

# A Case Study on Energy Recovery in the Rexine Industry: Comparative Insights into RDF and Coal Based Combustion Systems

Utsav Sharma<sup>1</sup>, Dayanand Sharma<sup>1\*</sup>, Vishwesh Mishra<sup>2</sup>, Abid Hussain<sup>3</sup>

<sup>1</sup>Department of Civil Engineering, Sharda School of Engineering and Technology, Sharda University, Greater Noida, 201310, India

<sup>2</sup>Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, Uttar Pradesh 281406, India.

<sup>3</sup>Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada

|                        |                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key Words              | Refuse derived fuel (RDF), Incineration, Rexine industry, Solid waste, Thermic fluid heater, Energy recovery                                                                                                                                                                                                                                                                                 |
| DOI                    | <a href="https://doi.org/10.46488/NEPT.2025.v24i04.B4377">https://doi.org/10.46488/NEPT.2025.v24i04.B4377</a> (DOI will be active only after the final publication of the paper)                                                                                                                                                                                                             |
| Citation for the Paper | Sharma, U., Sharma, D., Mishra, V. and Hussain, A., 2025. A case study on energy recovery in the rexine industry: Comparative insights into refuse derived fuel (RDF) and coal based combustion systems. <i>Nature Environment and Pollution Technology</i> , 24(4), p. B4377. <a href="https://doi.org/10.46488/NEPT.2025.v24i04.B4377">https://doi.org/10.46488/NEPT.2025.v24i04.B4377</a> |

## Abstract

The growing interest in sustainable industrial solutions has motivated the development of refuse-derived fuel (RDF) as an alternative to traditional fossil fuels. This paper aims to assess the technical and environmental feasibility of RDF as a substitute for coal in the rexine production process. Sample RDFs were subjected to proximate and ultimate analyses to determine their fuel properties. The proximate analysis indicated 34.24% moisture, 19.15% ash, and 24.61% volatile matter. The ultimate analysis revealed 30.47% carbon, 4.28% hydrogen, and a low sulfur content of 0.65%, suggesting a high combustion value with reduced pollutant emissions. Industrial trials were conducted in a 350 TPD boiler unit, and emissions were measured using continuous gas analyzers and gravimetric methods, following CPCB guidelines. The investigation confirmed that particulate matter (40.4 mg/Nm<sup>3</sup>), NO<sub>x</sub> (260.2 mg/Nm<sup>3</sup>), SO<sub>2</sub> (110.8 mg/Nm<sup>3</sup>), and CO (80 mg/Nm<sup>3</sup>) emissions remained within acceptable limits. Cost benefit analysis further demonstrated potential fuel cost savings of 40–60% when using RDF instead of coal. In conclusion, the results establish RDF as a clean, economical, and regulation-compliant energy feedstock for the rexine industry, aligning with the goals of a circular economy and sustainable energy transition.

## 1. Introduction

One of the critical issues associated with municipal solid waste (MSW) is rapid urbanization and increasing population, especially in developing countries such as India. The trends of this transformation are not cyclically developed, but increasingly linear, causing exponential waste

generation that usually outpaces infrastructure development (Ganesan et al. 2024). India produces over 150,000 metric tons of waste each day, a majority of which is untreated and dumped in an unhygienic manner (Sharma et al. 2024). These methods are not sustainable, as they cause long term environmental pollution soil and water contamination, air pollution through fugitive methane emissions, and other serious public health problems. Innovative waste to energy (WtE) technologies are rapidly emerging to address global sustainable development challenges. Among these, refuse derived fuel (RDF) stands out as a viable alternative that minimizes landfill dependency and serves as a substitute for conventional industrial fuels (Moya et al. 2017).

Refuse derived fuel (RDF) is a high energy content fuel extracted from various waste products such as wood, plastics, textiles, and paper. It is treated to the extent that its physical characteristics allow it to burn easily as fuel. The end product is not only a commodity fuel of higher caloric quality than petcock but can also replace coal. RDF is inherently homogeneous, dry, and energy rich, which makes it better suited for regulated incineration in industrial boilers and kilns compared to untreated raw waste (Sarquah et al. 2023). Globally, several countries such as Germany, Sweden, and Japan have successfully deployed RDF in their industrial energy infrastructures such as cement kilns, power plants, and district heating systems (Sharma et al. 2024; Chyang et al. 2010).

The move in Ireland away from landfills to energy from incineration is an example of this evolution. On the other hand, India has not been very successful in adopting RDF so far, even though RDF is accepted across the globe. While a number of policies like the Swachh Bharat Mission, Swachh Bharat Cess, and the national policy on solid waste management have been introduced, several challenges hinder the practical implementation of these policies (Sangeetha et al. 2024). These challenges include poor source segregation, limited awareness among local authorities, lack of technical expertise and skilled labor, and inadequate financial incentives for RDF users (Sakri et al. 2021). Exacerbating the problem is India's long standing dependence on coal, historically the least expensive and most accessible form of energy. Key industrial sectors namely cement, textiles, and rexine (faux leather) still prefer coal due to existing infrastructure, established combustion technologies, and procurement practices (Parlikar et al. 2016). Despite RDF's environmental and economic advantages, this structural inertia remains a barrier to implementation.

Nevertheless, RDF possesses characteristics that qualify it as an alternative to coal. Even though RDF typically has a relatively high moisture content, sophisticated drying and pre-treatment processes can reduce it to acceptable levels, resulting in a calorific value of 4200 cal/gm for many waste feedstocks and treatment methods (Karpan et al. 2021). Its sulfur content is comparable to Indian coal (which contains 0.8–1.5% sulfur and contributes to high SO<sub>2</sub> pollution (Sharma et al. 2025). In contrast, RDF can have sulfur content as low as 0.5%, leading to cleaner combustion. Additionally, RDF has lower ash content than Indian sub-bituminous coal, reducing both the management and cost of disposing of combustion residues (Punin et al. 2014). The environmental impact of RDF availability is another advantage. First, binder use in RDF treatment diverts MSW from landfills, limiting methane emissions from anaerobic degradation methane being 28 times more potent than CO<sub>2</sub> over a 100-year period (Makrygiannis et al. 2023). Second, net CO<sub>2</sub> emissions from RDF incineration are far less than those from coal, since RDF contains biomass based materials, which are considered carbon neutral under international emissions accounting

