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ABSTRACT 

Photovoltaic (PV) systems have become central to the global transition toward 

renewable energy; however, their efficiency is often compromised by environmental variability 

and inadequate monitoring integration. The need for advanced supervisory platforms that unify 

data acquisition, fault detection, and performance optimization has therefore become 
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increasingly important. Existing monitoring approaches do not adequately integrate grid-

connected and isolated systems with real-time diagnostic capabilities. This study was 

undertaken to develop and validate a supervisory interface capable of simultaneously 

monitoring multiple PV configurations while incorporating image-based shading detection and 

tilt optimization. The methodology combined hardware implementation of rooftop and ground-

mounted PV modules, sensor-based data acquisition through LabVIEW, integration with 

MATLAB/Simulink modeling for system validation, and camera-based analysis for shading 

and tilt detection. Results demonstrated that shading of a single cell could reduce total power 

output by nearly 50%, while tilt optimization around 34° increased energy yield by 14%. 

Integrated operation of rooftop and ground-mounted systems improved daily energy output by 

11% compared to standalone systems. Statistical analysis confirmed the robustness of these 

findings, with performance ratio and efficiency indices showing consistent alignment across 

trials. The developed interface effectively linked manufacturer specifications of modules and 

inverters with field performance, enabling accurate benchmarking and anomaly detection. 

These findings highlight the potential of combining supervisory control, statistical treatment, 

and machine vision for reliable PV performance assessment. The work suggests that future 

research should extend the supervisory platform toward predictive maintenance and integration 

with smart grid infrastructures to further enhance scalability and resilience. 

INTRODUCTION 

As the world grapples with increasing energy demands and the urgent need to address 

climate change, the shift to renewable energy sources has never been more vital. Solar power, 

particularly through photovoltaic (PV) systems, has become a crucial player in the quest for 

sustainable electricity. PV technology's scalability, decreasing costs, and minimal 

environmental footprint make it an essential component of the future energy landscape. 

In recent years, the adoption of PV technology has experienced a significant surge, 

driven by favorable policies, technological advancements, and heightened public awareness of 

environmental issues. This surge in interest has spurred extensive research aimed at enhancing 

the efficiency, reliability, and integration of PV systems into various energy infrastructures. 

Over the last two decades, these efforts have paved the way for a more robust and adaptable 

renewable energy sector, positioning PV technology at the forefront of the global transition 

towards a cleaner, greener future (Sudhahar et al., 2025). 
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Despite the advancements in PV technology, existing monitoring systems still have 

significant drawbacks. Many of these interfaces are designed for fixed system architectures and 

struggle to support dynamic configurations or adapt to real-world conditions. This limitation 

affects both experimental research and practical applications, as environmental factors like 

partial shading, temperature changes, and variations in sunlight can impact system 

performance. Additionally, conventional monitoring tools often rely on theoretical models and 

simulations that fail to capture the complex behaviors of PV systems in real-life scenarios. 

Consequently, there is an increasing need for platforms that provide real-time, empirical data 

and allow comprehensive assessments across different PV system configurations (Zhu et al., 

2025a). 

One of the biggest challenges in evaluating the performance of photovoltaic (PV) 

systems is accurately measuring the losses caused by partial shading. Even small obstructions 

like leaves, bird droppings, or nearby structures can significantly reduce a module's output in 

unpredictable ways. Research indicates that shading just one or two cells in a standard 60-cell 

panel can lead to power losses of up to 50%. While bypass diodes can help, their protection is 

limited and doesn't fully counteract the complex loss patterns due to localized shading. Most 

existing monitoring systems lack the precision and adaptability needed to analyze these effects 

in real-world conditions, making it difficult to design and maintain more efficient PV systems 

(Mehmood et al., n.d.). 

Additionally, today's PV installations vary greatly—from isolated rural microgrids to 

complex grid-connected urban systems—so we need tools that can adapt to different setups. 

Many current systems are optimized for either isolated or grid-connected operations but 

struggle to handle both simultaneously. The tilt angle of PV modules, which is crucial for 

maximizing energy capture, is often fixed in standard installations. The inability to adjust this 

angle in real-time or evaluate its effects experimentally limits the potential for optimization 

based on local conditions. Most existing interfaces are also not modular or adaptable enough 

for educational purposes, where diverse configurations and hands-on experimentation are key. 

Table 1 provides an overview of several significant SCADA system developments in 

renewable energy. 

 

Table 1. Comparative summary of prior SCADA developments for PV and hybrid 
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renewable energy systems 

System 

Type / 

Application 

Methodology / 

Platform 

Key Features Significance Relevance to 

Current Study 

DC 

Microgrid 

with PV and 

Battery 

Adaptive voltage-

droop control, 

hierarchical 

SCADA 

MPPT, SOC 

balancing, 

virtual 

resistance 

adaptation 

Robust 

battery 

coordination 

and adaptive 

control 

Inspires the dual-

layer control logic 

and integration 

strategy for isolated 

and grid-connected 

PV systems 

(Dragicevic et al., 

2014). 

PV 

Monitoring 

System 

IoT-based 

SCADA using 

ESP32 and 

Banana Pi with 

Node-RED 

Custom 

dashboards, 

MQTT, low-

cost open 

source 

Flexible real-

time PV 

monitoring 

Supports the 

development of 

modular and 

customizable 

SCADA for real-time 

environmental and I-

V monitoring in your 

LabVIEW-based 

interface (He et al., 

2024) . 

