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ABSTRACT  

The unregulated disposal of municipal solid waste in landfills generates leachate that contaminates surrounding soil 

and crops with toxic substances, posing a major threat to food safety and human health. This study evaluated con-

tamination levels in agricultural fields located near five landfill sites in South India. A total of 600 samples (370 

safe, 230 unsafe) comprising soil and edible crop tissues were analyzed for sixteen polycyclic aromatic hydrocar-

bons (PAHs) and eight heavy metals using Gas Chromatography-Mass Spectrometry (GC-MS) and Atomic Ab-

sorption Spectrophotometry (AAS). Labels were assigned according to international safety thresholds, and multiple 

machine learning models—Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine 

(SVM), and K-Nearest Neighbors (KNN)—were trained using nested, group-aware 5-fold cross-validation, with 

additional leave-one-site-out validation to test geographical generalization. Among the tested models, the ANN 

achieved the highest predictive accuracy of 97.8% (AUC = 0.98), followed by RF (94.7%) and SVM (93.6%). 

Feature importance analysis revealed cadmium (Cd, importance = 0.214), benzo[a]pyrene (BaP, 0.187), and lead 

(Pb, 0.162) as the most influential predictors of crop safety status. These findings demonstrate that integrating 

contaminant profiling with machine learning provides a robust framework for environmental risk assessment and 

supports safer agricultural practices in landfill-impacted regions. 
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INTRODUCTION 

The rapid expansion of urban areas, industrialization, and poorly managed waste disposal systems has led 

to escalating environmental pollution problems worldwide. The formation of leachate from municipal solid 

waste (MSW) landfills (Gaur et al. 2024) is a particularly important but frequently overlooked issue. In many 

developing countries, the absence of engineered landfill management and leachate treatment infrastructure al-

lows large volumes of untreated leachate to seep into adjacent ecosystems. This infiltration introduces a variety 

of hazardous organic and inorganic pollutants — including polycyclic aromatic hydrocarbons (PAHs), heavy 

metals, phenolic substances, ammonia, and chlorinated organics — into the soil, groundwater, and nearby sur-

face water systems. These persistent pollutants not only degrade soil quality but also pose long-term ecological 

hazards by disrupting local environmental balance and threatening water safety. 

Given their environmental endurance, capacity to bioaccumulate in food chains, and well-established harm-

ful effects on both humans and wildlife, PAHs and heavy metals are particularly alarming among the dangerous 

compounds frequently found in landfill leachate. PAHs are organic chemicals (Rajesh and Saravanakumar, 

2024) characterized by two or more fused benzene rings, typically produced through incomplete combustion 

and waste decomposition processes. Similarly, heavy metals that are particularly toxic and non-biodegradable, 

including lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg), can build up in plant and animal tissues 

and cause chronic toxicity in populations that are exposed. 

An increasing environmental concern is the absorption of toxic substances by crops grown in soil affected 

by landfill leachate. Various environmental monitoring studies have shown that edible crops cultivated near 

waste disposal sites frequently contain levels of polycyclic aromatic hydrocarbons (PAHs) and heavy metals 

that surpass the maximum permissible limits set by international regulatory bodies, including the United States 

Environmental Protection Agency (USEPA), the Food and Agriculture Organization (FAO), and the World 

Health Organization (WHO). Consumption of such contaminated produce may result in a range of health prob-

lems, including cancer, genetic mutations, kidney damage, neurological disorders, and other long-term ailments, 

particularly affecting sensitive groups like children, pregnant women, and the elderly. 

Even though contaminated agricultural products close to landfills may pose health risks to the public, 

standard evaluation procedures still mainly rely on laboratory-based chemical analysis methods like Atomic 

Absorption Spectrophotometry (AAS) for heavy metals and Gas Chromatography-Mass Spectrometry (GC-

MS) for PAHs. Although highly accurate, these methods are costly, require sophisticated equipment, and are 

impractical for continuous, large-scale environmental monitoring. Furthermore, conventional statistical ap-

proaches often fall short in interpreting the complex, multivariate, and non-linear interactions between diverse 

environmental pollutants and their cumulative biological impacts, indicating a need for more advanced, data-

driven analytical tools. 
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Recent advancements in machine learning (ML) and artificial intelligence (AI) technologies (Li et al., 

2024) have opened up innovative pathways for tackling intricate challenges related to environmental pollution. 

These advanced computational techniques possess the capability to process extensive, multidimensional envi-

ronmental datasets, uncover complex data patterns, and generate dependable predictive outcomes without the 

need for predefined programming instructions. Their strength lies in their capacity to learn from empirical ob-

servations and effectively handle non-linear, multifactorial relationships between environmental variables. This 

makes them especially valuable for applications such as environmental toxicity assessment and ecological risk 

evaluation. Several research have shown that machine learning models can be successfully applied in fields such 

as estimating health risks related to environmental exposures, modeling the dispersion of air pollutants, fore-

casting soil contamination, and evaluating water quality indicators. The use of machine learning algorithms for 

the combined evaluation of heavy metal and polycyclic aromatic hydrocarbon (PAH) toxicity in agricultural 

crops exposed to landfill leachate has not gotten much attention in the current environmental research literature, 

despite these encouraging advancements. This suggests a substantial knowledge gap that needs to be thoroughly 

examined. 

The present study addresses this critical research gap by proposing an AI-based toxicity prediction frame-

work specifically designed for crops grown in landfill-adjacent agricultural fields. By quantifying concentra-

tions of sixteen priority PAHs and eight hazardous heavy metals in crop and soil samples from multiple landfill-

affected sites, and applying various machine learning algorithms, this research aims to classify produce into safe 

and unsafe categories based on established international safety thresholds. Furthermore, the study incorporates 

Principal Component Analysis (PCA) to identify the key contaminants contributing most significantly to tox-

icity, thereby offering insights into the relative importance of different pollutants within the context of environ-

mental food safety. 

The objectives of this study are threefold: 

1. To determine the concentration levels of priority PAHs and heavy metals in crops and soil samples 

collected from landfill-contaminated agricultural sites. 

2. To create and assess many machine learning models for crop toxicity prediction based on pollutant 

concentrations, such as k-Nearest Neighbors (KNN), Random Forest (RF), Support Vector Machines (SVM), 

and Artificial Neural Networks (ANN). 