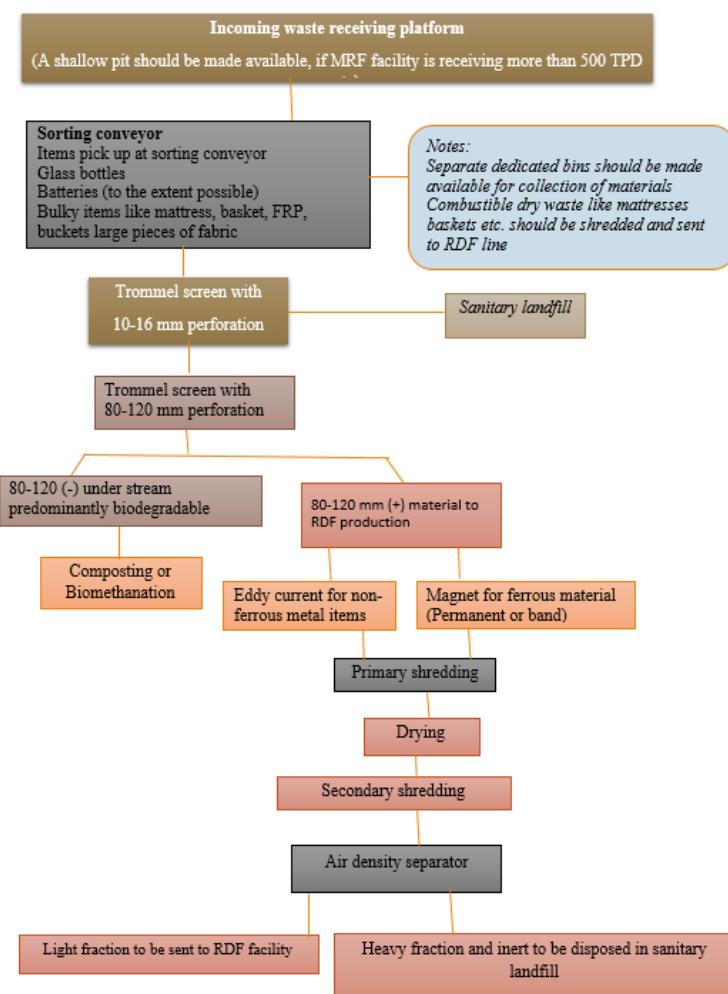
frameworks (Chyang et al. 2010). For example, coal combustion emits over 2.5 kg of CO<sub>2</sub> per kg of fuel burned, while RDF emissions are typically over 50% lower, depending on its organic content (Choudhury et al. 2022).

In addition to incineration, RDF can be used in gasification and pyrolysis advanced thermal treatment technologies that produce syngas and liquid fuels from waste. These techniques result in lower pollutant generation, reduced energy waste, and less air pollution (Samolada et al. 2014). RDF is a clearly defined energy source compatible with circular economy principles and industrial decarbonization. However, high capital expenditure and the need for consistent feed material quality remain bottlenecks in large-scale RDF adoption in India (Bhatsada et al. 2023; Nema et al. 2021).

A comparative analysis of coal and RDF as industrial fuels reveals trade-offs in technical, economic, and disposal perspectives. Coal has high fixed carbon content and stable combustion characteristics but also produces high CO<sub>2</sub>, SO<sub>2</sub>, and particulate emissions, along with large amounts of fly ash due to unburned pyrite particles (Sharma et al. 2025). Although RDF is heterogeneous, proper pre-treatment enables it to compete with coal in terms of energy value. RDF processing has become more accurate and consistent. Moreover, RDF is becoming increasingly cost effective. In light of fluctuating international coal prices and India's reliance on coal imports, locally generated RDF is emerging as a more stable and, in some cases, cheaper alternative (Sever et al. 2016). Additionally, industries adopting RDF can benefit from carbon credits, government subsidies, and CSR related tax incentives, making the economic case even stronger.

The potential for RDF use in India is particularly significant in sectors such as rexine, where energy intensive processes like calendaring, lamination, and coating do not require high grade fuel. Traditionally, rexine production is coal based and environmentally detrimental due to the large furnaces used. Replacing coal with RDF in this sector could reduce India's coal dependency and help meet its climate goals under the Paris Agreement. Furthermore, RDF use could lower emissions of particulate matter, NO<sub>x</sub>, and SO<sub>2</sub>, while advancing municipal waste management objectives (Sharma et al. 2025; Makrygiannis et al. 2023).

However, applying RDF in the rexine industry and similar fields is not without challenges. Companies must ensure RDF quality control, adopt advanced boilers and burners suited for RDF, and establish long term RDF procurement systems. Local governments must also improve source level waste segregation and develop modern waste processing infrastructure, which may require public-private partnerships (Nema et al. 2021). A multi-pronged approach is necessary to overcome these barriers. Regulations must go beyond intent and include legally binding RDF usage requirements in industry. Monetary incentives such as retrofit subsidies for RDF compatible boilers and feed-in tariffs for electricity generated from RDF should be considered. Training programs for plant personnel and municipal engineers on RDF handling and combustion optimization are also essential. Independent RDF quality control and standardization will be key to building industry confidence.


This study considers the feasibility of substituting coal with RDF in rexine production, focusing on the technical, environmental, and economic aspects of the transition. This comparison is essential in evaluating the environmental sustainability of RDF as a solution to India's growing

waste and energy demands. It also explores the potential for co-firing RDF in industrial facilities and how RDF blended fuels can help achieve climate targets, close resource loops, and support broader sustainability goals.

## 2. MATERIALS AND METHODS

## 2.1 Waste Segregation and RDF Collection

Mechanical separation of RDF and organic components is currently practiced in the Indian state of Uttar Pradesh. As shown in Figure 1, the diagram illustrates the feedstock handling process at an RDF oriented material recovery facility (MRF) for organic waste extraction. Waste is initially received at the incoming waste platform, where shallow pits are employed for treatment especially at facilities processing 100 TPD or more. Various materials are deposited into corresponding extraction bins, while flammable dry residues (such as mattresses and baskets) are ground and directed to the RDF processing line.



**Figure 1.** Flow chart for the pre-processing of mixed municipal waste (CPHEEO 2005; CPCB 1998).

The waste is then conveyed along a sorting conveyor, where items such as glass, metals, batteries, and oversized articles (e.g., FRP buckets, mattresses) are removed. This is followed by trommel screening. The first trommel (10–16 mm apertures) separates fine inert fractions for landfilling, while the second trommel screen (80–120 mm perforations) separates biodegradable fines for composting or bio-methanation, and coarser fractions for RDF production. Eddy Current Separation is used for non-ferrous metals, and Magnetic Separation is used for ferrous metals. The RDF is shredded, dried, and further processed with an air density separator, which separates light RDF fractions from heavy waste sent to sanitary landfills. The optimum system maximizes resource recovery and RDF yield while minimizing landfill deposition.



