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ABSTRACT 

In recent days, due to the high population and rapid urbanization, we have challenged several problems related to 

environmental degradation and climate change. Therefore, Land Use Land Cover (LULC) classification is important in 

providing accurate and timely information about natural and land resources. Traditional methods for the classification of 

satellite imagery face several challenges due to the complexities and variability of the data. In this paper, we proposed a novel 

approach to enhance LULC classification using deep learning-based convolutional neural networks with extraction of features, 

transfer learning, and fine-tuning. The proposed work first designs convolutional neural networks from scratch to capture 

spatial features from multispectral resolution satellite imagery covering the study area of Mysuru taluk, Karnataka State, India. 

Transfer learning is then applied to adapt the pre-trained CNN model to the LULC classification. Furthermore, fine-tuning is 

employed to fine-tune the adapted CNN model on the target dataset, enabling the model to learn domain-specific features and 

improve classification performance. The proposed deep learning model performance is demonstrated through experiments on 

multispectral datasets, where convolutional neural networks, transfer learning, and fine-tuning models provide classification 

accuracy of 90.41%, 92.50%, and 94.37%, respectively. 

INTRODUCTION 

Monitoring changes in land use and land cover (LULC) is vital for understanding the dynamic interaction 

between human activities and natural ecosystems. Population growth, agricultural expansion, industrialization, 
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urbanization, and climate variability have significantly altered terrestrial landscapes, resulting in challenges 

related to food security, biodiversity loss, water scarcity, and environmental sustainability (Alhassan, V. et al. 

2020; Mozumder et al., 2025). Timely and accurate mapping of LULC is therefore indispensable for urban 

planning, sustainable development, disaster management, and policy-making. Remote sensing (RS) has 

emerged as the most efficient tool for LULC studies because it provides repetitive, synoptic, and multispectral 

coverage of Earth’s surface over extensive areas at varying spatial and temporal scales (Carranza-García et al., 

2019; Kumar et al., 2021). 

Traditional approaches to LULC classification predominantly rely on machine learning (ML) methods such 

as Maximum Likelihood Classification (MLC), k-Nearest Neighbor (k-NN), Decision Trees (DT), Random 

Forests (RF), and Support Vector Machines (SVM) (Mahendra H.N et al. 2023a). These classifiers have been 

widely applied in remote sensing tasks due to their computational efficiency and robust mathematical founda-

tion. However, their performance is constrained by their dependence on hand-crafted spectral, spatial, or textural 

features that must be manually engineered prior to classification. Such dependency leads to high subjectivity 

and model bias, while also requiring domain-specific expertise for feature extraction (Balarabe, A.T et al. 2021; 

K. Ganesha Raj et al. 2021). Furthermore, ML classifiers often fail to achieve high accuracy in heterogeneous 

landscapes where spectral overlap, high intra-class variability, and mixed pixels are common problems that are 

especially prominent in medium-resolution imagery. These limitations underscore the need for more flexible 

and data-driven approaches that can automatically discover representative features from raw imagery (Kumar, 

S et al., 2021; Mahendra H.N et al. 2023b). 

Recent developments in deep learning (DL) have revolutionized computer vision and have shown tremen-

dous promise in the field of remote sensing. Convolutional Neural Networks (CNNs), in particular, have demon-

strated their capacity to learn hierarchical spectral–spatial representations from imagery, thereby eliminating the 

need for handcrafted features. By automatically capturing low-level edge features, mid-level textures, and high-

level semantic patterns, CNNs offer a significant advantage in classifying complex and heterogeneous land 

cover categories (Maggiori et al., 2017; Boyang Li et al., 2020). Their ability to generalize across spectral bands, 

spatial resolutions, and contextual patterns makes them especially suitable for LULC mapping RS (Gibril, M.B 

et al. 2017; Geetha, M.A et al. 2021). 

However, the successful training of CNNs requires very large labeled datasets, which are often unavailable 

in remote sensing applications (Boyang Li et al. 2020). Annotated RS datasets are expensive, time-consuming, 

and labor-intensive to generate, particularly in developing countries (García-Gutiérrez et al. 2010; Liang H et 

al. 2016). Additionally, training CNNs from scratch demands substantial computational resources and optimized 

hyperparameter tuning, which can be prohibitive in many practical settings (Li, B. et al. 2020; Naushad, R. et 

al. 2021). To overcome these challenges, transfer learning (TL) and fine-tuning (FT) strategies have gained 

significant attention. 

https://link.springer.com/article/10.1007/s12524-020-01259-5#auth-K__Ganesha-Raj
https://ieeexplore.ieee.org/author/37087027310
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Transfer learning leverages knowledge from pre-trained CNN models developed on large-scale datasets 

such as ImageNet, enabling re-use of learned filters for new but related tasks in RS (Dewangkoro, H.I et al. 

2021; Gisela Häufel et al. 2018). The generic edge and texture features from early CNN layers remain useful 

across domains, reducing the need for large labeled datasets. Fine-tuning goes one step further by retraining the 

deeper network layers to adapt to domain-specific characteristics of RS data, ensuring improved generalization 

and accuracy (Naushad et al., 2021; Shabbir et al., 2021). Such approaches strike a balance between computa-

tional feasibility and classification performance, making them highly relevant for RS-based LULC applications. 