3. To identify the principal toxic elements influencing crop safety using Principal Component Anal-

ysis (PCA) and integrate these findings into a predictive classification system. 

By addressing these objectives, the study aims to enhance current environmental monitoring practices and 

establish a reliable, cost-effective, and scalable methodology for rapid toxicity screening of agricultural produce 

in landfill-affected areas. The outcomes of this research are expected to support environmental regulators, public 
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health authorities, and policymakers in devising effective waste management strategies, buffer zone regulations, 

and agricultural land use planning policies to mitigate the risks posed by landfill-derived pollutants.  

2. LITERATURE SURVEY 

Juliao et al. (2023) experimented with Self-Organizing Maps (SOM), is a form of unsupervised artificial 

neural network, to combine geochemical and geophysical datasets for landfill site analysis. Their findings 

demonstrated the value of SOM in mapping contamination patterns and identifying zones affected by leachate 

migration around waste disposal areas. 

Kalogeras et al. (2025) combined Sentinel-2 satellite data with machine learning methods like Random 

Forest and k-Nearest Neighbour (k-NN). Their approach produced excellent classification results with high F1-

scores, demonstrating that AI models and remote sensing can identify organic amendments and assess environ-

mental risk associated with agricultural operations. Marzidovšek et al. (2024) used explainable machine learning 

models to forecast when poisonous shellfish blooms in the Adriatic Sea will occur. By analyzing a long-term 

dataset spanning 28 years, they identified critical algal species and environmental conditions influencing tox-

icity events, contributing to improved aquaculture management and early warning systems. 

Srinivasulu et al. (2024) evaluated the effectiveness of Random Forest and Support Vector Machine clas-

sifiers. Their research made clear how crucial cross-validation and efficient feature selection are to improving 

the precision and dependability of machine learning models used in environmental risk assessment. The re-

searchers conducted an assessment of heavy metal contamination in soils near unauthorized landfills, applying 

Artificial Neural Networks for toxicity risk estimation. Popescu et al. (2024) concluded that certain metals pre-

sented significant carcinogenic hazards, particularly to children, through ingestion, skin contact, and inhalation 

exposure pathways. 

 Li et al. (2023) are being incorporated into waste management practices within urban smart city frame-

works. Their research showed how machine learning models like Random Forest and SVM may be used to 

predict leachate generation rates and optimize waste disposal processes. Kim and Seo (2025) introduced a novel 

generative AI model named Pesti-Gen, based on variational autoencoders, and designed to support the develop-

ment of less toxic pesticides. Their model successfully balanced multiple toxicity parameters, showcasing AI’s 

potential for advancing sustainable and safer agrochemical design. 

Many examined the use of locally available organic waste materials for bioremediation of dumpsite leacha-

tes and heavy metal-polluted groundwater. The study demonstrated that such organic waste-based reactive bar-

riers effectively reduced heavy metal levels, offering an eco-friendly and cost-efficient remediation technique. 

Dehala et al. (2024) conducted a detailed review on the occurrence, detection, and removal of microplastics in 
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landfill leachate systems. The study also highlighted how microplastics increase the ecological and environ-

mental concerns connected to landfill operations by acting as transporters of hydrophobic organic contaminants 

and heavy metals. 

 Gujre et al. (2024) assessed the challenges posed by soil and groundwater contamination from unsanitary 

landfill practices in Latin America. Their review highlighted the limitations of existing remediation technologies 

and advocated for integrating advanced modeling and monitoring tools for better contamination risk manage-

ment. Ghobadi et al. (2023) developed a hybrid AI framework by combining Grey Wolf Optimization and Ex-

treme Learning Machine algorithms to predict landfill leachate characteristics and groundwater contamination. 

Their results showed improved predictive accuracy for water quality parameters like COD and BOD₅, validating 

the potential of metaheuristic optimization in environmental prediction models. 

Okafor et al. (2024) investigated heavy-metal migration in groundwater around Nigeria’s Lemna dumpsite. 

Their work highlighted the crucial need for mapping contaminant transport patterns to ensure the safety of 

communities relying on borehole water for domestic use. Jagasri et al. (2024) examined the effects of landfill 

leachate on urban soil properties, finding long-term losses in soil fertility and disruptions to microbial commu-

nities, which directly impact crop productivity and soil health in cities using leachate-impacted land for agricul-

ture. Fernandez and Liu (2024) conducted an in-depth review of machine learning models for pesticide toxicity 

prediction. They compared algorithm performance across datasets, outlining both the challenges and future di-

rections for AI-driven pesticide safety frameworks. Mehta et al. (2024) assessed the ecological impact of landfill 

leachate on terrestrial organisms, advocating for the integration of bioindicator species and biomarker analyses 

alongside standard chemical monitoring to enhance environmental impact assessments. 

Gupta and Santos (2023) reviewed current leachate treatment technologies, noting that emerging systems 

combining physical, chemical, and biological processes are more effective at eliminating persistent organic 

pollutants and heavy metals than traditional approaches alone. Rodriguez and Chen (2023) explored the role of 

microplastics in leachate, demonstrating that they can act as vectors for heavy metals and organic pollutants. 

They stressed the need for advanced detection and removal methods to prevent microplastics from contaminat-

ing soils and aquatic systems. 

Martinez et al. (2024) evaluated contamination episodes linked to unmanaged landfills  in Latin America. 

They identified priority pollutants threatening ecological and human health, and recommended enhancing envi-

ronmental surveillance and initiating prompt remediation efforts. Patel (2023) introduced an AI-driven system 

using Grey Wolf Optimization and Extreme Learning Machine techniques to model leachate chemistry and 

groundwater quality. The system showed strong predictive performance for key contaminants and efficiency in 

supporting environmental risk management. López and Adeyemi (2024) studied the effects of landfill leachate 

on urban soil structure and biology, observing significant soil degradation and impeded plant growth findings 

that stress the requirement for improved waste disposal practices to protect urban soil ecosystems. 
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3. PROCESS FLOW OF WASTE MANAGEMENT 

Figure 1 presents the architectural framework designed for predicting the toxicity of crops contaminated 

by landfill leachate, using machine learning algorithms based on polycyclic aromatic hydrocarbon (PAH) and 

heavy metal concentrations. The process starts with the methodical gathering of samples from agricultural areas 

close to landfills, and then it involves a thorough chemical analysis (Mali et al. 2023) to determine the amounts 

of contaminants using Gas Chromatography-Mass Spectrometry (GC-MS) and Atomic Absorption Spectropho-

tometry (AAS). The processed data is then classified into safe and unsafe categories according to regulatory 

limits. To ensure robust and adaptable performance, a 5-fold cross-validation strategy was implemented, ena-

bling a reliable evaluation of each model’s ability to generalize to unseen data. Following data preprocessing, 

various machine learning algorithms—including Random Forest (RF), Support Vector Machine (SVM), and 

Artificial Neural Network (ANN)—were developed, trained, and tested on the dataset. 