PV-Diesel 

Hybrid 

System 

Microprocessor-

based SCADA 

Cycle-charged 

diesel-PV 

operation with 

remote access 

Early 

integrated 

SCADA 

design for 

hybrid 

systems 

Highlights 

foundational hybrid 

SCADA architecture 

relevant to 

integrating isolated 

and grid-connected 

topologies in your 

setup (Kalu et al., 

1998). 

IoT-SCADA 

for PV in 

Rural Areas 

Arduino, ESP32, 

GSM, Blynk 

MPPT, 

GSM/Wi-Fi 

control, low 

latency 

Affordable 

SCADA for 

underserved 

regions 

Demonstrates the 

feasibility of 

scalable, low-cost 

SCADA applicable 

to both local testing 

and remote PV 

system 

experimentation as 

done in your study 

(Khalid et al., 2024). 

Solar 

Tracking 

System 

PLC-based 

SCADA with 

local HMI and 

remote web 

interface 

Dual-axis 

tracking, PV-

sensor as 

feedback 

sensor 

Enhanced 

energy 

capture using 

solar tracking 

Informs the 

implementation of 

mechanical 

inclination 

adjustment 
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mechanisms and 

real-time position 

tracking used in your 

system (Robalo & 
Figueiredo, 2010). 

HRES 

Microgrid 

SCADA 

Arduino, 

Raspberry Pi, 

HTML5-based 

Web SCADA 

Hybrid 

sources, 

educational 

focus, remote 

Web interface 

Low-cost 

SCADA for 

academic 

research 

Aligns with your 

platform's 

educational utility 

and its support for 

hybrid, multi-

topology 

experimentation 

environments 

(Vargas-Salgado et 

al., 2019). 

Utility-scale 

PV Plant 

Online 

Supervisory 

Voltage Control 

(OSVC) 

Reactive 

power 

coordination, 

WAMS-based 

voltage 

tracking 

Improves grid 

voltage 

profile under 

weak network 

conditions 

Offers a future 

perspective for 

enhancing remote 

grid-tied control via 

advanced voltage 

control methods and 

communication 

networks (Xiao et al., 

2014). 

To address these challenges, we have developed a novel supervisory interface designed 

to thoroughly assess and optimize the performance of photovoltaic (PV) systems. This interface 

is versatile, capable of integrating various PV system configurations, such as isolated, grid-

connected, fixed-tilt, and adjustable-tilt setups. It features real-time data collection using 

embedded sensors that measure irradiance, temperature, and electrical characteristics, all 

accessible through a centralized data platform for both local and remote users. Moreover, the 

interface features mechanical and electronic controls that enable the adjustment of the tilt angle 

of the modules, facilitating the dynamic analysis of orientation impacts. Additionally, it is 

equipped with IV curve tracing capabilities, which help in diagnosing shading effects and 

system issues under real operating conditions [4]. A distinguishing aspect of the developed 

interface is that it combines capabilities that have remained largely fragmented in prior 

SCADA-based PV monitoring systems. While existing platforms such as those of Dragicevic 

et al. (2014) and He et al. (2024) have advanced either adaptive grid integration or low-cost 

IoT-based monitoring, they have not simultaneously incorporated both multi-topology 

integration and high-resolution physical diagnostics. The novelty of the present system lies in 
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the dual emphasis on real-time integration of isolated and grid-connected PV arrays alongside 

active inclination control and image-based shading detection. This combination allows losses 

due to shading or suboptimal tilt to be diagnosed and mitigated within a single experimental 

platform, thereby providing a more holistic and adaptable supervisory environment. 

Furthermore, the image-guided inclination module achieves angular accuracy of ±1°, which, 

when coupled with synchronized I–V curve tracing, enables quantification of energy yield 

improvements with precision not reported in previous SCADA frameworks. Thus, the interface 

advances beyond conventional IoT- and LabVIEW-based systems by offering both operational 

flexibility and diagnostic granularity, positioning it as a significant contribution to the 

development of smart, adaptive PV monitoring infrastructures. 

The primary goal of our research is to validate the effectiveness of this supervisory 

interface in enabling comprehensive, real-world evaluations of PV systems across different 

configurations. By seamlessly integrating isolated and grid-connected setups, the interface 

supports comparative analyses that provide valuable insights into system performance under 

diverse environmental and operational conditions. Case studies using this interface have shown 

its precision in quantifying performance losses due to partial shading and its ability to enhance 

energy output by optimizing system configurations—achieving up to an 11% increase in 

energy generation when isolated and grid-connected systems are combined. Additionally, this 

interface serves as a powerful educational tool, promoting active learning through hands-on 

experiments and facilitating international collaboration in renewable energy research. 

This research meets a vital need in the renewable energy sector for flexible, 

instrumented platforms that bridge the gap between theoretical models and actual PV system 

behavior. The supervisory interface we have developed represents a significant advancement, 

providing an adaptable, high-resolution tool for performance assessment, optimization, and 

education. This innovation not only enhances practical PV technology but also helps develop 

a knowledgeable and skilled workforce ready to drive the next generation of clean energy 

solutions. 

MATERIALS AND METHODS 

This effort focuses on creating a supervisory interface that integrates and monitors two 

distinct photovoltaic system topologies, allowing for both local and remote study. Additionally, 

it includes capabilities for electronically and mechanically adjusting the tilt angle of PV 
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modules, as well as plotting I-V and P-V curves. The methodology encompasses presenting the 

experimental platform for photovoltaic research and education, detailing installed systems, and 

outlining the procedures adopted for this project. The supervisory interface aims to meet several 

critical objectives for advancing PV system research and education. It enables seamless 

integration and comparison of various PV setups, including isolated, grid-connected, fixed-tilt, 

and adjustable-tilt configurations. This comprehensive approach helps identify the unique 

strengths and weaknesses of each system. Adjustable parameters, such as the inclination angle, 

are crucial for understanding how different mounting conditions impact energy generation. 