The efficiency of TL and FT has been demonstrated across multiple RS domains including urban expansion 

monitoring, vegetation type classification, crop yield estimation, and disaster damage assessment. Studies have 

reported that CNN-based TL models consistently outperform traditional classifiers and even outperform CNNs 

trained from scratch in limited-data scenarios. Moreover, advanced CNN architectures such as VGGNet, Res-

Net, DenseNet, and EfficientNet have introduced innovative scaling mechanisms that improve accuracy while 

reducing computational complexity. Among these, EfficientNet stands out due to its compound scaling ap-

proach, which balances network depth, width, and input resolution, making it highly suitable for large and me-

dium-scale RS applications (E. Maggiori et al. 2017; Mahendra, H.N et al. 2023c). 

Despite this progress, a notable research gap persists: most DL studies in RS prioritize high-resolution 

imagery such as Sentinel-2 (10 m) and Landsat-8 (30 m), while medium-resolution imagery from LISS-III sen-

sor (23.5 m) remains largely underexplored. LISS-III provides cost-effective, regionally relevant data that is 

widely utilized in India for agricultural monitoring, forest assessment, hydrology, and urban planning. However, 

applications of advanced CNN-based DL methods to LISS-III imagery are still limited, with existing studies 

focusing more on conventional ML techniques or unsupervised classification approaches (Pushpalatha et al., 

2025). This underrepresentation is striking, given the operational importance of LISS-III in India’s remote sens-

ing programs and its widespread use for regional-scale resource management. 

Motivated by this gap, the present study undertakes a systematic exploration of DL strategies for LULC 

classification using IRS LISS-III imagery of Mysuru Taluk, Karnataka, India. Specifically, we investigate and 

compare three CNN-based strategies. The choice of EfficientNetB7 is motivated by its demonstrated efficiency 

in balancing accuracy with computational demands, making it a strong candidate for medium-resolution RS 

applications. 

To ensure a comprehensive evaluation, we also benchmark these DL models against traditional ML clas-

sifiers such as SVM, RF, DT, k-NN, and MLC using the same LISS-III dataset. Our study ensures a fair and 

controlled comparison by applying all models on the same dataset under identical conditions. This approach not 

only strengthens the credibility of performance assessment but also provides practical insights into the suitability 

of different classifiers for medium-resolution RS applications. The key contributions of this study include: 
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1. We employ the region-specific LISS-III dataset of Mysuru Taluk, Karnataka, which is relatively 

underexplored in deep learning-based LULC studies, thereby providing insights into a critical re-

gion experiencing rapid land-use transitions.  

2. We adapt and fine-tune the EfficientNetB7 architecture for multi-class LULC classification, rede-

signing the dense layer to suit regional data.  

3. We present a direct performance comparison between a CNN designed from scratch and transfer 

learning models, highlighting their trade-offs under limited data availability.  

 

Finally, the outcomes of this study are positioned within the framework of sustainable development and 

regional planning, emphasizing the applied significance of our findings beyond methodological comparisons. 

1. RELATED WORKS  

In the literature, several researchers explored the use of deep learning techniques, including CNN, transfer 

learning, and fine-tuning, to enhance LULC classification. Weng et al. (2017) proposed a method that combines 

CNN and ELM to improve classification performance. Zhu et al. (2020) focused on the high-resolution satellite 

image classification for land cover classes with a high total accuracy of 89.6% through the use of an improved 

SMOTE algorithm for sample augmentation. Douass et al. (2022) applied a transfer learning approach, retrain-

ing a pre-trained Resnet18 model to classify aerial images of the Tangier region. Alem et al. (2020) provided a 

comprehensive review of methods in deep learning for the classification of LULC, highlighting the use of CNN 

models in this field.  

Agarwal et al. (2022) proposed an innovative approach to LULC classification by using satellite imagery 

and deep learning techniques. This method utilizes high-resolution satellite images to automatically extract the 

optimal feature for land cover classification. Similarly, Xia et al. (2022) developed a deep learning model spe-

cifically designed for LULC classification, employing a seven-layer CNN to achieve effective results. Uba 

(2019) also explored the use of techniques of deep learning for LULC classification, demonstrating how these 

algorithms can effectively process very high spatial resolution images to automate LULC identification. In an-

other study, Kalantar et al. (2022) presented a deep ensemble learning framework for LULC classification using 

hyperspectral PRISMA imagery, focusing on extracting critical information to enhance classification accuracy. 

Nijhawan et al. (2018) introduced a forward-looking framework of deep learning for the classification of 

LULC using remote sensing data and provides better performance as compared to existing methods. Similarly, 

Song et al. (2019) presented a novel approach utilizing a 1D CNN for the classification of LULC in satellite 

images, where the application of the CNN to each pixel in the spectral domain significantly improved classifi-

cation accuracy. Liu et al. (2020) proposed a LULC classification method that integrates CNN with a digital 

surface model, and remote sensing data, achieving an impressive overall accuracy of 95.57%. Yang et al. (2019) 
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developed a CNN-based approach for LULC classification, where the inclusion of an infrared band and data 

provided better classification results compared to traditional RGB images. 

Yang et al. (2021) introduced a deep-learning framework for the consistent classification of land-use ob-

jects within geospatial databases. This approach is based on CNNs, to predict land use across multiple hierar-

chical levels simultaneously and demonstrates superior performance compared to existing methods. Kussul et 

al. (2017) developed a model of deep learning for classifying crop and land cover types using satellite data. This 

architecture, utilizing an ensemble of CNNs, significantly outperformed models based on MLPs. Patel et al. 

(2022) proposed a multi-level feature extraction technique for automated land cover classification, integrating 

LSTM networks and deep CNNs. This model exceeded the performance of benchmark pre-trained CNN models. 