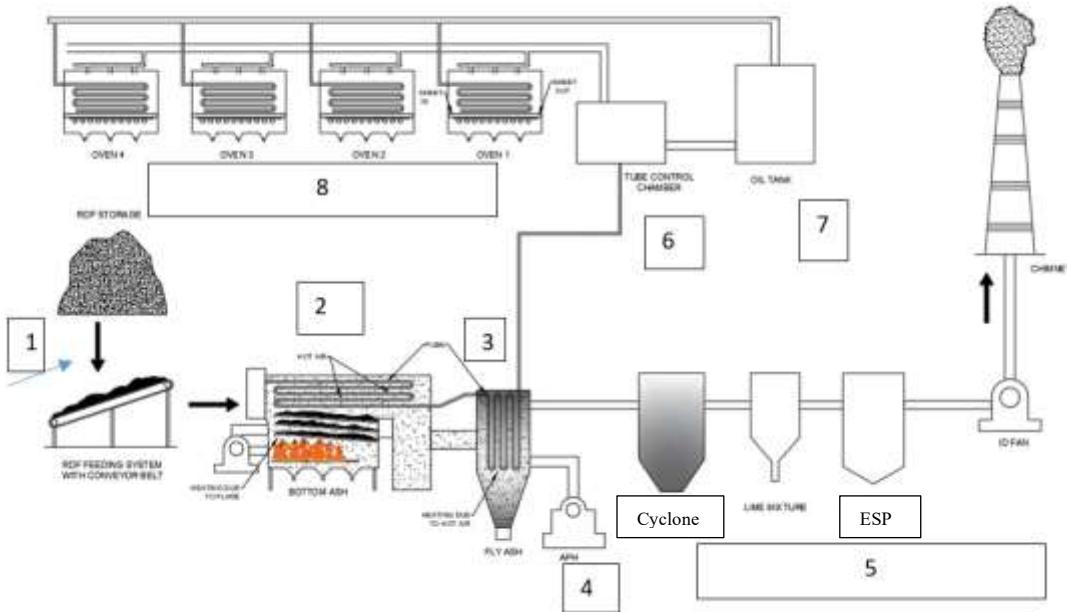
**Figure 2.** Geographical map illustrating the location of the test site.

## 2.2 The Ultimate and Proximate Analysis

Proximate analysis was done via two methods, muffle furnace method and thermogravimetric method to determine the moisture content, volatile matter, fixed carbon and ash. Elemental analysis (C, H, N, S, O) was determined on a CHNS analyzer for ultimate analysis using ASTM methods (Dianda et al. 2018; CPHEEO 2005; CPCB 1998).

## 2.3 Stack Emission and Air Pollution Monitoring

The emissions of gaseous and particulate matter compounds (such as CO, SO<sub>2</sub>, NO<sub>x</sub>, etc.) were measured using continuous gas analyzers and by gravimetric methods. The sampling was carried


out as per the guidelines of the EPA and CPCB and analyzed for compliance with environmental standards (EPA 2005; CPHEEO 2005; CPCB 1998).

## 2.4 Working of Rexin Plant

The research focused on investigating the application of refuse derived fuel (RDF) in the rexine manufacturing industry, specifically examining environmental emissions and energy balance. RDF sampling was conducted at three sites in Uttar Pradesh (Morta Site, Morta Pipeline Site, and Sector 146, Noida) (Refer figure 2). At each site, a  $4 \times 4$  ft plot was demarcated, and RDF was collected to a depth of 6 inches. Three replicates were taken from the edge, center, and stack regions, then composited to form representative samples. The composite mass per site was approximately 8–10 kg, which was homogenized by quartering and conning method and sieving to control heterogeneity and ensure uniform particle size distribution (<10 mm). Proximate analysis (moisture, volatile matter, ash, and fixed carbon) was performed in triplicate using a muffle furnace and thermogravimetric method (BIS 1994; Allen 1999). Ultimate analysis (C, H, N, S, and O) was carried out on a CHNS elemental analyzer (Perkin Elmer 2400 Series II), followed by (BIS 1994; Allen 1999). Higher heating value (HHV) was determined by bomb calorimetry (Allen 1999). This rigorous protocol ensured representative, statistically robust data on RDF fuel characteristics for subsequent comparative and combustion analyses. The calorific or energy value was assessed by determining the Higher Heating Value (HHV) using a bomb calorimeter. Emissions of gases and particulate matter (PM) during RDF combustion were measured to evaluate environmental performance. Gases such as  $\text{CO}_2$ ,  $\text{SO}_2$ , and  $\text{NO}_x$ , along with PM, were measured using continuous gas analyzers and gravimetric methods. Sampling followed CPCB and U.S. EPA guidelines to ensure data credibility (Dobkin et al. 2025; EPA 2005; CPHEEO 2005; CPCB 1998).

The operational process of rexine manufacturing plants utilizing Refuse-Derived Fuel (RDF) as an energy source is illustrated in figure 3. RDF is collected from waste disposal sites, transported to the rexine-making facility, and moved via conveyor belts to the incineration unit. Incineration, carried out entirely with RDF, achieves up to 2.5 million calories depending on fire conditions, fuel quality, and production efficiency. The chamber operates between 600–1200 °C, maintained by controlled RDF combustion. A compact moving grate incineration system (2–4 m long, 1–2 m wide, 2–3 m high) is installed in Uttar Pradesh, though the exact site remains undisclosed as per company policy. Bottom ash is collected separately from fly ash in designated chambers. Hi Tech Therm Oil 60, which flowed into the pipeline through four consecutive ovens in the production line as shown in the figure 3 in line number 8. This Hi Tech Therm Oil 60 was used to make the rexine in the industry. Each oven in the production line was designed for a distinct operational function (refer Figure 3). Oven-1 preheated the paper substrate; Oven-2 facilitated drying and bonding of the rexine layer; Oven-3 applied and cured the paint coatings; and Oven-4 provided surface finishing, imparting smoothness and gloss to the final rexine sheet. Hot air, maintained at approximately 200°C and generated by heat transfer oil, circulated through coiled tubes within each oven, ensuring uniform temperature distribution critical to each process stage. The exhaust air was subsequently routed through an air pollution control system. The grate design supported consistent airflow, stable combustion, and efficient heat recovery. The resulting hot gases were directed to a cyclone separator, where lime was introduced to neutralize acidic pollutants such as  $\text{SO}_2$ , thereby mitigating environmental impact. Following neutralization, the gas stream passed through an air filtration unit typically an electrostatic precipitator (ESP) to remove fine particulate

matter and residual contaminants. The cleaned gases were then released through a chimney at an appropriate stack height, ensuring safe dispersion and compliance with ambient air quality standards.