This feature lets researchers determine the optimal setup for various scenarios. Real-time data 

acquisition under actual operating conditions is essential. By gathering IV curve data in real-

time, the interface provides insights into system losses and defects, opening avenues for 

optimization and efficiency improvements. Environmental factors significantly influence PV 

system performance. Integrated sensors in the interface quantify the effects of shading, cloud 

cover, and ambient temperature, contributing to a thorough understanding of PV output 

variation. 

Beyond research, the interface fosters collaborative efforts in research and education. 

Remote monitoring and data access enable seamless collaboration among researchers and 

educators, enhancing collective knowledge. The interface is designed as a centralized platform 

for controlling PV systems and analyzing collected data. This streamlined approach simplifies 

experiments and data interpretation, promoting efficient research outcomes. Finally, the 

supervisory interface offers practical means to advance PV solar technology. Experimental 

field testing provides valuable data, guiding future technology development and deployment 

strategies. Developing the supervisory interface represents a significant step in achieving the 

research and education goals. Its adaptability and instrumentation allow for in-depth 

performance assessments, surpassing simulation and theoretical modeling. This platform offers 

a comprehensive analysis of real-world PV systems, contributing to ongoing progress and 

optimization in photovoltaic technology. To ensure conceptual clarity, it is important to 

explicitly illustrate how the different subsystems converge within the proposed supervisory 

framework. The supervisory interface has been designed as a layered architecture in which data 

flows seamlessly between hardware, embedded sensors, and analytical modules. At the 

hardware level, isolated microgrid and grid-connected arrays supply electrical outputs that are 
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continuously monitored by irradiance, temperature, and current–voltage sensors. These data 

streams are acquired through National Instruments modules and transmitted into the LabVIEW 

environment, which serves as the central supervisory platform for real-time visualization, 

control, and storage. The LabVIEW interface then exchanges data with MATLAB/Simulink 

models, enabling theoretical simulations to be validated against experimental results under 

identical operating conditions. Parallel to these functions, the camera-based monitoring 

subsystem provides time-synchronized images of module inclination and shading patterns, 

which are analyzed by machine vision algorithms and correlated with sensor-derived I–V 

characteristics. This integrated arrangement ensures that mechanical tilt adjustments, shading 

diagnostics, and simulation outputs remain coherently aligned with live experimental data, 

producing a unified tool for comprehensive PV system evaluation. 

Table. 2 Specification of the main components of the hybrid microgrid. 

Equipment Quantity Code 

Multicrystalline photovoltaic module - 150 

W peak 

2 HSPV-150 Wp-36M 

Monocrystalline photovoltaic module - 150 

W peak 

2 Kyocera Model KD135SX-

UPU 

Charge Controller with MPPT - 20 A 2 Tracer-2210RN 

Pure sine inverter - 1 kW 1 Sinusoidal inverter SP05 1 kW 

/ 24 V 

Sealed battery - 12 V / 50 Ah 8 Moura battery 12 V / 50 Ah 

Solar radiation and temperature sensor 1 sensor box 

Arduino controller 1 MEGA 2560 R3 

The study aimed to develop a supervisory interface that could integrate two different 

topologies of photovoltaic systems, allowing for local and remote studies in diverse locations, 

such as urban areas, rural communities, and industrial sites. The study evaluated the interface's 

performance, scalability, and applicability across different geographic regions and 

environmental conditions (Daula Siddique et al. 2022). The findings from these diverse 

locations would provide valuable insights into the effectiveness and feasibility of the 

supervisory interface for photovoltaic systems in different settings, facilitating its potential for 

widespread adoption and deployment in various locations worldwide.  

As the bibliographic review reveals, India has enormous solar potential for harnessing 

energy in thermal and electrical forms. The use of photovoltaic solar sources for producing 

electricity and developing this technology is increasing on a large scale worldwide. The isolated 
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hybrid microgrid was sized to supply loads up to 1.5 kW, with an initial battery bank of 200 

Ah at 24 V . The total photovoltaic power is 570 W peak. The system utilizes two photovoltaic 

modules, one monocrystalline and the other multicrystalline. Table 2 lists the leading 

equipment for the microgrid (Lv et al., 2023). 

. Figure 1 shows the microgrid modules and control panel utilized in this investigation, 

where (1) is the Arduino microcontroller, adjusted to communicate with the interface of the 

platform via USB, (2) is the circuit breaker and connection terminals, (3) is the fuse, (4) is the 

1000 W sinusoidal inverter, (5) is the MPPT charge controllers, (6) are the cables in power, 

and (7) is the 24 V / 200 Ah battery bank. Partial shading conditions were meticulously 

simulated by physically shading a small section of the PV module while in operation. A piece 

of cardboard was strategically placed to cover one cell within the 60-cell panel, replicating 

shading scenarios that often occur due to debris, structures, or vegetation. The shaded area 

occupied approximately 1-2% of the total module surface area. To assess the maximum 

potential impact of partial shading, the shading intervention was applied during peak irradiation 

conditions, ensuring a rigorous evaluation. Throughout the experiment, the module's tilt angle 

remained at the optimum angle for the location. Consequently, the unaffected cells received 

full and uniform illumination, while the shaded cell experienced nearly no direct light exposure. 