Rao et al. (2022) presented an advanced algorithm based on deep learning for classifying LULC using 

satellite imagery. This approach utilized the DeepLabv3 model, a semantic segmentation framework employing 

atrous convolution to capture multi-scale contexts. This is achieved by adopting multiple atrous rates in a cas-

cading or parallel manner to accurately determine the scale of land segments. Yang et al. (2019) proposed a 

highly efficient and accurate deep learning-based method for large-scale land-use mapping, utilizing a deep 

convolutional neural network to achieve superior results. Bergado et al. (2020) introduced a land-use classifi-

cation method using deep multitask networks, which outperformed other classifiers by at least 30% in the aver-

age F1-score. Fahmi et al. (2022) focused on patch-based land cover classification and demonstrated that Res-

Net-50 achieved the highest validation accuracy for this task. Weng et al. (2018) developed a CNN-based land-

use scene classification model that incorporates a constrained extreme learning machine (CNN-CELM). This 

model not only enhances generalization capabilities but also reduces training time compared to other state-of-

the-art methods. Collectively, these studies highlight the significant potential of deep learning in enhancing the 

accuracy and efficiency of LULC classification. 

2. MATERIALS AND METHODS 

2.1 Objectives  

The primary goal of this study is to improve LULC classification accuracy. In order to accomplish this 

goal, the research has delineated the following objectives:  

1. To design CNNs from scratch to extract high-level features from satellite imagery for LULC classi-

fication.  

2. To apply the transfer learning DL model to improve the performance of LULC classification.  

3. To further enhance the classification accuracy and optimize model performance through the process 

of fine-tuning the DL model. 

 

2.2 Study Area 
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In this research work, Mysuru taluk, Karnataka State, India is identified as a study area as shown in Fig. 1. 

Mysuru taluk, located in the southern part of Karnataka, India, is renowned for its rich cultural heritage, histor-

ical significance, and serene landscapes. The taluk encompasses a diverse array of topographies, from lush green 

forests to fertile plains, interspersed with villages and urban developments. Serving as the administrative hub of 

the region, Mysuru taluk boasts a vibrant blend of tradition and modernity, with its iconic Mysore Palace stand-

ing tall as a testament to its royal past. The area is not only a place for tourists seeking a glimpse of its regal 

architecture and captivating festivals but also a hub for academic pursuits with institutions like the University 

of Mysore contributing to its intellectual vibrancy. Additionally, the taluk's agrarian landscape fosters a thriving 

agricultural sector, with crops like sugarcane, paddy, and silk serving as economic mainstays.  

 

Fig. 1. Study area of Mysuru taluk 

2.3 Dataset and Tools  

In this research work, Resourcesat-1 satellite, Linear Imaging Self-Scanning Sensor-III (LISS-III) sensor 

data of the year 2019 covering the Mysuru taluk is downloaded from ISRO Bhuvan portal  and used for modeling 

the CNN, transfer learning, and fine-tuning. The study area was obtained in six image patches, which were 

merged and cropped to the exact Mysuru taluk boundary using the QGIS tool. The Resourcesat-1 satel-

lite, equipped with the LISS-III sensor, provides invaluable data for various applications including land use 

planning, agriculture, forestry, and environmental monitoring. LISS-III captures images with a 23.5-meter spa-

tial resolution in four spectral bands ranging from visible to near-infrared. This high-resolution data enables 

detailed analysis of land cover changes, vegetation health, and natural resource management over large areas. 

Its ability to acquire images in multiple spectral bands supports differentiating land cover types and detecting 
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environmental variations, making Resourcesat-1 LISS-III a vital tool for sustainable development and scientific 

research.  

High-level programming languages like Python are useful for creating DL models. Python is an easy-to-

use and adaptable programming language that may be used to build a variety of interactive libraries for the many 

learning and machine learning models. Additional tools that are utilized with Python include MAT LAB 

R2023b, QGIS, and TensorFlow. 

 

2.4 Methodology  

The proposed research methodology to enhance the LULC classification accuracy through models such as 

CNN-feature extraction (CNN--FE), transfer learning, and fine-tuning is shown in Fig. 2. First, a satellite dataset 

encompassing diverse land cover types and regions covering Mysuru taluk is collected and preprocessed. The 

study area was obtained in six image patches, which were merged and cropped to the exact Mysuru 

Taluk boundary using the QGIS tool. The preprocessing step includes data processing such as radiometric 

and geometric corrections, normalization, and augmentation to ensure a balanced and robust dataset for train-

ing the deep learning models. Every dataset was divided into 60% training, 20% validation, and 20% test sam-

ples. Additionally, as indicated in Table 1, we set up the DL hyperparameters for the dataset training. After the 

models were trained and validated using the validation dataset, their performance was evaluated using the test 

dataset.  

Further, a CNN architecture is designed from scratch as a feature extractor to automatically learn discrim-

inative features from the raw input imagery. This CNN architecture is developed to effectively capture the spa-

tial dependencies and hierarchical representations within the input data. Transfer learning is then employed by 

utilizing pre-trained EfficientNet CNN models. By leveraging the knowledge encoded in these pre-trained mod-

els, the network can expedite the learning process and adapt to the specific LULC classification task more 

efficient transfer learning. 

Fine-tuning the DL model involves fine-tuning the pre-trained EfficientNet CNN model on the target 

LULC dataset. During this process, the weights of the pre-trained model are adjusted through backpropagation 

while the model is trained on the LULC dataset. This fine-tuning stage allows the network to specialize and 

refine its learned features according to the degrees of the target task, thereby improving classification perfor-

mance. Additionally, techniques such as regularization and hyperparameter tuning are employed to optimize the 

model's generalization capability and performance on unseen data. 

