H. Y. H., & Taylor, A. R. (2017). Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. *Functional Ecology*, 31(2), 419–426. <https://doi.org/10.1111/1365-2435.12699>

58. Zhao, X., Li, Y., Song, H., Jia, Y., & Liu, J. (2020). Agents affecting the productivity of pine plantations on the loess plateau in China: A study based on structural equation modeling. *Forests*, 11(12).

<https://doi.org/10.3390/f11121328>

59. Zhu, Z., Kleinn, C., & Nölke, N. (2021). Assessing tree crown volume - A review. In *Forestry* (Vol. 94, Issue 1). <https://doi.org/10.1093/forestry/cpaa037>