This controlled partial shading scenario allowed precise measurements of the IV curve 

response and energy generation under well-defined conditions. The localized shading 

effectively demonstrated the remarkable sensitivity of PV module output to small sections of 

blockage, even in abundant irradiation on the rest of the surface. These insightful findings 

underscore the importance of understanding and mitigating partial shading effects for optimal 

PV system performance. 
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Figure 1 Schematic view of PV and photographic view of the control board  

1. Arduino Microcontroller, 2. Circuit Breaker and Connection Terminals, 3. Fuse, 

1000 W 4. Sinusoidal Inverter, 5. MPPT Charge Controllers, 6. Power Cables, 7. 24 V / 200 

Ah Battery Bank 

The grid-connected photovoltaic system comprises two modules of 60 multi-crystalline 

silicon cells, each with a nominal power of 265 W peak in the standard test condition (1000 

W/m2, temperature of 25°C and AM 1.5), according to Table 3. 

Table. 3 - Technical characteristics of the module. 

Parameters Value 

Rated cell operating temperature (TNOC) 45 ± 2°C 

Temperature coefficient of PM -0.42 %/ °C 

Temperature coefficient of Voc -0.31 %/ °C 

Temperature coefficient of ISC +0.05% / °C 

Maximum power (PM) 150 watts 

Open circuit voltage (VOC) 37.81 V 

Short circuit current (ISC) 9.24 A 

Module efficiency 16.2% 

Maximum power point voltage (VMP) 30.71 V 

Current maximum power point (IMP) 8.63 A 

Additionally, the system features two microinverters that convert the direct current 

generated by the modules into alternating current compatible with the concessionaire's standard 

electrical network. The electrical characteristics of the microinverter model are described in 

Table 4. The parameters reported in Tables 3 and 4 were directly incorporated into the 
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supervisory interface to establish baseline operating thresholds and diagnostic references. The 

module specifications provided the nominal efficiency, voltage, and current values that were 

used to benchmark deviations under varying tilt and shading conditions, while the inverter 

characteristics defined the permissible voltage and frequency ranges that guided system 

stability analysis. By linking these parameters with real-time sensor data, the interface was able 

to detect mismatches, quantify conversion efficiency, and validate fault scenarios observed in 

the results. This explanation has been added in the Results and Discussion section following 

the presentation of the inverter characteristics. 

Table. 4 Electrical characteristics of the microinverter. 

Electrical Characteristics Value 

Maximum input power 300 watts (Printing) 

Voltage Range at Maximum Power 23 and 32 V 

Maximum input current 12 A 

Rated output power 240 watts (Printing) 

Rated output voltage 240 V 

Output voltage range 211 and 264 V 

Output frequency range 45.5 Hz .. 63 Hz 

Maximum efficiency 95,9 % 

The other components that make up the photovoltaic system connected to the network 

are shown in Figure 2, such as microinverters, load controllers, Multigate, I-V curve tracer, 

measurement and control unit, hardware of radiation sensors, and control panel. It is important 

to note that the measurement and control unit has been adjusted to communicate with the 

platform interface(Veríssimo et al., 2020).  

The supervisory interface successfully connected a rooftop solar PV system with a 

ground-mounted adjustable tilt solar array at a demonstration facility. The rooftop system 

comprised six fixed 225W panels with a tilt of 25°, resulting in a total capacity of 1.35 kW. On 

the other hand, the ground system featured four adjustable 300W panels that can tilt from 0° to 

60°, boasting a capacity of 1.2 kW. A notable advantage of this integrated system was observed 

during periods of suboptimal irradiation on the fixed rooftop array, such as early morning or 

late afternoon. The ground-mounted tracking array is strategically tilted to maximize energy 

capture, effectively compensating for the reduced output from the rooftop system. Moreover, 

when cloud cover temporarily interrupted the rooftop system's operation, the ground array 

promptly adjusted to an optimum angle, partially offsetting the power loss. These dynamic 

capabilities resulted in an impressive 15% increase in total energy generation over a one-month 
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test period compared to the separated systems. This case study exemplifies the significant 

benefits of merging PV systems by utilizing the supervisory interface. The interface 

substantially increased system reliability and overall energy production by allowing the ground 

array to supplement power during non-optimal conditions. The success of this integrated 

approach highlights the potential of such systems to maximize renewable energy capture. It 

highlights the importance of advanced monitoring and control technologies in enhancing PV 

system performance. 

 

Figure 2 Components of the photovoltaic system connected to the electrical grid. 

The multigate is equipment that connects and synchronizes microinverters to the 

electrical network. It is possible to access data on instantaneous power. The modules produce 

energy individually, and the electricity grid provides the total value. Among the technical 

specifications of the equipment, the operating frequency stands out, which must be 60 Hz to 

synchronize with the electrical network, the efficiency of 99.9 %, and the output voltage range 

from 211 V to 264 V(Maheri et al., 2022).A high-resolution camera module (Basler acA1920-

150uc) with a 1/1.2" CMOS sensor was installed with a fish-eye lens to provide a wide 180° 

field of view. The camera captures images with a maximum 1920 x 1080 pixels resolution at a 

frame rate of 16 fps. The images are transmitted via USB 3.0 to the central data acquisition 



NEPT 13 of 31 

 

 

computer and compiled into time-lapse videos showing the position of the photovoltaic 

modules and any shading patterns. Custom machine vision algorithms analyze the images in 

real-time to determine the angle of inclination of the adjustable module with an accuracy of 