Lastly, the trained model is evaluated using various metrics such as overall accuracy, precision, recall, and 

F1-score using a test dataset. The performance of the proposed DL model is compared with the state-of-the-art 
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methods to assess its effectiveness in enhancing LULC classification accuracy. Additionally, sensitivity analysis 

is conducted to evaluate the robustness of the model to variations in input data and parameter settings. This 

comprehensive evaluation provides insights into the strengths and limitations of the proposed methodology and 

guides future improvements and applications in the field of land use analysis and remote sensing. 

Table 1. Hyperparameters are used to train the model. 

Hyperparameters Values 

Dropout 0.25 

Loss Function  Cross-entropy 

Activation Function ReLU, Sofine-tuning max 

Epochs 100 

Batch Size 64 

Optimizers  Adam 

Learning rate  0.001 

 

 

Fig. 2. Methodology followed in the research work  

3. PROPOSED DEEP LEARNING METHODS 

3.1 Convolutional Neural Networks-Feature Extraction (CNN-FE)    

The proposed CNN architecture begins with preprocessing of LISS-III satellite data, where images are 

downloaded, merged, cropped, and resized to a uniform 224x224x3 dimension. The model's input layer is con-

figured to accept images of this size. The architecture includes eight convolutional layers, each employing var-

ious filter sizes to capture diverse features within the image. This multi-scale approach enhances feature extrac-

tion capabilities, allowing the network to capture finer details and complex patterns in the satellite data for more 

accurate analysis as shown in Fig. 3. 

The initial convolutional layer utilizes 32 filters of size 1x1 with a stride of 1, allowing the filter to traverse 

one pixel at a time across the input image. The absence of padding in this layer means the spatial dimensions of 
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the output are reduced. Following this, a second convolutional layer is incorporated, which also employs 32 

filters but with a larger 2x2 filter size, maintaining the stride at 1 and similarly applying no padding. This se-

quential application of convolutional layers allows for the extraction of both fine-grained and slightly more 

complex spatial features without border augmentation. 

A third convolutional layer with 64 filters of size 2x2, a stride of 1, and no padding to capture finer image 

details. The subsequent, fourth convolutional layer employs 64 filters of size 3x3, also with a stride of 1 and no 

padding, facilitating the extraction of more complex features. Together, these layers enhance the model's ability 

to identify intricate patterns within the data. This configuration aims to progressively refine feature extraction, 

providing a solid foundation for accurate image classification or detection tasks. 

Feature extraction is progressively refined across successive convolutional layers, enhancing the network’s 

depth and capturing complex patterns. The fifth convolutional layer uses 128 filters of size 3x3, followed by a 

sixth layer with 128 filters of size 4x4, both with a stride of 1 and no padding. The seventh and eighth layers 

further deepen the model, employing 256 filters of sizes 3x3 and 4x4, respectively, also with a stride of 1 and 

zero padding. This layered architecture aims to capture fine-grained details in the input data, optimizing feature 

representation for subsequent classification tasks. 

In CNN, activation functions are crucial for enabling the network to model complex data patterns. After 

each convolutional layer, an activation layer is typically applied, with the Rectified Linear Unit (ReLU) being 

one of the most popular choices. ReLU is computationally efficient and simple, outputting zero for negative 

inputs and the original value for non-negative inputs. This function's simplicity enhances computational speed 

and implementation ease. A key advantage of ReLU is its ability to introduce non-linearity into the network, 

essential for learning intricate data relationships. Without non-linearity, neural networks would behave linearly, 

regardless of depth, limiting their ability to capture complex patterns. Additionally, ReLU mitigates the vanish-

ing gradient problem, where gradients diminish during backpropagation, especially in deep architectures. These 

properties make ReLU a preferred activation function in deep learning, enhancing model performance in appli-

cations such as LULC classification. 

The max pooling layers follow each convolutional layer to reduce the spatial dimensions of feature maps, 

preserving essential information while enhancing computational efficiency. This down-sampling technique is 

crucial for tasks like image recognition and structured data analysis. Convolutional layers in CNNs first capture 

basic features such as edges and textures, which are then refined through pooling layers to detect more complex 

patterns and objects. Max pooling operates by sliding a fixed-size window across the feature map, selecting the 

maximum value in each window to summarize key information. 

The proposed CNN architecture integrates eight distinct max-pooling layers, each positioned after succes-

sive convolutional layers, featuring varied kernel sizes and stride values for optimal spatial reduction of feature 
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maps. The first pooling layer is designed with a kernel size of 2x2 and a stride of 1, while the second employs 

a 3x3 kernel with a stride of 2. The third and fourth layers share a kernel size of 3x3 but differ in stride values 

of 2 and 3, respectively. Following these, the fifth and sixth layers utilize 4x4 and 5x5 kernels with stride values 

of 2. The seventh pooling layer is designed with a 4x4 kernel and a stride of 3, and the eighth layer has a 3x3 

kernel with a stride of 5. This tailored configuration enables a controlled reduction in the spatial dimensions of 

feature maps. For an input feature map of dimensions nh×nw×nc, the output dimensions after max-pooling are 

defined in Equation (1). 

(nh-f + 1)/s * (nw-f + 1)/s * nc ------------ (1) 

where,  

nh- height of feature map 

nw- width of feature map 

nc- channel numbers  

s- stride length 

f – filter size 

The proposed CNN, batch normalization is implemented within the CNN architecture to enhance training 

speed, stability, and overall performance. This layer normalizes layer inputs by scaling activations, ensuring a 

consistent distribution of features. By mitigating internal covariate shift, batch normalization reduces sensitivity 

to weight initialization and learning rates, aiding in stable model training. It also minimizes the need for dropout 

by naturally regularizing the network. Additionally, batch normalization helps smooth the loss landscape across 

mini-batches, facilitating faster convergence and improved network generalization. 