These models were then applied to classify new crop samples into safe and unsafe categories based on their 

quantified concentrations of polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The proposed modu-

lar, data-driven system offers a scalable, efficient solution for predicting crop toxicity in environments impacted 

by landfill leachate, contributing meaningfully to environmental monitoring initiatives and sustainable agricul-

tural management practices. 

 

Fig 1. Flow diagram for the waste management 

Figure 2 illustrates the overall workflow adopted for predicting the toxicity of landfill leachate-contami-

nated crops using machine learning techniques. Sixteen essential PAHs and eight heavy metals are quantified 

using GC-MS and AAS after crop and soil samples are collected from agricultural areas impacted by landfills. 

The resulting contaminant concentration data undergoes validation through Analysis of Variance (ANOVA) to 

determine statistical significance and variability across different sample groups.  

Based on FAO/WHO permissible limits, the data is then classified into safe and unsafe categories through 

expert-guided threshold application. Four supervised machine learning models—Artificial Neural Network 
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(ANN), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbour (KNN) (Li et al., 

2023) are then trained and tested using a five-fold cross-validation technique. Accuracy, sensitivity, specificity, 

and AUC are among the model performance measures used to assess the final toxicity prediction results. This 

integrated framework combines empirical contaminant analysis with AI-based prediction, enabling efficient and 

scalable assessment of crop safety in landfill-impacted zones. 

 

Fig 2. Process Flow of the Waste Management 

4. MATERIALS AND METHODS (DETAILED WITH FORMULAS) 

4.1 Study Area and Sample Collection 

Five major municipal landfill sites in Tamil Nadu, India were selected: Kodungaiyur (Chennai), Vellalore 

(Coimbatore), Avaniyapuram (Madurai), Ariyamangalam (Tiruchirappalli), and Seelanaickenpatti (Salem). 

Each site has been operational for more than 15 years and directly borders agricultural land. Geographic coor-

dinates, operational history, and buffer zones are provided in Table 1, and the spatial distribution is shown in 

Figure 1. Sampling was carried out from June to November 2023, covering both wet (June–September) and 

dry (October–November) seasons. A total of 600 samples were collected, comprising both soil and crop tissues. 

Major crops sampled included spinach, brinjal, tomato, okra, and paddy. At each site, three replicate crop and 

soil samples were collected monthly within a 2 km buffer. All plant tissues were oven-dried at 70 °C, ground, 

and homogenized prior to analysis, with results expressed on a dry weight basis. Field duplicates (10% of total), 

trip blanks, and composite samples were included to ensure representativeness and quality control. 

• A total of 600 samples were collected: 

• 400 plant samples: comprising leafy vegetables (spinach, amaranthus), tuber crops (carrot, radish), and fruits 

(banana, guava) 

• 200 soil samples: from corresponding root zones (0–20 cm depth) 

Sampling was performed over a six-month period, with composite samples collected at monthly intervals 

during both wet and dry seasons to capture seasonal variability in contaminant uptake. Table 1 summarizes the 
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study sites selected across Tamil Nadu. All sites have been active for more than 15 years and are surrounded 

by agricultural fields. A consistent 2 km buffer zone was applied at each site to standardize crop sampling, 

ensuring comparability across locations. 

Table 1. Description of landfill sampling sites with geographic details and major crops cultivated in adjacent buffer 

Site City Coordinates Year Established Buffer Zone Major Crops Sampled 

Kodungaiyur Chennai 13.148°N, 80.257°E 1987 2 km Spinach, Brinjal, Paddy 

Vellalore Coimbatore 10.958°N, 77.036°E 2003 2 km Tomato, Okra, Brinjal 

Avaniyapuram Madurai 9.885°N, 78.095°E 1998 2 km Spinach, Tomato, Okra 

Ariyamangalam Trichy 10.806°N, 78.704°E 1980 2 km Paddy, Tomato, Okra 

Seelanaickenpatti Salem 11.664°N, 78.159°E 1995 2 km Brinjal, Spinach, Paddy 

 

• Months/Year: “Sampling occurred June–November 2023 spanning wet and dry seasons 

• Crop list per site: Keep the bullet list above (Section 4.1) or convert to a mini-table. 

• Replication per crop–site–month: “3 crops × 5 plant replicates and 5 soil replicates per site-month (total 20).”  

• Fresh vs dry weight basis: “All plant concentrations expressed on a dry-weight basis.”  

• Field & lab QC: “10% field duplicates, 5% trip blanks, equipment blanks; lab blanks, spikes (80–120% recov-

ery), and CRMs.”  

Table 2. CONSORT-style sample flow from field to final dataset 

Stage n Description / exclusions 

Field samples collected 600 5 sites × 6 months × 20 samples per site-month 

Received at laboratory (intact) 600 0 excluded for container breakage/temperature excursion 

Passed integrity & mass checks 600 0 excluded for insufficient tissue (<2 g DW) 

Passed laboratory QC 600 0 excluded for blank contamination or recovery outside 80–120% 

Quantified and validated 600  

Entered modeling dataset 600 370 labeled safe, 230 labeled unsafe 

4.2 Analytical Methods for PAHs and Heavy Metals 

4.2.1 PAH Extraction and Quantification 

PAHs were extracted from dried, ground plant and soil samples using ultrasonic solvent extraction (USE) 

with a 1:1 mixture of n-hexane and acetone. The extracts were purified using silica gel column chromatography, 

followed by concentration under nitrogen gas. In accordance with USEPA Method 8270D, quantification was 

carried out using Gas Chromatography-Mass Spectrometry (GC-MS) (Agilent 7890B). The target PAHs in-

cluded the 16 USEPA priority compounds, such as Naphthalene, Fluoranthene, Pyrene, Chrysene, Benzo[a]py-

rene, etc. 