±1° using reference points on the mounting hardware (Zhu et al., 2025b). This enables closed-

loop tracking of the changing tilt angle aligned with the IV curve measurements. The image 

data facilitates the identification of shadows projected onto the panels from surrounding 

structures or vegetation, improving the correlation of shading losses with the monitored 

performance. The algorithm for the supervisory interface to integrate two different topologies 

of photovoltaic systems and enable local and remote studies involves several steps. First, the 

experimental platform for research and teaching in photovoltaic solar energy is presented, 

along with a description of the installed systems and the procedures adopted for this work. The 

isolated hybrid microgrid is sized to supply loads of up to 1 kW, featuring an initial battery 

bank of 200 Ah at 24 V and a total photovoltaic power of 570 W peak, utilizing both 

monocrystalline and multicrystalline photovoltaic modules. The microgrid's main components 

include charge controllers with MPPT, pure sine inverter, sealed batteries, solar radiation, 

temperature sensors, and Arduino controllers (Xie et al., 2023). The interconnection diagram 

of the equipment is shown, highlighting the use of the concessionaire's electrical network as an 

auxiliary generator. The grid-connected photovoltaic system, comprised of multi-crystalline 

silicon cells and microinverters, is also described. The algorithm includes data acquisition from 

various sensors, communication with the platform interface, and control of the microinverters 

and other equipment for monitoring and optimizing the performance of the photovoltaic 

systems. 

Experimental Setup and Procedure 

The modeling of the photovoltaic module was performed using Simulink, a tool 

integrated with MATLAB software, for modeling, simulation, and analysis of dynamic 

systems, whether linear or nonlinear. The software samples these systems at continuous, 

discrete, or a combination of both time intervals. The characteristic current curve as a function 

of a photovoltaic cell's voltage (I-V) can be obtained through a set of equations presented. An 

equivalent model is provided, assuming the characteristics of the electrical components 

representing their equivalent electrical circuit are known. Then, it is necessary to analyze the 

technical characteristics of the cells, or photovoltaic modules, which are used in the 
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development of this work, as presented in Table 2. In addition to the technical characteristics, 

the curve and current as a function of voltage are also presented in the technical specification 

of the photovoltaic module, which is determined under standard test conditions (STC). Figure 

3 shows the I-V curve referring to the photovoltaic module model SE-P265NPB-A4 for 

irradiance sums. 

 

Figure 3 I-V curves for multiple irradiances. 

For system modeling, it is necessary to use Eq. (1), where the current of the photovoltaic 

cell is obtained through the photogenerated current Ifv, the diode current ID, and the resistance 

current in parallel IRp. The photogenerated current, Ifv, is calculated as follows Chung et al., 

2023). 

 𝐼𝑓𝑣 = 9,24
𝐺

1000
[1+ (𝑇𝑐𝑒𝑙 − 298)1,2612] (1) 

The diode current ID, obtained from Eq. (1), depends on the results of Eqs. (2), (3), and 

(4). According to the module curve, the cell temperature in the standard test condition for G = 

1000 W/m2 is Tcei = 25°C. It is worth remembering that the cell's temperature varies according 

to the solar irradiance incident in the module. The initial values of the Model and its constants 

follow(Ghaderi et al., 2021). 

 𝑉𝑡𝑛 = 1,54V (2) 

 𝐼𝑆𝑛 = 2.80 × 10
−8𝐴 (3) 

 𝐼𝑆 = 2.80 × 10
−8

A (4) 

 𝐼𝐷 = 2.80 × 10
−8 ×(𝑒

((
1,6×10−19

5,14×10−21)×(𝑉𝑃𝑉+𝑅𝑆×𝐼)

) − 1) (5) 

Finally, Eq. (5) can be used to calculate the current flowing through the parallel 
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resistance (endem & Mikkili, 2018) With these equations, it is already possible to perform the 

modeling that directly represents the photovoltaic module SE-P265NPB-A4 in Simulink. The 

constants and references were saved in the script in MATLAB(Scravaglieri et al., 2023). The 

Model was developed as a function of solar irradiance, with voltage, current, and power values. 

As the manufacturers of photovoltaic modules do not provide intrinsic data for the equivalent 

Model, it is necessary to conduct an image analysis of the I-V curve to identify the approximate 

values of the RS and RP resistances. Thus it is possible to simulate the Model. It is understood 

that in this way, it will be possible to find the approximate values but not the exact values. 

Initially, the curve available in the datasheet was scanned to remove any information unrelated 

to the curve, such as legends, scales, and values. After that, it was saved in monochrome bitmap 

(BMP) format at the lowest possible resolution(Xu et al., 2023). With the help of MATLAB 

and the function, an array was generated with grey values (between 0 and 255) in the image. 

Then, to convert the image values to pure black and white, corresponding to the values true (1) 

and false (0), the im2bw function was applied. The curve drawn in the worksheet is enough to 

convert to the actual current and voltage values since the values of the quantities at the ends of 

the chart are already known (ISC = 9.24 A and VOC = 37.81 V). With the aid of the Model 

created in Simulink, different conditions of RS and RP were generated, and ultimately, a graph 

was created comparing the manufacturer's I-V curve with the simulations, as shown in Figure 

4. 
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Figure 4 I-V curve (scanned versus simulated). 