In CNN architecture, three fully connected (FC) layers follow the convolutional and pooling layers to fa-

cilitate the mapping of learned features to the output space. These layers contain 1024, 512, and 4 neurons, 

respectively. Each neuron in the FC layers is connected to every neuron in the preceding layer, allowing the 

network to capture complex global patterns. This configuration enables effective transformation of feature rep-

resentations into a structured output. The final layer with 4 neurons corresponds to the target output classes. 

In the proposed model, the first FC layer with 1024 neurons extracts a rich set of abstract features from the 

data. The second FC layer, with 512 neurons, reduces dimensionality to refine these learned features further. 

The final FC layer with 4 neurons functions as the output layer, facilitating classification. This layered approach 

ensures a smooth transition from spatial feature extraction by CNN layers to decision-making, enhancing clas-

sification accuracy in the targeted tasks. 

The objective function layer, as the final layer in a CNN, calculates the error, or loss, between the actual 

target values and model's predictions. Located after the output layer, this layer uses a designated loss function 

commonly cross-entropy loss in classification tasks to measure prediction error. This error, represented as a 

scalar value, quantifies the model's deviation from true outcomes. Feeding this error into backpropagation, the 
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network updates its weights and biases to reduce error in future iterations. The objective function layer thus 

steers the learning process, guiding the network to enhance its accuracy over time. Cross-entropy loss is partic-

ularly suitable for classification tasks, efficiently managing multi-class outputs as shown in equation (2). 

Through iterative training, this mechanism allows the network to gradually refine its predictions and improve 

overall performance. 

𝐿𝑠𝑜𝑓𝑡 max 𝑙𝑜𝑠𝑠]=  −
1

𝑁
 ∑ log (

𝑒ℎ𝑦𝑖

∑ 𝑒
ℎ𝑗𝐶

𝑗=1

)𝑁
𝑖=1                                                (2) 

With 𝑦𝑖 € {1,2, … . . , 𝐶} 

  ℎ = {ℎ1, ℎ2, … . . , ℎ𝑐)T                                                                        (3) 

In this notation, yi represents the true label, C is the total number of classes, and h corresponds to the final 

output of the architecture. 

 

Fig. 3. Proposed CNN architecture 

 

3.2 Transfer Learning Method  

Transfer learning is a powerful technique in machine learning that leverages pre-trained models to improve 

the performance of LULC classification. In the context of LULC classification, transfer learning is particularly 

useful due to the vast amount of labeled satellite imagery required for training models from scratch. Instead of 

starting with an untrained model, a deep learning model pre-trained on a large dataset like EfficienNet can be 
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fine-tuned for LULC classification. This process adapts the learned features from general image classification 

to the specific patterns found in satellite or aerial imagery, such as vegetation, urban areas, and water bodies. 

Transfer learning significantly reduces the computational cost and training time while often improving 

accuracy, as the model already has a good understanding of visual features like edges, textures, and shapes. 

Fine-tuning involves adjusting the weights of the last few layers of the model or replacing them entirely with 

new layers suited to the LULC task. This approach is particularly effective when labeled data is scarce, as it 

avoids the need for large-scale, labeled training sets typical in remote sensing applications. Transfer learning 

can also be used with modern architectures like CNNs and is instrumental in improving the efficiency of LULC 

classification tasks.  

 

3.3  Fine-Tuning 

Fine-tuning for LULC classification involves adapting a pre-trained deep learning model, usually a CNN, 

to classify satellite images into specific land cover categories. The process starts with using a model pre-trained 

on a large dataset, like EfficientNet, to leverage its learned features. Fine-tuning focuses on training only the 

final layers while keeping the earlier layers frozen, as they have already learned general features such as edges 

and textures. First, satellite data are used to replace the last classification layer of the model with a new layer 

that matches the number of LULC classes. During training, the model learns to recognize land cover types such 

as forests, urban areas, water bodies, and agricultural land. Key techniques include adjusting learning rates, data 

augmentation, and using transfer learning to speed up the process. This method reduces the need for large da-

tasets and extensive computational resources, making it effective for LULC classification while improving ac-

curacy. Fine-tuning is essential when domain-specific patterns differ from the general features learned in the 

original dataset. 

4. RESULTS  

The experiments conducted on a laptop computer with an Intel Core i3-6006U CPU running at 

2.00GHz and 12 GB of RAM. The MAT LAB R2023b and QGIS tools are used with the Python 

programming language.  

 

4.1 Training and Validation  

We used a satellite data set of the Mysuru taluk to assess the deep learning models' performance in LULC 

classification. Training, validation, and test samples make up 20%, 20%, and 60% of the dataset, respectively. 

In addition, the model is trained and validated using a training and validation dataset, and its performance is 

evaluated using a test dataset. 
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We trained and validated the model during experiments using training and validation datasets once the 

experimental settings were set. Additionally, test data sets were used to assess the model's performance in terms 

of accuracy, recall, f1-score, and precision using a confusion matrix. The confusion matrix shows how well the 

class did based on how accurately or poorly the rows and columns in the intersections are classified. The cate-

gorical-cross-entropy loss function was used to calculate the accuracy and errors. 