**Figure 3:** Flow chart of utilization of RDF in the Rexin industry

Stack emissions were measured using continuous gas analyzers and gravimetric methods as per CPCB and U.S. EPA guidelines (EPA 2005; CPCB 1998; Parlikar et al. 2016). Gas velocity was determined by pitot tube traverse (BIS 1994), using 12 points across two perpendicular diameters (CPHEEO 2005; CPCB 1998). Corrections for temperature, barometric pressure, and moisture were applied. The stack diameter was 2.7 m, and the mean velocity of 19.75 m/s was measured at actual conditions. Volumetric flow was normalized to standard conditions (0 °C, 101.325 kPa, dry basis), yielding 219,175.76 Nm<sup>3</sup>/h. The air pollution control device (APCD) configuration used during RDF trials consisted of a cyclone separator for coarse particulate removal, followed by a lime injection system, and an electrostatic precipitator (ESP). This integrated arrangement effectively reduced both acid gases and fine particulates, ensuring compliance with regulatory standards.

Total Nox was measured with CPCB emission standards and IS 11255 guidelines (BIS 1994). Stack gas monitoring was performed using a HORIBA PG-350 Portable Gas Analyzer, which employs chemiluminescence detection for NOx, nondispersive infrared for CO and CO<sub>2</sub>, and electrochemical/paramagnetic sensors for O<sub>2</sub> and SO<sub>2</sub>. The instrument was calibrated using certified span gases (NO, SO<sub>2</sub>, CO in N<sub>2</sub> balance) and zero checks with high-purity nitrogen prior to each sampling session. Each monitoring run was conducted for a minimum averaging period of

30 minutes, with three replicate runs performed on separate days. Mean values and 95% confidence intervals are now reported in the revised Results section to demonstrate repeatability.

Particulate matter (PM) was measured using isokinetic sampling in accordance with IS 11255 (Parts 1–7) and CPCB protocols (BIS 1994). An Envirotech APM 415 stack monitoring kit with pre-weighed glass fiber thimbles was employed. The nozzle diameter was selected based on the stack gas velocity to maintain isokinetic sampling conditions, and each run lasted 60 minutes. The filters were conditioned and weighed in a controlled environment before and after sampling, and the gravimetric mass was corrected for moisture to derive the PM concentration in mg/Nm<sup>3</sup>. This approach ensures that the reported PM values are fully compliant with CPCB and IS 11255 requirements (BIS 1994; EPA; 2005; CPHEEO 2005; CPCB 1998).

### **3. RESULTS AND DISCUSSION**

#### **3.1 Comparative Performance of RDF and Coal as Rexine industries Fuels**

RDF is being developed and utilized globally as a potential substitute fuel for coal in industries such as cement, textiles, rexine, etc. RDF is especially useful for urban communities where MSW is generated abundantly and can be converted into an attractive fuel, which is consistent with sustainable waste management and the circular economy. Nonetheless, comprehensive characterisation of RDF's physical and chemical properties, especially compared to coal data, is an essential step for its successful substitution or co-firing with coal.

According to the results obtained from the proximate and ultimate analyses, RDF has several beneficial characteristics; however, some limitations need to be suitably pre-treated. In the present study, the moisture content of RDF is reported as 34.24%, which is much higher than that of typical Indian coal (8–12%). Low heating value and poorer combustion efficiency are some of the consequences of high moisture content, which often lead to incomplete combustion, increased emissions of pollutants such as CO and VOCs, and impaired industrial boiler operations (Sarquah et al. 2023). Therefore, drying methods such as mechanical dewatering, sun drying, or newer methods (microwave, torrefaction) are needed to reduce the moisture content of RDF to an acceptable level for proper and sustained burning.

RDF showed a volatile matter content of 24.61%, and this value is similar to Indian coal. This factor is important for the ignition of the flame and for its stability. The fixed carbon in the RDF (21.97%) is much lower than in coal (one-third to one-half, 35–45%), which is an indication of short combustion times and low energy content (Zahir et al. 2024). However, this shortfall can be balanced by co-firing RDF with high carbon fuel or improving the design of the burner to ensure constant burning.

RDF has an ash content of 19.15%, lower than certain grades of Indian coal, particularly high-ash indigenous lignite and sub-bituminous types. Less ash is better because it leads to less slag and clinker formation in the furnace, reducing disruption of operations. The golden rule is: the less, the better. However, RDF has much lower bulk density (0.43 g/cc) than coal (0.8–1.0 g/cc), which influences the design of fuel handling and feeding systems, as well as storage, to ensure efficient use of RDF (Makrygiannis et al. 2023). Based on analysis of RDF contains Hydrogen (4.28%)

which is in the lignite coal range, which is beneficial for heating value and flame properties. Amounts of nitrogen and sulfur (0.95% and 0.65%, respectively) are permissible by regulation but necessitate SO<sub>2</sub> and NO<sub>x</sub> emission controls (Ganesan & Vedagiri 2024). Finally, considering that coal has better stability during combustion because of its low moisture content and high fixed carbon content, RDF is a feasible alternative, especially under controlled combustion conditions. Additionally, RDF helps divert a large volume of municipal waste from landfills, reduces greenhouse gas emissions, and promotes the sustainable use of resources. When combined with emissions control systems, RDF becomes a highly suitable partial or complete replacement for coal in the rexine industry and related thermal applications, while supporting sustainable operations and reducing environmental impact.