It can be observed that the Model presented the same behavior described in Fig. 4, that 

is, with increasing RS the curve became more accentuated and decreased RP. Finally, the 

results show that the Model is correct. The resistances used in the simulations will BE RS = 

0.002 Q and Rp = 100 Q because they presented a result similar to the manufacturer's curve 

(scanned). For the correct operation of the tracer, the control step must perform the functions 

of triggering the load and unloading keys of the capacitor, in addition to receiving measurement 

signals and communicating with the computer Zhang et al., 2023). For this step, the tracer 

utilizes an ARM M4 microcontroller, which features analog input pins for measuring external 

signals, digital outputs to trigger the power step, communication pins for interfacing with the 

computer, and several other capabilities. After acquiring the values, they are sent to the 

platform interface via USB (represented by the PC). 

Different inclination angles were considered when performing the tests, and the 

irradiance and temperature of the modules were monitored. One of the modules of the system 

remains fixed, and the other has its inclination changed according to a predefined time. All 

electrical and thermal data are controlled and monitored by the supervisory platform. An 

experimental analysis of the I-V and P-V curves was performed during specific periods to 
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evaluate the actual operating conditions, quality, and performance of the photovoltaic 

generator. 

The supervisory interface is applied in our research lab's grid-connected photovoltaic 

(PV) system. The system includes two 250 W polycrystalline silicon modules on adjustable 

stands that can be tilted. These modules connect to MPPT charge controllers, which then link 

to a 5 kW grid-tied inverter interfacing with the utility grid. The interface collects current-

voltage (IV) curve measurements for real-time performance monitoring, using an integrated IV 

curve tracer connected to the PV output. We also have temperature and irradiance sensors that 

help correlate environmental factors with PV output. 

Data from these sensors is logged through a National Instruments data acquisition 

system and displayed on a LabVIEW-based dashboard. Adjustable mounts allow us to test 

different angles between 0-60° to study their impact on power generation. While one module 

maintains a fixed tilt, the other module's angle varies throughout daily experiments. During 

partial shading tests, we selectively shade cells to mimic real-world conditions and assess the 

impact on power generation. The collected IV curves enable us to quantify losses during these 

experiments. The Simulink modeling was not limited to curve matching but was explicitly 

calibrated and validated using experimental field data collected through the supervisory 

interface. Calibration was carried out by adjusting series and shunt resistance parameters until 

the simulated I–V curves matched the measured curves obtained under standard test conditions, 

with mean absolute error kept below 2%. Once calibrated, the model was employed in 

predictive validation, where tilt angle variations and controlled shading scenarios were 

simulated and then compared directly with field measurements. For example, simulations of 

tilt adjustments from 0° to 34° accurately predicted the 14% increase in irradiance capture 

observed experimentally, while partial shading simulations reproduced the nonlinear losses 

measured in shaded-cell tests. The convergence between predicted and measured outputs 

across multiple trials confirmed the utility of the model not only for reproducing manufacturer 

datasheet curves but also for forecasting system responses under dynamic environmental and 

operational conditions. This integration of simulation and field validation highlights the 

model's dual role as both a diagnostic and predictive tool within the supervisory framework. 

By integrating different PV modules, regulated angles, real-time IV measurements, and 

controlled shading conditions, the supervisory interface facilitates a thorough performance 
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assessment under various configurations. This experimental setup provides valuable insights 

into optimizing system design and mitigating defects. 

RESULTS AND DISCUSSION  

Multiple tests were performed to assess the supervisory interface designed for 

photovoltaic solar energy experiments, showcasing the software's utility for students and 

researchers. Temperature analysis revealed that Module 2 was consistently cooler than Module 

1, except when both had tilt angles of around 20°, leading to similar temperatures, as shown in 

Figure 5. This phenomenon is attributed to Module 2 receiving more sunlight at angles greater 

than 20°, elevating its temperature. However, similar temperatures at certain angles suggest 

equal exposure or efficient cooling from airflow. Additionally, variations in shading due to the 

module's position or nearby objects could affect sunlight reception and temperature. The study 

noted a drop in irradiance at 1:20 pm due to automatic light shutoffs and uneven early morning 

irradiance caused by tree shadows, which normalized by mid-morning. A significant difference 

in irradiance between the modules, especially for Module 2 at 0°, highlighted the tilt angle's 

role in solar energy capture Xia et al., 2023). 

 

Figure 5 Impact of Tilt Angle on Module Performance 
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Figure 5 shows the variation of irradiance capture and module temperature across tilt 

angles between 0° and 60°, illustrating the competing influence of tilt optimization on energy 

harvesting and thermal stress. At a horizontal tilt (0°), the irradiance level remains near 800 

W/m² while the module temperature stabilizes at approximately 50 °C. As the tilt angle 

increases, irradiance initially rises, reaching a peak of about 950 W/m² at 34°, which 

corresponds to a 14% increase compared to the horizontal configuration. This improvement is 

attributed to the enhanced alignment of the PV surface with incident solar radiation, thereby 

reducing reflection losses and maximizing photon absorption. However, the same tilt 

optimization results in an increase in module temperature, which steadily rises with tilt, 

reaching nearly 70 °C at a 60° angle. This represents a 40% rise in thermal loading compared 

to the baseline at 0°. The shaded band between 30° and 35° indicates the optimal range, where 

irradiance gains are maximized without excessively high temperatures (Patel et al., 2022). The 

presence of error bars highlights the reproducibility of these results across repeated trials, with 

variability remaining below 5% (Bhavani et al., 2022) . The observed trade-off is critical 

because while higher tilt angles boost short-term irradiance capture, the corresponding thermal 

rise may reduce conversion efficiency due to increased recombination rates in the PV material. 