The CCN-FE, transfer learning, and fine-tuning model's training and validation accuracy are shown in 

Fig.4, Fig. 5, and Fig. 6 (on the left), respectively, which is anticipated to increase in epoch increments. Fig. 4, 

Fig. 5, and Fig. 6 (on the right) show the losses of training and validation of the CCN-FE, transfer learning, and 

fine-tuning model respectively, which are anticipated to decrease in epoch increments. 

 

Fig. 4. CNN-FE training and validation accuracy 

 

Fig. 5. Training and validation accuracy of transfer learning   
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Fig. 6. Training and validation accuracy of Fine-tuning 

 

 

 

4.2 LULC Classification and Assessment  

LULC classification is performed using all three of the trained DL models CNN-FE, transfer learning, and 

fine-tuning on LISS-III sensor data of the year 2019 of Mysuru Taluk. The CNN-FE, transfer learning, and fine-

tuning classified maps are depicted in Fig. 7, Fig. 8, and Fig. 9, respectively. Throughout the study region, the 

primary LULC classes are built-up areas, agricultural land, water bodies, forests, and other landscape features. 

The LULC area for every class has been assessed for each of the three classed maps. Each land class's area in 

sq. km and its percentage of the total area occupied by all classes are listed in Table 2. The Mysuru Taluk covers 

a total geographical area of 797 sq. km. Built-up areas were identified to cover approximately 200.42 sq. km, 

accounting for 25.14% of the total area using the CNN-FE model. Similarly, transfer learning and fine-tuning 

models identified built-up areas to cover 202.24 sq. km (25.37%) and 201.69 sq. km (25.30%) respectively. 

Agriculture land constituted the majority of the area under study, covering 473.60 sq. km (59.42%) with CNN-

FE, 473.06 sq. km (59.36%) with transfer learning, and 474.12 sq. km (59.48%) with fine-tuning model. 

Water bodies were found to cover 36.82 sq. km (4.61%) using CNN-FE, 35.28 sq. km (4.42%) using trans-

fer learning, and 36.35 sq. km (4.56%) using the fine-tuning model. Forested areas accounted for 61.61 sq. km 

(7.73%), 63.15 sq. km (7.92%), and 62.19 sq. km (7.80%) with CNN-FE, transfer learning, and fine-tuning 

models respectively. Waste land types collectively covered 24.55 sq. km (3.08%), 23.46 sq. km (2.94%), and 

22.65 sq. km (2.84%) with CNN-FE, transfer learning, and fine-tuning models respectively. These results indi-

cate consistency across the three models in delineating land cover classes, with slight variations in area estima-

tions.  

Table 2. Mysuru taluk LULC assessment of CNN-FE, transfer learning, and fine-tuning  

 CNN-FE Transfer Learning  Fine-tuning  
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Class Name  

Area (in 

Sq. km) 

% Area  Area (in sq. 

km) 

% Area  Area (in Sq. 

km) 

% Area  

Built-up 200.42 25.14 202.24 25.37 201.69 25.30 

Agriculture land 473.60 59.42 473.06 59.36 474.12 59.48 

Water bodies  36.82 4.61 35.28 4.42 36.35 4.56 

Forest 61.61 7.73 63.15 7.92 62.19 7.80 

Waste land 24.55 3.08 23.46 2.94 22.65 2.84 

 

 

Fig. 7. Classified map of Mysuru taluk using CNN-FE 
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Fig. 8. Classified map of Mysuru taluk using transfer learning  

 

Fig.  9. Classified map of Mysuru taluk using Fine-tuning  
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4.3 Performance Analysis of DL Models  

We use 480 test data sets to assess the performance of each DL model. In addition to the accuracy measure, 

the kappa value, precision, recall, and F1 score are used to assess each class's performance. The CNN-FE, trans-

fer learning, and fine-tuning performance are shown in Tables 3, 4, and 5, respectively. The F1-score, which 

generalizes the average performance of the constructed DL models and the performance of each class, is calcu-

lated using the harmonic mean of accuracy and recall metrics. The F1-score also performs at the highest level 

in that class if recall and precision do as well. Conversely, if accuracy or recall yield zero performance results, 

the F1-score has zero performance, indicating that the model is not making any predictions. 

The F1-score metric has a 100% score in the built-up class in the transfer learning model (Table 4), the 

agriculture land class in CNN-FE (Table 3), and the fine-tuning model (Table 5), according to the classification 

results. The accuracy and loss metrics are also employed to illustrate the suitability of the DL models; the CNN-

FE, transfer learning, and fine-tuning models are shown in Figures 4, 5, and 6, respectively. Figures 4, 5, and 6 

illustrate how the training accuracy (represented by a blue color curve) and validation accuracy (represented by 

a red color curve) rise linearly with the number of epochs. We reduced errors in the model's performance by 

using the cross-entropy loss function.  

 

Table 3. CNN-FE classification performances 

Classes of LULC Precision Recall  F1-Score 

Built-up 0.95 0.95 0.90 

Agriculture land 1.00 1.00 1.00 

Water Bodies 0.73 0.95 0.84 

Forest 0.86 0.95 0.90 

Waste land   0.91 0.75 0.83 

 

Table 4. Transfer learning classification performance 

Classes of LULC Precision Recall  F1-Score 

Built-up 1.00 1.00 1.00 

Agriculture land 1.00 0.95 0.96 

Water Bodies 0.69 0.90 0.78 

Forest 0.82 0.90 0.86 

Waste land   0.95 0.90 0.92 

 

Table 5. Fine-tuning classification performance 

Classes of LULC Precision Recall  F1-Score 

Built-up 1.00 0.90 0.98 

Agriculture land 1.00 1.00 1.00 

Water Bodies 0.76 0.95 0.83 

Forest 0.87 0.88 0.90 

Waste land   0.94 1.00 0.95 
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5. DISCUSSION   

       6.1 Confusion Matrix  

In this research work, we applied deep learning models for classification of LCLU on satellite images. 