**Table 1:** Comparative evaluation of RDF and coal based on proximate and ultimate analysis

| Parameter                                        | Unit   | RDF   | <i>*Coal (Typical Indian) **</i> | Remarks                                                                   |
|--------------------------------------------------|--------|-------|----------------------------------|---------------------------------------------------------------------------|
| <b>Proximate Analysis</b>                        |        |       |                                  |                                                                           |
| Moisture Content                                 | %      | 34.24 | 8–12                             | RDF requires drying; coal has better combustion efficiency due to low MC. |
| Volatile Matter                                  | %      | 24.61 | 18–25                            | Comparable; essential for ignition and combustion.                        |
| Fixed Carbon                                     | %      | 21.97 | 35–45                            | Lower in RDF; impacts sustained combustion.                               |
| Ash Content                                      | %      | 19.15 | 20–35                            | Lower than some coal grades; favorable for slagging and fouling.          |
| <b>Ultimate Analysis</b>                         |        |       |                                  |                                                                           |
| Carbon                                           | %      | 30.47 | 40–55                            | Moderate; contributes to energy content.                                  |
| Hydrogen                                         | %      | 4.28  | 3.5–4.5                          | Similar to coal.                                                          |
| Nitrogen                                         | %      | 0.95  | 1–2                              | Acceptable range.                                                         |
| Sulphur                                          | %      | 0.65  | 0.4–1.0                          | Within acceptable limits; SO <sub>2</sub> scrubbers needed.               |
| Oxygen                                           | %      | 10.26 | 5–15                             | Moderate; affects combustion stoichiometry.                               |
| Gross Calorific Value (GCV)<br>On air dry basis) | Cal/gm | 4200  | 7000                             | Comparable; efficient with blending or pre-drying.                        |
| Net Calorific Value<br>(NCV) On air dry basis)   | Cal/gm | 3800  | 6600                             | Within usable range, depending on system efficiency.                      |
| Bulk Density                                     | g/cc   | 0.43  | 0.8–1.0                          | Lower; affects storage and feed systems.                                  |

### 3.2: Stack Emission Performance Evaluation of RDF Usage in the Rexine Industry

In energy consuming industries such as rexine production, the changeover from conventional fossil fuel based systems to waste-derived alternatives is an issue of prime industry concern. In this research, stack emissions and operational parameters of a 350 TPD industrial boiler burning RDF are compared with a conventional coal-powered boiler of similar capacity and operational time. The aim of this work is to assess the environmental impact of RDF as a clean and sustainable alternative fuel source in comparison with Indian (CPCB) guidelines and Indian Standard IS-11255 (BIS 1994; Sharma et al. 2025; CPCB 1998).

The stack surveillance of RDF operations was monitored at an industrial plant (350 TPD boiler). A set of parameters including chimney height, temperature, velocity, and emissions of PM, NO<sub>x</sub>, SO<sub>2</sub>, and CO were monitored as per CPCB guidelines and IS-11255 Parts 1, 2, 3, and 7 ( BIS 1994; CPCB 1998; Chyang et al. 2010). An air pollution control device, including a bag house, was used to efficiently collect and remove particulate and gaseous emissions from the system. The PM load was observed as 40.4 mg/Nm<sup>3</sup>, well below the permissible CPCB standard of 50 mg/Nm<sup>3</sup>. Under the same conditions, emissions from a coal-fired boiler commonly lie in the range of 90–110 mg/Nm<sup>3</sup> and often exceed control limits due to poor combustion efficiency and inadequate filtration devices (Sarquah et al., 2024). The NO<sub>x</sub> and SO<sub>2</sub> values for RDF were 260.2 mg/Nm<sup>3</sup> and 110.8 mg/Nm<sup>3</sup> both within the prescribed limits of 400 mg/Nm<sup>3</sup> for NO<sub>x</sub> and 200 mg/Nm<sup>3</sup> for SO<sub>2</sub>. In comparison, NO<sub>x</sub> levels for coal can often exceed 350–450 mg/Nm<sup>3</sup>, while SO<sub>2</sub> levels may range from 180–220 mg/Nm<sup>3</sup>, mainly due to the higher nitrogen and sulfur content in Indian grades of bituminous and sub-bituminous coal (Mateus et al. 2023) . CO emission from RDF was 80 mg/Nm<sup>3</sup>, which is around the upper standard limit of 100 mg/Nm<sup>3</sup> but still within the allowable range. On the other hand, CO concentrations are relatively high during coal burning, especially when combustion is incomplete, resulting in CO concentrations of 120–150 mg/Nm<sup>3</sup>. This reflects incomplete combustion and higher environmental risk (Ruhela et al. 2024).

The dynamic process of stack patterns in RDF operation also plays a role in the efficient dispersion of contaminants. During operation, an average mean-stack temperature of 280 °C and a mean gas velocity of 19.75 m/s were obtained, which provides even higher release as well as upward movement of emissions, thereby reducing ground-level concentrations. In the case of coal-fired boilers, which have higher temperatures (300–320 °C) but generally poorer velocity conditions, local pollution can be enhanced. Coal has a heating value of 7000 cal/gm (raw basis), whereas RDF contains 4200 cal/gm, depending on the biomass material and pre-treatment. This difference indicates that, in order to produce the same amount of energy, RDF would require a mass flow about one order of magnitude higher. In line with these predictions, industrial trials demonstrated a specific RDF consumption of 8–10 t/h versus 5–5.5 t/h for coal. The higher consumption of RDF is consistent with its comparatively lower calorific density; however, good combustion kinetics maximized its utilization. High volatile matter, low ash load, and low sulfur fraction were conducive to stable ignition, less fouling, and cleaner combustion despite the low energy density of coal, mitigating some adverse effects. Beyond thermal performance, the incineration of RDF removes large volumes of waste material from landfills, reduces potential surface emissions of methane, and supports circular economy goals, including the controlled combustion of RDF waste.

Overall, this comparative analysis clearly demonstrates that RDF outperforms coal in key areas such as emissions of regulated pollutants (PM, SO<sub>2</sub>, NO<sub>x</sub>, and CO), fuel consumption, and compliance with CPCB regulations. The fact that RDF operates efficiently with conventional bag

house filtration gives it an edge as an alternative fuel source for the rexine industry to meet statutory and environmental commitments. The continued strengthening of policy frameworks and advancements in RDF processing and combustion technologies could significantly reduce the environmental footprint of India's industrial sector.