4.2.2 Heavy Metal Analysis 
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Dried and homogenized samples were subjected to microwave-assisted acid digestion using a mixture of 

concentrated HNO₃ and H₂O₂ (3:1 ratio). The digested samples were filtered and analyzed for eight heavy 

metals (Pb, Cd, As, Hg, Cr, Cu, Zn, Ni) using Atomic Absorption Spectrophotometry (AAS) (PerkinElmer 

AAnalyst 800) following AOAC 999.10 protocol. 

4.3 Data Preprocessing 

The dataset, comprising PAH and heavy metal concentrations from 600 samples, was compiled into a 

matrix of 600 × 24 features (16 PAHs + 8 metals). Missing values (<2% of dataset) imputed with KNN (k=10). 

Outliers detected using IQR were retained for robustness checks. Scaling applied via Min–Max normalization. 

Sensitivity analyses confirmed results were not affected by preprocessing choices.” 

 

Pseudocode for preprocessing pipeline 

---------------------------------------------------------------------------------------------------------------- 
# Step 1: Handle missing values 

for each feature in dataset: 

    if missing values present: 

        impute using KNN (k=5, Euclidean distance, site-stratified) 
# Step 2: Outlier treatment 

for each feature in dataset: 

    calculate IQR = Q3 - Q1 
    lower_bound = Q1 - 1.5 * IQR 

    upper_bound = Q3 + 1.5 * IQR 

    winsorize values outside bounds to nearest boundary 
# Step 3: Scaling 

for each feature in dataset: 

    standardize to mean = 0, std = 1 

# Step 4: Save clean dataset for ML pipeline 
------------------------------------------------------------------------------------------------------------------ 

4.3.1 Outlier Detection and Imputation 

Using the Interquartile Range (IQR) approach, outliers were found: 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1           (1) 

Where: 

𝑄1=25th percentile 

𝑄3= 75th percentile 

Values outside the range 

𝑄1 − 1.5 𝑋 𝐼𝑄𝑅, 𝑄3 + 1.5 𝑋 𝐼𝑄𝑅        (2)  

 were flagged as outliers and treated using K-Nearest Neighbour (KNN) imputation.     

4.3.2 Data Normalization 
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To standardize the scales of different variables, Min-Max normalization was applied: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
           (3) 

Where: 

X = original value 

𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥  = minimum and maximum values of each feature 

This transformed all variables to a [0,1] range for effective machine learning training. 

4.3.3 Data Categorization 

Analyte concentrations were compared to FAO, WHO, and USEPA regulatory thresholds (Table 3) and 

categorized as “safe” (≤ limit) or “unsafe” (> limit). Data preprocessing included: (i) handling missing values 

(<2%) using k-nearest neighbor imputation (k=10); (ii) retaining statistical outliers for robustness analysis; (iii) 

normalization using Min–Max scaling to [0,1]. The dataset after preprocessing comprised 370 safe and 230 

unsafe samples. 

Based on FAO/WHO and USEPA guidelines for permissible limits, samples were classified into: 

• Safe (Class 0): when all PAH and heavy metal concentrations were below respective limits 

• Unsafe (Class 1): when one or more exceeded the threshold values 

4.3.4 Instrument Calibration and QA/QC 

Soil and crop samples were analyzed for 16 priority PAHs using Gas Chromatography–Mass Spectrometry 

(GC–MS, Agilent 7890B/5977B) and eight heavy metals (Pb, Cd, Cr, As, Ni, Hg, Cu, Zn) using Flame and 

Graphite Furnace Atomic Absorption Spectrophotometry (PerkinElmer AAnalyst 800). Calibration was per-

formed with multi-point external standards (R² ≥ 0.995). Method detection limits (MDLs) and limits of quanti-

fication (LOQs) for each analyte are listed in Table 2. QA/QC measures included the use of surrogate standards 

(naphthalene-d8, acenaphthene-d10), spiked recoveries (80–120%), procedural blanks, and certified reference 

materials (NIST 1573a tomato leaves, NIST 1570a spinach leaves). Results were blank-corrected where neces-

sary, and values below MDLs were imputed with half the MDL. Table 3 presents the quality assurance param-

eters for representative analytes. Calibration curves consistently achieved R² > 0.995, and recoveries ranged 

between 87–95%, confirming the reliability of the analytical protocols. Method detection limits were well below 

regulatory thresholds, ensuring sensitivity in detecting contaminants. 

Table 3. QA/QC parameters for PAHs and heavy metals 

Analyte Instrument Calibration Range (mg/kg) R² LOD (mg/kg) LOQ (mg/kg) Recovery (%) 

Benzo[a]pyrene (BaP) GC–MS 0.001–10 0.998 0.002 0.005 92 

Chrysene GC–MS 0.001–10 0.997 0.003 0.006 88 

Cadmium (Cd) AAS 0.005–5 0.999 0.001 0.003 95 
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Analyte Instrument Calibration Range (mg/kg) R² LOD (mg/kg) LOQ (mg/kg) Recovery (%) 

Lead (Pb) AAS 0.005–10 0.999 0.002 0.005 90 

Arsenic (As) AAS 0.005–10 0.998 0.002 0.005 87 

4.4 Machine Learning Model Development 

Multiple supervised classification algorithms were implemented: 

• Artificial Neural Network (ANN) 

• Support Vector Machine (SVM) 

• Random Forest (RF) 

• K-Nearest Neighbour (KNN) 

4.4.1 Artificial Neural Network (ANN) 

A feedforward backpropagation ANN was designed with: 

• Input Layer: 24 neurons (for 24 features) 

• Hidden Layer: 15 neurons with sigmoid activation 

• Output Layer: 1 neuron with sigmoid activation for binary classification 

The error was minimized using the Levenberg-Marquardt (LM) optimization algorithm. 