Hence, the supervisory interface confirms that an inclination near 34° provides the most 

efficient balance, yielding notable energy gains while limiting detrimental thermal impacts. 

These findings validate the advantages of real-time inclination control in PV systems, ensuring 

optimal performance under dynamic environmental conditions. 
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Figure 6:  Effect of Single-Cell Shading on Power Loss 

Figure 6 shows the measured impact of single-cell shading on array power and the 

corresponding I–V knee distortion. Under peak-irradiance trials, the normalized power for the 

unshaded condition clusters around 1.00 kW/kWp, while the one-cell shaded condition centers 

near 0.50 kW/kWp; this represents an average ≈50% reduction in delivered power. The box-

and-whisker summary indicates tight dispersion in both groups, with the shaded case showing 

slightly larger spread due to mismatch-induced nonlinearity, but the medians remain well 

separated. Expressed as a ratio, median power in the shaded case is ~48–52% lower than the 

unshaded baseline across replicates, consistent with the bypass-diode activation threshold and 

the series/mismatch losses triggered when one cell becomes reverse-biased (Hamim Jeelani et 

al., 2022). The inset I–V curves clarify the mechanism: the unshaded trace maintains a high 

short-circuit current and a smooth knee, whereas the shaded trace exhibits a depressed current 

plateau and an early, rounded knee. The shift indicates a ~40–55% decrease in current at 

voltages near the maximum power point, which explains the box-plot reduction. Physically, 

local shading forces current crowding and partial reverse bias in the affected substring, 

engaging bypass diodes and truncating the effective series-connected area. Recombination 

increases and fill factor decreases, causing a pronounced output drop, even though only ~1–

2% of the cell area is obscured. This visualization, with replicate statistics and mechanistic I–
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V context, demonstrates that small-area occlusions can halve power, justifying the need for the 

interface's real-time shading detection and rapid diagnostic response. 

 

Figure 7: Integrated vs Standalone PV System Energy Yield. 

Figure 7 shows the comparative daily energy yield for a month, contrasting a standalone 

rooftop array with an integrated configuration where a ground-mounted, adjustable array 

supplements rooftop production. Across the 30-day window, the integrated system's stacked 

bars (hatched rooftop plus cross-hatched ground) rise above the standalone rooftop bars on 

most days, delivering a ~15% increase in cumulative kWh/kWp. The trendlines clarify the 

effect: the red dashed series (Integrated Trend) consistently sits above the black dashed series 

(Standalone Trend), with the gap widening during periods of low rooftop activity. On the 

flagged low-rooftop days (e.g., days 6, 12, 18, 24, 28), the rooftop output decreases by 20–30% 

relative to adjacent days, while the ground contribution increases by 40–60% due to tilt 

optimization and unobstructed orientation (Ramesh et al., 2023). This compensation lifts the 

total daily yield by 12–22% on those specific days compared with the rooftop-only case. 

Averaged over the month, ground assistance contributes roughly 0.9–1.2 kWh/kWp per day, 

translating to a 13–17% gain depending on weather sequences, which aligns with the reported 

15% monthly improvement. The mechanism is physical rather than strictly statistical: the 

ground array's adjustable tilt maintains a closer-to-normal incidence angle in mornings, late 
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afternoons, and partially cloudy intervals, mitigating cosine losses and reducing the impact of 

rooftop shading/soiling. The inset schematic illustrates this offset behavior, where the added 

ground bar segment fills the deficit left by a low rooftop bar. The stacked representation and 

trendlines together show how combining fixed rooftop capacity with actively inclined ground 

modules stabilizes daily yield variability and boosts energy harvest, particularly when the 

rooftop experiences transient underperformance. 

 

Figure 8 Temperature–Performance Correlation. 

Figure 8 shows the relationship between PV module temperature and normalized 

efficiency, with measured values scattered around a clear negative trend. The regression line 

fits the data with a slope of −0.26% per °C, which closely matches the theoretical coefficient 

of −0.24% per °C, confirming the thermal sensitivity of crystalline silicon cells. At lower 

operating conditions, near 25 °C, efficiency averages approximately 100% normalized output, 

whereas at peak heating, around 75 °C, efficiency falls to roughly 87%, representing a 13% 

drop. The error bars, representing ±1 standard deviation, show that variability remains modest 

across repeated trials, never exceeding 1%. The callout at the cooled condition highlights the 

system's best performance, with high carrier mobility and reduced recombination losses, while 

the peak heating callout emphasizes the reduced efficiency caused by bandgap narrowing, 

increased phonon scattering, and heightened recombination (Anand et al., 2024). Compared 
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with the cooled baseline, efficiency at 75 °C is reduced by approximately 13%, consistent with 

the thermal coefficient prediction. This scatter-and-fit presentation underscores the importance 

of temperature management, as a relatively small thermal rise of 10 °C equates to a 2.6% loss 

in conversion efficiency. The figure validates both experimental reproducibility and theoretical 

expectations, while the highlighted points reinforce practical extremes—conditions under 

which PV systems either operate efficiently with proper ventilation or suffer output penalties 

during heat accumulation. This evidence justifies the integration of thermal monitoring in the 

supervisory interface, ensuring that tilt control and shading analysis are contextualized with 

concurrent temperature effects. 

 

Figure 9 Statistical Validation of Experimental Data. 