**Table 2:** Comparative Table: Emission & Stack Performance RDF vs. Coal

(CPHEEO 2005; CPCB 1998; Karpan et al. 2021; Sarquah, Narra, Derkyi, et al. 2023)

| Parameter                                                  | RDF (Present Study) | Coal (Typical Indian Industrial Use)        | CPCB Limit | Remarks                                                       |
|------------------------------------------------------------|---------------------|---------------------------------------------|------------|---------------------------------------------------------------|
| Boiler Capacity (TPD)                                      | 350                 | 350–500                                     | –          | Comparable industrial capacity                                |
| Fuel Consumption (ton/hr)                                  | 4–4.5               | 5–5.5                                       | –          | RDF has lower consumption → better thermal optimization       |
| Stack Height (from ground, ft)                             | 100                 | 90–100                                      | –          | Similar design standard                                       |
| Stack Diameter (m)                                         | 2.7                 | 2.5–3.0                                     | –          | No major difference                                           |
| Stack Temperature (°C)                                     | 280                 | 300–320                                     | –          | Slightly lower in RDF—indicating controlled combustion        |
| Average Stack Velocity (m/s)                               | 19.75               | 20–22                                       | –          | Comparable                                                    |
| Quantity of Emission (Nm <sup>3</sup> /hr)                 | 219,175.76          | 240,000–260,000                             | –          | Lower for RDF → cleaner operation                             |
| Particulate Matter (PM, mg/Nm <sup>3</sup> )               | 40.4                | 90–110                                      | 50         | RDF meets standards; coal often exceeds without high-end ESPs |
| Oxides of Nitrogen (NO <sub>x</sub> , mg/Nm <sup>3</sup> ) | 260.2               | 350–450                                     | 400        | RDF is within limit, coal sometimes exceeds                   |
| Sulphur Dioxide (SO <sub>2</sub> , mg/Nm <sup>3</sup> )    | 110.8               | 180–220                                     | 200        | RDF emission is lower, supporting low-sulfur combustion       |
| Carbon Monoxide (CO, mg/Nm <sup>3</sup> )                  | 80                  | 120–150                                     | 100        | RDF remains compliant, coal combustion leads to higher CO     |
| Control Measures Used                                      | Bag House           | Electrostatic Precipitator (ESP) or Cyclone | –          | Bag House shows excellent performance with RDF                |
| Fuel Type                                                  | RDF (processed MSW) | Coal (bituminous/sub-bituminous)            | –          | RDF diverts waste; coal causes GHG and mining damage          |

| Parameter             | RDF (Present Study)       | Coal (Typical Indian Industrial Use) | CPCB Limit | Remarks |
|-----------------------|---------------------------|--------------------------------------|------------|---------|
| Purpose of Monitoring | Pollution Load Assessment | Same                                 | —          | —       |

A limitation of this study is that the chloride content, along with emissions such as hydrogen chloride (HCl), hydrogen fluoride (HF), polychlorinated dibenzo-p-dioxins and furans (PCDD/F), and heavy metals, was not measured. The presence of these compounds could pose potential environmental and health risks during RDF combustion. Future studies should include comprehensive monitoring of chloride and associated emissions to better evaluate and control their impacts.

### 3.3. Benefit of RDF as compared to coal in the Rexine industries

The economic, environmental, and operational comparisons of refuse-derived fuel (RDF) and lignite indicate that RDF is much more advantageous than conventional coal as an industrial fuel. From a cost perspective, RDF offers substantial savings, with a fuel cost of only Rs. 3,000–Rs. 5,000 per ton compared to Rs. 8,000–Rs. 10,000 per ton for coal. In addition, the operational cost of RDF is effectively reduced by government policy support, such as incentives, grants, and carbon credits under waste to energy and circular economy policies. Special infrastructure may be necessary for RDF combustion, but the overall lifecycle costs are calculated to be lower when ash handling and waste disposal costs are eliminated.

Though the calorific value of coal (7000 Cal/gm) is higher than that of RDF (4200 Cal/gm), the combustion temperature can still meet the requirements for applications like heating in rexine production. The compatibility of RDF with existing combustion systems, combined with waste heat recovery technologies, also increases the efficiency of its utilization. RDF may also be upgraded by co-treatment with biomass or plastic waste to enhance its energy content.

RDF also has a significant edge in terms of environmental sustainability. RDF facilities produce much lower emissions of regulated pollutants such as SO<sub>2</sub>, NO<sub>x</sub>, CO, and PM when equipped with sequence in cyclone, lime mixture and electrostatic precipitator (ESP). Additionally, RDF promotes better waste treatment by assisting in waste diversion from landfills and reducing reliance on fossil fuels. Although RDF ash content is relatively high (15–25%), it is less hazardous and easier to handle than coal ash.

Finally, RDF's scalability and sustainability stem from its local availability, increasing stock due to growing MSW generation, and limited dependence on imports. This makes RDF not only a technically viable solution but also a strategic resource for sustainable industrial growth and alignment with the circular economy philosophy.

**Table 3.** Comparative assessment: RDF vs. Coal across key performance metrics

| Parameter             | RDF                 | Coal                 | Why RDF is Better                                  |
|-----------------------|---------------------|----------------------|----------------------------------------------------|
| Fuel Price (Rs. /ton) | Rs. 3,000–Rs. 5,000 | Rs. 8,000–Rs. 10,000 | Lower cost significantly reduces fuel expenditure. |

| Parameter                                                | RDF                                                         | Coal                                                | Why RDF is Better                                                                  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|
| Government Incentives                                    | Available (e.g., waste-to-energy subsidies, carbon credits) | Not applicable                                      | RDF qualifies under multiple sustainability programs.                              |
| Operational & Lifecycle Cost                             | Moderate (handling + processing offset by savings)          | Higher (ash disposal, emission treatment)           | RDF reduces costs in long term through dual benefits of fuel and waste management. |
| Waste Disposal Costs                                     | Eliminated (waste is utilized)                              | Additional ash handling and environmental penalties | RDF supports zero-waste goals.                                                     |
| Energy Density (Cal/gm)                                  | 4200                                                        | 7000                                                | Although lower, RDF can be optimized with additives like plastic or biomass.       |
| Combustion Temperature                                   | 850–1,100°C                                                 | 900–1,500°C                                         | Adequate for most industrial processes like heating in the Rexine industry.        |
| System Adaptability                                      | Requires optimized modern combustion systems                | Works with standard boilers                         | RDF systems are becoming more efficient and scalable.                              |
| Waste Heat Recovery                                      | High potential, adaptable with modern tech                  | High                                                | RDF-based systems support energy-saving integration.                               |
| Waste Management Impact                                  | Supports landfill reduction and resource recovery           | Contributes to mining and solid waste               | RDF promotes circular economy by valorizing waste.                                 |
| Ash Production                                           | 15–25% (manageable with filters)                            | 10–15% (often toxic and difficult to treat)         | RDF ash can be reused or stabilized effectively.                                   |
| Toxic Emissions (SO <sub>2</sub> , NO <sub>x</sub> , CO) | Significantly lower with filtration systems                 | High unless expensive scrubbers are used            | RDF meets CPCB norms with simpler control systems.                                 |
| Fuel Availability                                        | None – Locally produced from domestic waste                 | Often reliant on imported coal (e.g., coking coal)  | RDF supply is stable and future-proof.                                             |
| Import Dependency                                        | Requires tailored combustion setup                          | Readily compatible with existing systems            | Reduces foreign exchange burden.                                                   |
| Infrastructure Requirement                               |                                                             |                                                     | RDF infrastructure is evolving with increasing industry adoption.                  |
| Market Scalability                                       | Rapidly growing due to policy and                           | Plateauing due to regulatory and                    | RDF aligns with future clean energy roadmaps and urban waste strategies.           |

| Parameter               | RDF                       | Coal | Why RDF is Better |
|-------------------------|---------------------------|------|-------------------|
| environmental pressures | environmental limitations |      |                   |