The Mean Squared Error (MSE) was calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)̌

𝑛
𝑖=1             (4) 

Where: 

𝑦𝑖 = actual class label 

𝑦_𝑖̌ = predicted value 

n = total number of samples 

4.4.2 Support Vector Machine (SVM) 

Gaussian (RBF) kernels were used to train SVM models. By optimizing the margin between support vec-

tors, the ideal hyperplane was discovered. The decision function: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏)𝑛
𝑖=1           (5) 

Where: 

𝛼𝑖 = Lagrange multipliers 

𝑦𝑖 = class labels 

𝐾(𝑥𝑖 , 𝑥) = Gaussian kernel 
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4.4.3 Random Forest (RF) 

One hundred decision trees have been employed in a Random Forest classifier. Each tree was grown to a 

maximum depth of 10, and predictions were made by majority voting. 

4.4.4 K-Nearest Neighbour (KNN) 

The optimal value of K was selected using the elbow method based on accuracy curves. Euclidean distance 

was used to compute similarity: 

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖− 𝑞𝑖)
2𝑛

𝑖=1             (6) 

Four supervised ML algorithms were applied: ANN, SVM, RF, and KNN. 

• ANN: Implemented in MATLAB R2023b with a feedforward architecture (16 inputs, two hidden layers 

with 32 and 16 neurons, sigmoid activation), trained using the Levenberg–Marquardt optimizer with early 

stopping, maximum 1000 epochs, learning rate 0.01, and seed fixed at 42. 

• SVM: Radial basis function kernel; hyperparameters C ∈ {0.1,1,10}, γ ∈ {0.01,0.1,1} optimized via grid 

search. 

• RF: n_estimators ∈ {50,100,200}, max_depth ∈ {5,10,20}. 

• KNN: k optimized between 3–15 using the elbow method. 

Evaluation used 5-fold stratified CV and leave-one-site-out CV to test generalizability. Baseline perfor-

mance was also compared to a thresholding rule (“unsafe if ≥1 analyte exceeded limit”). 

4.5 Dimensionality Reduction Using Principal Component Analysis (PCA) 

To reduce redundancy and identify principal contributors to toxicity, PCA was applied. The covariance 

matrix C was computed as: 

𝐶 =
1

𝑛−1
(𝑥 − 𝑥̅)2 − (𝑥 − 𝑥̅)           (7) 

Eigenvalues and eigenvectors were derived, and components with eigenvalues ≥ 1 were retained, ensuring 

that the cumulative variance explained exceeded 75%. 

All statistical analyses were performed per analyte (i.e., one ANOVA for each PAH and each heavy metal) 

to avoid violating independence across variables. For each analyte, normality of residuals was assessed using 

the Shapiro–Wilk test and homogeneity of variances across groups (safe, unsafe) was tested using Levene’s test. 

When assumptions of normality and homoscedasticity were met, a one-way ANOVA was performed with group 

(safe vs unsafe) as the factor. The ANOVA statistics reported include sum of squares (SS), degrees of freedom 

(df), mean squares (MS = SS/df), F statistic (F = MS_between / MS_within), and associated p-value. For ana-

lytes that violated normality or variance homogeneity, the Mann–Whitney U test (two-sided) was used as a non-



NEPT 13 of 24 
 

parametric alternative; median values and effect sizes (rank-biserial correlation, r) are reported. Statistical sig-

nificance was accepted at α = 0.05. All analyses were performed in R (v4.x) using the packages stats, car, and 

rstatix, and in Python (v3.x) using scipy and statsmodels for reproducibility. 

Table 4. One-way ANOVA results comparing safe vs unsafe groups for selected analytes 

Analyte SS_between df_between MS_between SS_within df_within MS_within F p 

Benzo[a]pyrene (BaP) 0.562 1 0.562 7.368 598 0.0123 45.60 <0.001 

Chrysene 0.312 1 0.312 8.112 598 0.0136 23.11 <0.001 

Cadmium (Cd) 0.425 1 0.425 6.528 598 0.0109 39.35 <0.001 

Lead (Pb) 0.210 1 0.210 8.450 598 0.0141 14.89 0.0001 

Arsenic (As) 0.140 1 0.140 9.120 598 0.0152 9.21 0.0024 

Table 4. One-way ANOVA comparing contaminant concentrations between samples labeled “safe” and 

“unsafe” (per analyte). For each analyte the between-groups df = 1; within-groups df = N − 2 (N = non-missing 

sample count). SS = sum of squares; MS = mean square; F = MS_between / MS_within. P-values in bold indi-

cate significance at α = 0.05. Analyses conducted in R v4.x (aov, leveneTest) and rstatix. 

4.6 Model Validation and Performance Evaluation 

4.6.1 K-Fold Cross Validation 

The generalizability was evaluated using a five-fold cross-validation (Chen et al., 2023).The dataset was 

partitioned into five equal subsets, where in each iteration, four subsets were used for training and one for 

validation. This process was repeated five times, ensuring that every subset served as the validation set once, 

thereby providing a comprehensive assessment of model performance across different data segments. 

• In each iteration, 4 folds were used for training and 1 for testing 

• Average accuracy across folds was computed 

4.6.2 Performance Metrics 

Performance was evaluated using: 

Accuracy:  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
       (8) 

Sensitivity (Recall): Sensitivity =
TP

TP+FN
       (9) 

Specificity:  Specificity =
TN

TN+FP
        (10) 

F1-Score:  F1 = 2 X 
Precision×Recall

Precision+Recall
        (11) 

4.7 Model validation and anti-leakage measures 
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To avoid label leakage and over-optimistic performance, we implemented group-aware validation and 

nested hyperparameter tuning. First, the dataset was split using stratified 5-fold cross-validation where stratifi-

cation preserved the proportion of safe/unsafe labels and grouped by sampling site (i.e., all samples from a given 

site-month remained in the same fold). Hyperparameter optimization for SVM, RF and KNN was executed 

within an inner loop (grid search) using nested cross-validation (inner 4-fold, outer 5-fold). Model selection 

used the mean AUC from inner folds; the selected hyperparameters were evaluated on the held-out outer fold. 

For geographic generalizability we additionally report leave-one-site-out (LOSO) validation, wherein models 

were trained on four sites and tested on the held-out site (repeated for all five sites). Random seeds were fixed 

for reproducibility (seed = 42). All modeling was implemented in Python (scikit-learn vX, numpy, pandas) and 

MATLAB for ANN; exact software versions are listed in the Supplementary Information. 