Several measuring metrics have been used to evaluate DL models' performance. Initially, we employed a con-

fusion matrix to assess class performances and overall accuracy of each DL model along with recalls, f1-score, 

and precision. Similar to the F1-score, the confusion matrix measure shows improved class performance in the 

majority of classes. Table 6, Table 7, and Table 8 show the confusion matrix constructed for DL models of 

CNN-FE, transfer learning, and fine-tuning respectively. As seen in Table 6, Table 7, and Table 8 confusion 

matrix takes into account each true labeled class in a row and predicted labeled class in columns. The diagonal 

intersection's probability score indicated which classed classes were correct. On the other hand, it is anticipated 

that the results in the remaining rows and columns will belong to incorrect classes. 

           Table 6, the confusion matrix analysis for the CNN-FE model shows its performance across various 

classes. The expected class is shown by each column, and the true class is represented by each row. For each 

class, the diagonal elements represent correctly classified examples, whereas the off-diagonal elements repre-

sent incorrectly classified occurrences. By examining these values, we can discern the model's strengths and 

weaknesses in classifying different categories. Notably, high values along the diagonal indicate robust classifi-

cation performance, whereas off-diagonal values highlight areas for improvement or potential sources of con-

fusion. Such insights can guide further refinement of the CNN-FE model architecture or dataset preprocessing 

to enhance classification accuracy. 

Table 7, shows the confusion matrix analysis for the transfer learning model and provides a detailed over-

view of its classification performance. Leveraging pre-trained weights from a different task or domain, the 

transfer learning model adapts its knowledge to the target classification problem. Similar to the CNN-FE anal-

ysis, the confusion matrix delineates correct and erroneous classifications across different classes. Discrepancies 

between true and predicted labels are evident in off-diagonal elements. These findings explain the effectiveness 

of transfer learning in leveraging prior knowledge for improved classification while identifying areas where 

fine-tuning may be beneficial to bolster performance further. 

Finally, in Table 8, the confusion matrix analysis for the fine-tuning model provides further insights into 

its classification performance. Fine-tuning involves training a pre-trained model on a new dataset with a small 

learning rate, allowing it to adapt to the details of the target task while retaining the knowledge gained from the 

original training. By examining the distribution of correct and incorrect classifications across classes, we can 

gauge the effectiveness of fine-tuning in improving model performance. This analysis helps in identifying any 
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disparities between predicted and actual class labels, guiding subsequent adjustments to the fine-tuning process 

to enhance classification accuracy and overall model efficiency. 

The performance results of DL models in LULC classification are shown in Table 9. The study's findings 

demonstrate that the proposed DL models were able to adapt and gain improved remote sensing capabilities. 

The CNN-FE that was built from scratch performs substantially less than transfer learning and fine-tuning model 

performances. 

The experiment results demonstrate a progressive enhancement in accuracy among three DL models. Ini-

tially, the CNN-FE achieves a respectable accuracy of 90.41%, indicating the effectiveness of feature extraction 

in refining input data representations. Transfer learning further boosts performance, and provides a notably 

improved accuracy of 92.50%. Finally, fine-tuning provides the highest accuracy of 94.37%, showcasing the 

substantial benefits of fine-tuning to adapt a pre-trained model to a specific task, enabling it to learn task-specific 

patterns effectively. These results emphasize the importance of methodological refinement and model optimi-

zation in achieving superior performance in CNN-based classification tasks. 

 

                              Table 6 Confusion matrix of CNN-FE  
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Table 7 Confusion matrix of transfer learning  

 

 
           Table 8. Confusion matrix of fine-tuning  

 

 

Table 9. DL models performance analysis using various performance matrices on satellite data 

 

DL Models  Performance Metrics Training 

Time (s)  

Testing 

Time (s) Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

Kappa 

value  

CNN-FE 89.00 92.00 89.00 90.41                                                                               0.892 278.5 94.3 

TRANSFER 

LEARNING  

89.20 93.00 90.40 92.50                                                                                         0.916 165.6 51.9 

Fine-tuning  91.40 97.40 93.20 94.37                                                                                  0.968 132.7 35.4 
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The performance of three deep learning models CNN-FE, transfer learning, and fine-tuning is shown in 

Table 9 in terms of precision, recall, f1-score, accuracy, and kappa value. CNN-FE exhibited a commendable 

performance with a precision of 89.00%, recall of 92.00%, F1-score of 89.00%, accuracy of 90.41%, and a 

kappa value of 0.892. These metrics collectively indicate a strong ability of CNN-FE to correctly classify within 

the dataset, balancing both precision and recall effectively. Transitioning to transfer learning, the model exhib-

ited slightly improved performance across most metrics. With a precision of 89.20%, recall of 93.00%, F1-score 

of 90.40%, accuracy of 92.50%, and a kappa value of 0.916%, transfer learning showcased enhanced accuracy 

beyond that of CNN-FE. This transfer learning model used the pre-existing knowledge effectively, refining 

classification capabilities and increasing overall model performance. Finally, fine-tuning outperformed both 

CNN-FE and transfer learning, exhibiting superior precision (91.40%), recall (97.40%), F1-score (93.20%), 

accuracy (94.37%), and a notably high kappa value of 0.968. These results highlight the effectiveness of fine-

tuning in LULC classification, resulting in significantly improved performance across all evaluated metrics. 