### **3.4. Strategic Role of Refuse Derived Fuel (RDF) in Advancing Sustainable Industrial Energy Systems**

Refuse derived fuel (RDF), derived from the combustible components of municipal solid waste, has been attracting growing interest as a possible alternative to traditional fossil fuels for industrial uses. Its integration with energy systems for the production of useful heat as well as other types of energy also meets the general targets of both environmental and economic sustainable development. With rising energy demand coupled with growing levels of waste, RDF serves as a byway to cleaner, more circular energy. The feasibility of RDF are given below:

#### **A. Economic Feasibility and Optimal Fuel Cost**

Although the heat value is lower than that of conventional fuels such as coal or petcoke, RDF has cost advantages. Lower acquisition costs, lower tipping fees, and potential full government funding all reduce running costs. It is this financial encouragement that has made RDF an attractive proposition, economically viable for industries, including those with high thermal energy requirements such as cement kilns and textiles.

#### **B. Environmental Benefits and Closed Resource Loops**

There are significant environmental gains to be made from using RDF. RDF diverts non-recyclable waste from landfills, thereby reducing methane generation and leachate load on municipal waste systems. Upon combustion, there are reduced net CO<sub>2</sub> emissions compared to coal, which aligns with international climate policies. In addition, the implementation of RDF supports the practical application of the circular economy by transforming waste into value-added energy.

#### **C. Policy Alignment and Industrial Transformation**

Government and institution-led pressures are today compelling industries to seek alternative, environment-friendly options. RDF interest has been generated not only by the positive policy environment that surrounds it (carbon credits, tax incentives, co-processing obligations), but because of its economic interest. These are measures that not only improve the economics of RDF but also stimulate industries to more quickly reach sustainability and compliance targets.

#### **D. Energy Security and Resource Independence**

RDF also contributes toward improved energy security, by using domestic waste resource and decreasing imports of fossil fuels. This is evident even more during the fluctuating international fuel markets. RDF has advantage of a reliable and uninterrupted supply chain. In combination with developments in waste sorting and pretreatment this reliability makes uninterrupted industrial operation possible.

## **F. Regulatory Incentives and Corporate Sustainability**

RDF is receiving policy support, and in India, state and central schemes are encouraging its adoption through financial and regulatory incentives. Businesses that adopt RDF may enjoy extra EPR credits, lowered environmental fees, and an enhanced corporate image in sustainability reports. All these drivers, taken together, make RDF a strategic tool to meet net-zero carbon targets. RDF, in fact, is much more than just an alternative fuel source: it's a convergence of energy insight, environmental responsibility, and economic sense. With the development of technology and the maturity of waste-to-energy concepts, RDF holds the potential to change the eco-industrial pattern and move toward the direction of sustainability.

## **4. CONCLUSION**

This study demonstrates that refuse derived fuel (RDF) offers a technically sound and economically favorable alternative to coal in the textile industry. While coal has traditionally been the primary energy source due to its high calorific value (7000 Cal/gm), RDF, with a calorific value of 4200 cal/gm, proves sufficient for industrial heating needs, especially when optimized combustion systems are employed. Importantly, RDF exhibits a much lower sulfur content (0.65%) compared to coal, along with manageable ash production (19.15%), reducing environmental risks. Emissions from RDF combustion, including PM (40.4 mg/Nm<sup>3</sup>), NOx (260.2 mg/Nm<sup>3</sup>), SO<sub>2</sub> (110.8 mg/Nm<sup>3</sup>), and CO (80 mg/Nm<sup>3</sup>), were well within CPCB norms and notably lower than typical coal emissions. Economically, RDF proves more cost-effective, reducing raw fuel costs from ₹8,000–₹10,000/ton (coal) to ₹3,000–₹5,000/ton, making it attractive for long-term operational sustainability. In summary, while coal offers higher energy density, RDF outperforms it in terms of environmental compliance, cost savings, and alignment with sustainability goals. Its adoption can support waste valorization and reduce dependence on fossil fuels, paving the way for greener industrial energy systems.

## **5. REFERENCES**

Allen, C. 1999. Standards Development Forum. *International Nonwovens Journal*. os-8(2). doi.org/10.1177/1558925099os-800205.

Bhatsada, A, Patumsawad, S, Itsarathorn, T, Towprayoon, S, Chiemchaisri, C, Phongphiphat, A & Wangyao, K. 2023. Improvement of energy recovery potential of wet-refuse-derived fuel through bio-drying process. *Journal of Material Cycles and Waste Management*. 25(2):637–649. doi.org/10.1007/s10163-022-01545-z.

BIS. 1994. Bureau of Indian Standards IS:4941.1994. *Indian Standards*. 4(2):1–29. Available from: <https://studycafe.in/wp-content/uploads/2022/06/Empanelment-of-CA-Firms-for-Accounts-Compliance-of-Bureau-of-Indian-Standards.pdf> [Accessed 10 October 2025].

Central Pollution Control Board (CPCB) (1998). Stack emission and ambient air quality standards for coal-fired boilers. IS 11255 (Parts 1–7): Methods for Measurement of Air Pollution. Bureau of Indian Standards; New Delhi, India [Accessed 10 October 2025].

Choudhury, AR, Boyina, LP, Kumar, DL, Singh, N, Palani, SG, Mehdizadeh, M, Kumar, MVP, Leelavathi, A, et al. 2022. Biomined and Fresh Municipal Solid Waste as Sources of Refuse Derived Fuel. In: *Springer*. 235–252. doi.org/10.1007/978-3-031-07785-2\_11.

Chyang, CS, Han, YL, Wu, LW, Wan, HP, Lee, HT & Chang, YH. 2010. An investigation on pollutant emissions from co-firing of RDF and coal. *Waste Management*. 30(7):1334–1340. doi.org/10.1016/j.wasman.2009.11.018.

CPHEEO. 2005. Central Public Health and Environmental Engineering Organisation (CPHEEO). 343–368. [Accessed 10 October 2025].

Dianda, P, Mahidin, M & Munawar, E. 2018. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW). In: *IOP Conference Series: Materials Science and Engineering*. V. 334. doi.org/10.1088/1757-899X/334/1/012035.