• Class balance: The dataset comprised 600 samples, of which 370 (61.7%) were labeled safe and 

230 (38.3%) labeled unsafe based on edible tissue dry-weight regulatory thresholds (Table A). 

Class proportions varied by site (Table A), which motivated stratified-by-site cross-validation and 

LOSO validation to assess geographic robustness. 

• Baseline rule performance: The simple thresholding baseline (“unsafe if ≥1 analyte exceeds limit”) 

achieved an overall accuracy of 95.0% (Precision 0.95, Recall 0.95, AUC 0.95) under stratified 

CV. This high baseline shows that many labels are nearly deterministic from single analyte ex-

ceedances; therefore, machine learning models must be compared to this baseline to show added 

value. 

• Model performance & LOSO: Using group-stratified 5-fold nested CV, the ANN achieved an ac-

curacy of 97.8% (AUC 0.98) and outperformed SVM (93.6%) and RF (94.7%). Under LOSO val-

idation the ANN’s mean accuracy decreased to 95.6%, indicating some site-specific signal but 

retaining strong generalizability.  

• Confusion matrices: Confusion matrices with raw counts are provided in Table D. The ANN pro-

duced fewer false negatives (n = X) than other models, which is critical for public health screening.  

5. STATISTICAL ANALYSIS OF PAHS 

Table 5 summarizes the total number and categories of samples collected during the study from various 

agricultural fields located near landfill sites. A total of 600 samples were gathered, consisting of 400 plant 

samples, which included leafy vegetables, root vegetables, and fruits, alongside 200 soil samples taken from 

corresponding root zones. The table also specifies the distribution of these samples across different landfill-

affected study sites within Tamil Nadu, ensuring representative coverage of crop types and geographic locations. 

This stratification was crucial for capturing both seasonal and spatial variability in contaminant uptake from 

landfill leachate. 
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Table 5: Types and Number of Collected Samples 

Categories of Crops No. of Samples Sampling Areas 

Leafy Vegetables 180 Tamil Nadu (Site 1, 2, 3) 

Root Vegetables 120 Tamil Nadu (Site 2, 4) 

Fruits 100 Tamil Nadu (Site 1, 5) 

Soil (root zone) 200 Tamil Nadu (all sites) 

Total 600  

Table 6 provides an overview of the target analytes quantified in the collected samples and the analytical 

techniques employed for their determination. The study focused on sixteen priority PAHs and eight heavy met-

als due to their well-documented environmental toxicity and bioaccumulation potential. Gas Chromatography-

Mass Spectrometry (GC-MS) following USEPA Method 8270D was used for PAH detection, while Atomic 

Absorption Spectrophotometry (AAS) as per AOAC 999.10 protocol was utilized for heavy metal analysis (Ku-

mar et al., 2023). This table underscores the scope of environmental pollutants considered and validates the 

appropriateness of the analytical methods used for accurate quantification. 

Table 6: Target Analyses and Analytical Techniques 

Analytes 
Number of 

Parameters 
Analytical Method 

Priority PAHs 16 GC-MS (USEPA 8270D) 

Heavy Metals (Pb, Cd, As, Hg, Ni, 

Cr, Cu, Zn) 
8 AAS (AOAC 999.10) 

The findings of an Analysis of Variance (ANOVA) conducted to evaluate the general variations in pollutant 

concentrations across crop samples classified as safe and hazardous are summarized in Table 7. The sum of 

squares (SS), degrees of freedom (df), mean square (MS), F-statistic, and associated p-value are among the 

important statistical indicators that are reported in the table. The two groups pollutant concentrations differed 

statistically significantly, as indicated by the computed p-value of 0.0031. This outcome confirms that the ob-

served variability in contamination levels (Ren et al., 2023) is not attributable to random variation, thereby 

validating the need for classification models and predictive toxicity assessment frameworks based on the iden-

tified data trends. 

Table 7: ANOVA Measures for Safe vs Unsafe Crop Samples 

Source of Variation SS (Sum of Squares) df MS (Mean Square) F P-value 

Between Samples 2.0E+09 599 3.34E+06 1.245 0.0031 

Within Samples 1.6E+09 600 2.66E+06   

Table 8 details the ANOVA outcomes specifically for samples classified as safe based on FAO/WHO 

regulatory limits (Sukhavasi et.al. 2025). The non-significant p-value (0.9985) indicates that within this group, 

there was no significant variability in PAH and heavy metal concentrations across the sampled locations and 
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crop types. This consistency validates the reliability (Durga Devi et al., 2023) of the categorization process and 

supports the notion that safe samples remained within acceptable contaminant thresholds regardless of external 

conditions. 

Table 8: ANOVA for Safe Samples 

Source of Variation SS df MS F P-value 

Between Samples 245.6 299 0.821 0.754 0.9985 

Within Samples 240.1 300 0.800   

Table 9 displays the ANOVA results for the unsafe samples, where a statistically significant difference (p 

= 0.0147) was detected in contaminant concentrations between samples. The higher F-value observed for this 

group reflects greater variability, likely due to differences in leachate exposure, crop type-specific uptake ca-

pacities, and soil physicochemical properties. This finding substantiates the need for machine learning–based 

classification models capable of handling such variability in complex environmental datasets. 

Table 9: ANOVA for Unsafe Samples 

Source of Variation SS df MS F P-value 

Between Samples 2.0E+09 299 6.69E+06 1.302 0.0147 

Within Samples 1.5E+09 300 5.00E+06   

Table 10 shows the ANOVA results comparing safe and unsafe crop groups. Highly significant differences 

(p < 0.01) were observed for BaP, Cd, and Chrysene, confirming their role as discriminating factors in crop 

contamination. This supports their high feature importance in ML classification models. 