The computation training and testing times of three deep learning models CNN-FE, transfer learning, and 

fine-tuning is also shown in Table 9. The CNN-FE demonstrated a training time of 278.5 seconds and a testing 

time of 94.3 seconds. Transfer learning, on the other hand, was more efficient, requiring only 165.6 seconds for 

training and 51.9 seconds for testing. Finally, the fine-tuning approach showed the fastest performance with a 

training time of 132.7 seconds and a testing time of 35.4 seconds. These results highlight the varying computa-

tional demands of each method, with fine-tuning proving to be the most time-efficient. 

6.2. Comparison of State-of-the-art Methods 

The comparative analysis of the proposed CNN-based DL models with existing classifiers demonstrates 

the effectiveness of our approach when applied to the LISS-III dataset. Unlike many previous works that re-

ported results on different datasets such as Sentinel-2, Landsat-8, or other high-resolution imagery, in this study 

we have implemented the models developed by various researchers and evaluated them uniformly on the same 

LISS-III dataset. This ensures a fair and controlled comparison, eliminating biases arising from differences in 

spatial resolution, sensor characteristics, and study regions. 

As shown in Table 10, the three proposed models CNN-FE, TL, and FT consistently outperformed con-

ventional classifiers. Among these, the fine-tuning approach achieved the highest accuracy of 94.37% with a 

Kappa value of 0.968, significantly higher than traditional classifiers such as k-NN (87.28%), Decision Trees 

(83.24%), SVM (86.71%), MLC (85.42%), and RF (88.93%). This demonstrates the superiority of deep learning 

methods in extracting complex spatial–spectral features from medium-resolution imagery. 

When compared with CNN architectures reported in earlier studies (Benyamin Hosseiny et al. 2022, Jing-

tao et al. 2020, and Bryan Sencaki et al. 2023), the proposed fine-tuned CNN showed notable improvements. 
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Jingtao et al. (2020) achieved 92.65% accuracy, while our fine-tuned model reached 94.37% on the same da-

taset. Similarly, the transfer learning model in this work achieved 92.50% accuracy, validating the adaptability 

of pretrained networks to LISS-III data. These comparisons highlight that the proposed models not only gener-

alize well but also enhance performance when benchmarked under identical experimental conditions. 

It is also important to note that while many prior studies reported promising accuracies, their results were 

based on higher-resolution datasets, making direct comparison with medium-resolution LISS-III data scientifi-

cally weak. In contrast, by applying these models directly on our LISS-III dataset, we ensure a methodologically 

correct and reliable comparison. This approach confirms that with proper model adaptation, LISS-III imagery 

can achieve classification accuracies that are on par with, or even surpass, results obtained from higher-resolu-

tion datasets. 

Finally, the consistently higher Kappa values obtained in this study, particularly for the fine-tuned CNN 

(0.968), underline the reliability of our model by reducing the likelihood of chance agreement. This indicates 

not only higher overall accuracy but also stronger class-level agreement, which is crucial for LULC mapping. 

In summary, the results clearly establish that our proposed CNN-based DL models especially the fine-

tuned variant are better suited for LULC classification using LISS-III data than both traditional classifiers and 

existing CNN implementations by other researchers. By conducting controlled, dataset-consistent comparisons, 

this work demonstrates that medium-resolution Indian remote sensing imagery can be effectively utilized for 

high-accuracy land use monitoring when advanced DL techniques are employed. 

 

Table 10. Proposed CNN-based DL model comparison with existing classifiers 
# Proposed 

DL models 

Benyami

n 

Hosseiny 

et al 

(2022) 

García-

Gutiérre

z et al. 

(2010) 

Narima

ne 

Zaabar 

et al. 

(2022) 

Milap 

Punia 

et al. 

(2011) 

Jingta

o et al. 

(2020)

, 

Bryan  

Sencaki 

et al. 

(2023) 

Zerrouki 

N et 

al.(2019) 

Mandla 

Dlamini 

et al. 

(2021)   

GN 

Vivek

anand

a et al. 

(2021) 

Chait

anya 

(2022) 

Classifier CNN-

FE 

TF  Fine-

tunning  

CNN k-NN CNN DT CNN CNN WRF SVM MLC RF 

Accuracy(

%)  

90.41 92.5

0 

94.37 92.74 87.28 92.65 83.24 91.24 90.62 86.15 86.71 85.42 88.93 

Kappa 

Value 

0.892 0.91

6 

0.968 0.901 0.845 0.912 0.824 0.904 0.894 0.874 0.846 0.832 0.861 

 

6. CONCLUSIONS 

This research paper presented deep learning models to enhance the accuracy of LULC classification. CNN-

FE model was designed and trained from scratch, transfer learning and fine-tuning models were trained from 

the pre-existing model. The deep learning model's performance was examined in terms of various performance 

metrics such as precision, recall, F1-score, accuracy, and kappa value. The experiment results show that fine-

tuning exhibited the highest performance across all metrics, with precision, recall, F1-score, and accuracy reach-
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ing impressive values of 91.40%, 97.40%, 93.20%, and 94.37% respectively. Transfer learning also demon-

strated notable performance, closely following fine-tuning with precision, recall, F1-score, and accuracy of 

89.20%, 93.00%, 90.40%, and 92.50% respectively. CNN-FE, while slightly lagging behind transfer learning 

and fine-tuning, still showcased acceptable results with precision, recall, F1-score, and accuracy at 89.00%, 

92.00%, 89.00%, and 90.41% respectively. These findings have practical implications for various applications, 

including urban planning, environmental monitoring, and natural resource management, where precise LULC 

classification is imperative for informed decision-making and sustainable development. 
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