Dobkin, F & Kerr, G. 2025. Demographic disparities in United States Clean Air Act PM2.5 attainment counties: assessing population living in nonattainment conditions. *Journal of Environmental Studies and Sciences*. 15(2):298–309. doi.org/10.1007/s13412-024-00933-1.

(EPA) (2005), LV-UEPA & 2021, U. 2012. United States Environmental Protection Agency. *Proceedings of the Water Environment Federation*. 2005(16):726–737. doi.org/10.2175/193864705783867675.

Ganesan, S & Vedagiri, P. 2024a. Optimizing refuse-derived fuel production: a review of pre-treatment techniques for municipal solid waste reclamation. *Journal of Thermal Analysis and Calorimetry*. (November, 1). doi.org/10.1007/s10973-024-13713-4.

Karpan, B, Abdul Raman, AA & Taieb Aroua, MK. 2021. Waste-to-energy: Coal-like refuse derived fuel from hazardous waste and biomass mixture. *Process Safety and Environmental Protection*. 149:655–664. doi.org/10.1016/j.psep.2021.03.009.

Makrygiannis, I, Tsetsekou, A, Papastratis, O & Karalis, K. 2023. Assessing the Effects of Refuse-Derived Fuel (RDF) Incorporation on the Extrusion and Drying Behavior of Brick Mixtures. *Ceramics*. 6(4):2367–2385. doi.org/10.3390/ceramics6040145.

Mateus, MM, Cecílio, D, Fernandes, MC & Neiva Correia, MJ. 2023. Refuse derived fuels as an immediate strategy for the energy transition, circular economy, and sustainability. *Business Strategy and the Environment*. 32(6):3915–3926. doi.org/10.1002/bse.3345.

Moya, D, Aldás, C, López, G & Kaparaju, P. 2017. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. In: *Energy Procedia*. V. 134. 286–295. doi.org/10.1016/j.egypro.2017.09.618.

Munir, E, Harefa, RSM, Priyani, N & Suryanto, D. 2018. Plastic degrading fungi *Trichoderma viride* and *Aspergillus nomius* isolated from local landfill soil in Medan. In: *IOP Conference*

Series: *Earth and Environmental Science*. V. 126. 68–74. doi.org/10.1088/1755-1315/126/1/012145.

Nema, A, Mohammed Bin Zacharia, K, Kumar, A, Singh, E, Varma, VS & Sharma, D. 2021a. Challenges and opportunities associated with municipal solid waste management. In: *Current Developments in Biotechnology and Bioengineering: Strategic Perspectives in Solid Waste and Wastewater Management*. 231–258. doi.org/10.1016/B978-0-12-821009-3.00005-1.

Parlikar, U, Bundela, P, Baidya, R, Ghosh, SK & Ghosh, SK. 2016a. Effect of Variation in the Chemical Constituents of Wastes on the Co-processing Performance of the Cement Kilns. *Procedia Environmental Sciences*. 35:506–512. doi.org/10.1016/j.proenv.2016.07.035.

Punin, W, Maneewan, S & Punlek, C. 2014. The feasibility of converting solid waste into refuse-derived fuel 5 via mechanical biological treatment process. *Journal of Material Cycles and Waste Management*. 16(4):753–762. doi.org/10.1007/s10163-013-0215-9.

Ruhela, M, Bhutiani, R, Kumar, R & Ahamad, F. 2024. Air quality evaluation of Meerut city, Uttar Pradesh, India: A comparative analysis. *Environment Conservation Journal*. 25(4):1155–1162. doi.org/10.36953/ECJ.28822906.

Sakri, A, Aouabed, A, Nassour, A & Nelles, M. 2021. Refuse-derived fuel potential production for co-combustion in the cement industry in Algeria. *Waste Management and Research*. 39(9):1174–1184. doi.org/10.1177/0734242X20982277.

Samolada, MC & Zabaniotou, AA. 2014. Energetic valorization of SRF in dedicated plants and cement kilns and guidelines for application in Greece and Cyprus. *Resources, Conservation and Recycling*. 83:34–43. doi.org/10.1016/j.resconrec.2013.11.013.

Sangeetha, A, Subrahmanyam, K, Mahalingam, A, Veeramani, P, Rajavel, M, Harisudan, C, Parthipan, T, Dhandapani, M, et al. 2024. Sesame Stalk Compost in Soil Revitalization and Long-term Sustainable Crop Productivity in Organic Sesame (*Sesamum indicum* L.). *Communications in Soil Science and Plant Analysis*. doi.org/10.1080/00103624.2024.2425413.

Sarquah, K, Narra, S, Beck, G, Bassey, U, Antwi, E, Hartmann, M, Derkyi, NSA, Awafo, EA, et al. 2023. Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. *Energies*. 16(1). doi.org/10.3390/en16010200.

Sever Akdağ, A, Atimtay, A & Sanin, FD. 2016. Comparison of fuel value and combustion characteristics of two different RDF samples. *Waste Management*. 47:217–224. doi.org/10.1016/j.wasman.2015.08.037.

Sharma, D, Moondra, N, Bharatee, RK, Nema, A, Sweta, K, Yadav, MK & Maurya, NS. 2024. Processing and Recycling of Plastic Wastes for Sustainable Material Management. *Wiley Online Library* D Sharma, N Moondra, RK Bharatee, A Nema, K Sweta, MK Yadav, NS

*MauryaPlastic Waste Management: Methods and Applications, 2024*•Wiley Online Library.  
(January, 1):89–116. doi.org/10.1002/9783527842209.CH4.

Sharma, D, Saadi, I, Oazana, S, Lati, R & Laor, Y. 2024. Distribution of residence time in rotary-drum composting and implications for hygienization. *Waste Management*. 179:22–31. doi.org/10.1016/j.wasman.2024.02.047.

Sharma, U, Sharma, D, Kumar, A, Bansal, T, Agarwal, A, Kumar, S, Hussian, A, Kamyab, H, et al. 2025. Utilization of refuse-derived fuel in industrial applications: Insights from Uttar Pradesh, India. *Heliyon*. 11(1). doi.org/10.1016/j.heliyon.2024.e41336.

Zahir, BHM, Nurcahyo, R, Farizal & Wibowo, AD. 2024. Economic assessment of refuse-derived fuel (rdf) production as waste management strategy and alternative fuel in cement kilns. *Journal of Law and Sustainable Development*. 12(2):e3220. doi.org/10.55908/sdgs.v12i2.3220.