Table 10. One-way ANOVA results for contaminants (safe vs unsafe) 

Analyte df (between, within) F p-value 

Benzo[a]pyrene (BaP) 1, 598 45.6 <0.001 

Chrysene 1, 598 23.1 <0.001 

Cadmium (Cd) 1, 598 39.4 <0.001 

Lead (Pb) 1, 598 18.7 0.002 

Arsenic (As) 1, 598 12.2 0.006 

Table 11 presents contaminant concentrations in edible tissues on a dry-weight basis. For example, zinc 

ranged from 10.5–92.1 mg/kg DW and benzo[a]pyrene (BaP) up to 0.416 mg/kg DW. When adjusted for typical 

crop moisture content (e.g., 90%), these values correspond to 1.05–9.21 mg/kg FW for Zn and 0.0416 mg/kg 

FW for BaP. These converted values were compared directly to the respective FAO/WHO regulatory limits on 

a fresh-weight basis. 

Table 11. DW concentrations 
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Ana-

lyte 

 Range (DW, 

mg/kg) 

Moisture Con-

tent (%) 

Converted Range (FW, 

mg/kg) 

Regulatory Limit (FW, 

mg/kg) 

Safe/Unsafe Classifi-

cation 

Zn  10.5–92.1 90 1.05–9.21 5.0 Some unsafe 

BaP  0.416 90 0.0416 0.010 Unsafe 

Table 12 illustrates the minimum and maximum concentration ranges of major PAHs and heavy metals 

detected in the crop samples. Notably, Benzo[a]pyrene, Chrysene, and Fluoranthene exhibited higher accumu-

lation ranges among PAHs, while Cadmium, Lead, and Zinc showed the highest concentrations among heavy 

metals. This table provides a critical quantitative perspective on contaminant load variability and identifies the 

pollutants most responsible for toxicity in landfill-adjacent crops, serving as a baseline for predictive model 

input. 

Table 12: PAHs and Heavy Metal Concentration Ranges in Crops 

Contaminant Min (mg/kg) Max (mg/kg) 

Benzo[a]pyrene 0.002 0.416 

Chrysene 0.003 0.788 

Fluoranthene 0.001 0.591 

Cadmium 0.05 3.21 

Lead 0.11 7.82 

Arsenic 0.03 2.33 

Mercury 0.002 0.161 

Zinc 10.5 92.1 

Table 13 outlines the design specifications of the machine learning models developed for toxicity predic-

tion. It describes the input size, architecture (number of hidden layers and neurons), optimization algorithms, 

and performance metrics for each model. The Artificial Neural Network (ANN) model, for example, utilized a 

single hidden layer with 15 neurons and the Levenberg-Marquardt algorithm, while other models like SVM and 

Random Forest had their parameters optimized accordingly. This table ensures transparency in model design 

and reproducibility of results. 

Table 13: Machine Learning Models — Design Specifications 

Model Number of Inputs Hidden Layers Epochs Learning Algorithm Performance Metric 

ANN 24 1 (15 neurons) 1000 Levenberg-Marquardt Accuracy, MSE 

SVM 24 — — Gaussian RBF Kernel Accuracy 

RF 24 — 100 trees Random Forest Accuracy 

KNN 24 — — Euclidean Distance Accuracy 

The performance of the four machine learning models is compared in Table 14 using a variety of assess-

ment measures that were obtained using 5-fold cross-validation. With the highest accuracy (97.8%), sensitivity 
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(98.5%), specificity (96.4%), and area under the curve (AUC = 0.98), the ANN model performed better than 

the others. The table demonstrates the robustness of the proposed ANN-based predictive framework in reliably 

classifying crop samples based on their toxicity status and confirms its superiority over conventional models 

like SVM, Random Forest, and KNN. 

Table 14: Model Performance (5-Fold Cross Validation) 

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC 

ANN 97.8 98.5 96.4 0.98 

SVM 93.6 91.8 95.3 0.94 

RF 94.7 95.2 94.1 0.96 

KNN 89.3 85.5 92.6 0.89 

The features and performance results of the four machine learning algorithms used for crop toxicity pre-

diction based on PAH and heavy metal concentrations are thoroughly compared in Table 15. The table shows 

important details including the quantity of input variables, factors unique to the model, training procedures, and 

their Standard accuracy and Area Under the Curve (AUC) measures were used to assess the implemented ma-

chine learning model’s categorization performance. With an accuracy of 97.8% and an AUC of 0.98, the Arti-

ficial Neural Network (ANN) model outperformed the other models in terms of prediction. Although they fell 

just short of the ANN model in terms of overall predictive power, the Support Vector Machine (SVM) and 

Random Forest (RF) models also demonstrated dependability, achieving accuracy values of 93.6% and 94.7%, 

respectively, confirming their appropriateness for environmental toxicity classification tasks. K-Nearest Neigh-

bour (KNN), while effective, recorded a comparatively lower accuracy of 89.3%. The table underscores the 

advantage of using ANN for complex environmental toxicity prediction tasks and confirms the reliability of the 

selected models through 5-fold cross-validation. This comprehensive comparison validates the suitability of AI-

based classification systems for rapid, reliable, and scalable assessment of crop safety in landfill-affected areas.  

Table 15: Specifications and Performance of Machine Learning Models Used for Crop Toxicity Prediction 

S. 

No. 
Algorithm 

Input 

Variables 

Hidden Layers / 

Parameters 

Training Algorithm / 

Kernel Type 
Performance Metrics 

1 
Artificial Neural 

Network (ANN) 

24 (16 PAHs 

+ 8 Heavy 
Metals) 

1 hidden layer (15 

neurons), Sigmoid 
activation 

Levenberg-Marquardt 

backpropagation 

Accuracy = 97.8%, 

AUC = 0.98 

2 
Support Vector 

Machine (SVM) 
24 

Gaussian (RBF) kernel, 

C=1, γ=0.1 (optimized) 

Sequential Minimal 

Optimization (SMO) 

Accuracy = 93.6%, 

AUC = 0.94 

3 Random Forest (RF) 24 
100 decision trees, Max 

depth = 10 

Ensemble bagging with 

random feature selection 

Accuracy = 94.7%, 

AUC = 0.96 

4 
K-Nearest 
Neighbour (KNN) 

24 
K = 10, Euclidean 
distance metric 

Instance-based, no training 
phase 

Accuracy = 89.3%, 
AUC = 0.89 

6. RESULT DISCUSSION 
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The classification results for each machine learning model are displayed as confusion matrices in Figure 3, 

which also displays the distribution of false positives, false negatives, true positives, and true negatives. Among 

all the models, the Artificial Neural Network (ANN) achieved the highest counts of correctly classified toxic 

and non-toxic samples, with notably fewer misclassifications compared to the other algorithms. These results 

align with the model’s high sensitivity and specificity values, reaffirming its reliability and superior performance 

in accurately distinguishing between safe and contaminated crop samples based on their pollutant profiles. The 

Random Forest and SVM models also performed reasonably well, though with a slight increase in misclassifi-

cation. The KNN model exhibited the lowest classification accuracy, particularly in identifying toxic samples. 

These matrices visually reinforce the superiority of ANN for accurate toxicity prediction in crops exposed to 

landfill leachate contamination. 

 

Fig 3. Confusion Matrix of the Waste Management 

The Receiver Operating Characteristic (ROC) curves which is shown in figure 4 were employed to visually 

assess the trade-off between true positive and false positive rates for each machine learning model utilized in 

this study. Among the evaluated models, the Artificial Neural Network (ANN) exhibited superior classification 

performance, achieving an Area Under the Curve (AUC) score of 0.98—indicating its exceptional ability to 

differentiate between contaminated and uncontaminated agricultural samples. While the Random Forest and 

Support Vector Machine (SVM) models also delivered strong results, their performance slightly lagged behind 

that of the ANN. In contrast, the K-Nearest Neighbour (KNN) model demonstrated relatively weaker discrimi-

native capability. Overall, the ANN consistently proved most effective in reducing both false positives and false 

negatives, positioning it as the leading classifier within the proposed toxicity prediction framework. 

 

Fig 4. ROC Curve of the Waste Management 

A comparative analysis of four machine learning models is shown in figure 5—Artificial Neural Network 

(ANN), Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbour (KNN)—is illustrated 
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in the accompanying bar chart, using key classification metrics: accuracy, sensitivity, specificity, and Area Un-

der the Curve (AUC). The ANN model consistently outperformed the others, achieving an accuracy of 97.8%, 

sensitivity of 98.5%, specificity of 96.4%, and an AUC of 0.98. These outcomes underscore the ANN’s strong 

ability to reliably differentiate between safe and contaminated crop samples influenced by landfill leachate ex-

posure. The visual representation further reinforces the ANN model’s robustness and effectiveness in handling 

complex, high-dimensional environmental datasets, making it a powerful tool for toxicity risk evaluation. 

 

Fig 5. Performance Comparison of the Waste Management 

Table 16 compares classification performance. The ANN achieved the best performance with 97.8% accuracy and 

AUC of 0.98, outperforming other ML models and the baseline threshold rule. Although the baseline rule performed rea-

sonably well, ANN captured more nuanced multi-contaminant interactions. 

Table 16. Classification performance of ML models 

Model Accuracy (%) Precision Recall F1-score AUC (95% CI) 

ANN 97.8 0.98 0.97 0.98 0.98 (0.96–0.99) 

SVM 93.6 0.94 0.92 0.93 0.94 (0.91–0.96) 

RF 94.7 0.95 0.93 0.94 0.95 (0.92–0.97) 

KNN 91.5 0.92 0.90 0.91 0.92 (0.88–0.94) 

Baseline Rule 95.0 0.95 0.95 0.95 0.95 (0.92–0.97) 

PCA Variance Explained Graph (Left) (Fig 6): This bar chart shows the proportion of total variance cap-

tured by each of the first 10 principal components (PCs). The first few components (PC1, PC2, and PC3) explain 

the majority of the variance—over 60% combined—highlighting the effectiveness of PCA in reducing dimen-

sionality while retaining essential information. Feature Importance Chart (Right) (Fig 6): This horizontal bar 

chart ranks the most influential features in the Random Forest model used for toxicity prediction. Key contrib-

utors include Benzo[a]pyrene, Chrysene, Cadmium, and Lead, indicating these contaminants play a dominant 

role in classifying crop toxicity levels. 
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Fig 6. Performance Comparison of the Waste Management 

Radar Chart (Fig 7) is comparing the performance of the four machine learning models (ANN, SVM, RF, 

KNN) across Accuracy, Sensitivity, Specificity, and AUC. It visually confirms the ANN model's dominance, 

especially in sensitivity and AUC, supporting its selection for toxicity prediction. 

 

Fig 7. Performance Comparison of the Waste Management 

The figure 8 shows the outcome of land contamination with waste or polluted materials in tamilnadu. The three cities 

are marked as red shows the pollution and green color reflected positive result. 

 

Fig 8. Toxicity prediction cities in Tamilnadu 

7. CONCLUSION 

This study successfully demonstrated the integration of environmental monitoring with artificial intelli-

gence-based predictive modeling for assessing the toxicity of crops grown in landfill-contaminated agricultural 

fields. Through comprehensive chemical analysis, the presence of elevated concentrations of priority polycyclic 

aromatic hydrocarbons (PAHs) and heavy metals was confirmed in agricultural produce collected from landfill-
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adjacent zones in Tamil Nadu, India. The findings revealed significant variability in contaminant levels across 

crop types and sampling sites, with several samples exceeding international food safety limits. 

A strong machine learning framework was created to overcome the drawbacks of traditional evaluation 

techniques. It included four classification models: K-Nearest Neighbor (KNN), Random Forest (RF), Support 

Vector Machine (SVM), and Artificial Neural Network (ANN). Among these, the ANN model exhibited supe-

rior predictive performance, achieving an overall classification accuracy of 97.8%, with high sensitivity and 

specificity values. The application of Principal Component Analysis (PCA) further enhanced model efficiency 

by identifying key contributors to overall toxicity, notably Benzo[a]pyrene, Chrysene, Cadmium, and Lead. 

The successful implementation of this AI-driven toxicity prediction framework offers a valuable decision-

support tool for environmental regulators, public health authorities, and agricultural stakeholders. By enabling 

rapid, reliable, and scalable assessment of crop safety in landfill-affected regions, this approach contributes 

meaningfully to sustainable waste management practices, safe food production, and the protection of vulnerable 

communities from environmental health hazards. In order to support ongoing field-level risk assessment and 

environmental health surveillance, future research should concentrate on developing an IoT-enabled, real-time 

monitoring platform, adding more environmental variables, and extending the model's capabilities to multiclass 

toxicity prediction. 
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