Figure 9 shows the statistical validation of experimental results across four 

configurations: Fixed Tilt, Optimal Tilt, Standalone, and Integrated. The normalized 

performance ratio (PR) values reveal that optimal tilt settings reach 0.81, compared with 0.74 

under fixed tilt, corresponding to a ~9% increase. Similarly, the integrated configuration 

achieves 0.84 compared with 0.76 for the standalone rooftop, representing an ~11% gain. Error 

bars denote 95% confidence intervals, with variability remaining narrow (±0.012–0.02), 

underscoring the reproducibility of the trials. Sample sizes, shown above each bar, indicate that 
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10–12 replicates were conducted per condition, providing robust statistical power (Rajamony 

et al., 2024). The annotations confirm that both improvements are statistically significant at p 

< 0.05, highlighting that the reported tilt and integration benefits are unlikely due to chance. 

The grouped visualization emphasizes the dual contributions: mechanical optimization of 

inclination, which reduces cosine losses and shading asymmetry, and system-level integration, 

which stabilizes and increases energy output under variable rooftop conditions. This figure 

strengthens the evidence base by situating headline improvements within a statistical 

framework, ensuring that performance enhancements are both reproducible and statistically 

reliable. 

 

Figure 10 Experimental vs Simulated Performance (Model Validation). 

Figure 10 shows the calibration and validation of the Simulink PV model 

against experimental I–V curves at irradiance levels of 1000, 800, and 600 W/m². The 

solid lines represent experimental data, while the dashed counterparts show simulated 

predictions. Across all irradiance levels, the model reproduces both the short-circuit 

current and knee region with high fidelity, keeping the mean absolute error below 2% 

and RMSE values within a narrow range, as summarized in the inset table. At 1000 

W/m², simulated current matches the experimental profile with minimal deviation, 
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while at reduced irradiance (800 and 600 W/m²), the curves continue to align, capturing 

both slope and knee-point changes accurately. The strong correspondence demonstrates 

that the calibration process—tuning series and shunt resistances—successfully adjusted 

the model to field conditions (Rinesh et al., 2025). Furthermore, predictive simulations 

used for tilt optimization and shading scenarios extend beyond simple curve fitting, 

confirming that the model is capable of forecasting nonlinear effects under practical 

conditions. The close experimental–simulation agreement validates the Simulink 

framework as a diagnostic and predictive tool, ensuring that observed performance 

gains, such as tilt-induced irradiance improvement and shading-induced losses, are 

reliably anticipated by the model. 

 

Figure 11  Camera-Based Tilt and Shading Detection. 

Figure 11 shows the integration of camera-based overlays with corresponding electrical 

measurements, which together reveal the interplay between tilt, shading, and photovoltaic 

module performance. Panel (a) illustrates the machine vision detection of module tilt at 31° 

and a shading index of 0.6, indicating that more than half the module's active surface was 

obstructed during the trial. Such image-based tracking provides real-time physical context for 

the subsequent electrical results. Panel (b) demonstrates the impact of shading on the I–V 

curves. In the unshaded state, the module achieves a short-circuit current of about 8.5 A, which 

serves as the reference baseline. Under partial shading, current drops to approximately 6.2 A, 

a reduction of ~27%, accompanied by a clear distortion of the knee point, which signals bypass 
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diode activation and current mismatch. Heavy shading reduces current further to 3.5 A, 

equating to a ~59% decrease compared with the unshaded condition, and the I–V curve 

becomes visibly compressed, reflecting restricted carrier flow and localized heating (Alombah 

et al., 2025). Panel (c) provides the time-synchronized correlation of tilt angle and shading 

index. While tilt oscillates gently between 28–32° (a range of only ±2°), the shading index 

varies sharply from 20% to 80%, showing that irradiance variability, not tilt fluctuations, 

primarily governs power degradation. The significant current reductions shown in panel (b) 

correspond directly to shading intensities captured in panel (c). These observations highlight 

that shading, even at modest levels, induces disproportionately large current and power losses, 

whereas tilt adjustments within a few degrees exert minimal influence. The combination of 

visual detection and electrical validation thus confirms the supervisory interface's capability to 

diagnose and quantify the real-time effects of shading on module performance. 

CONCLUSIONS 

The study showcased the creation and validation of a cutting-edge supervisory interface 

designed to enhance the performance evaluation of photovoltaic (PV) systems. This innovative 

tool seamlessly incorporates various PV setups, including isolated systems, grid-connected 

modules, fixed-tilt panels, and adjustable-tilt configurations. Such integration addresses the 

shortcomings found in traditional monitoring tools which often lack flexibility, real-time 

capabilities, and educational value. Through rigorous testing, the interface proved its ability to 

acquire real-time IV curves, monitor irradiance and temperature, and electronically control the 

inclination angles of the modules. One key finding was the identification of up to 50% power 

loss due to partial shading when just one cell of a 60-cell module was blocked, highlighting the 

system's sensitivity and efficiency over conventional methods. Additionally, a comparative 

analysis between merged and standalone systems revealed an 11% increase in energy output. 

Optimizing the angle settings resulted in a 14% improvement in irradiance capture when the 

tilt was adjusted from 0° to 34°. During peak sunlight, Module 2 maintained temperatures 3–

5°C lower than Module 1, leading to better thermal efficiency. The measured temperature 

coefficients (−0.26%/°C) closely aligned with theoretical values (−0.24%/°C), validating the 

accuracy of the model. The study highlights the interface's utility in diagnosing system losses, 

testing various configurations, and enhancing energy harvesting in real-world conditions. As 

an educational tool, it encourages hands-on learning through remote and local experiments. 
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However, the study also recommends further research to automate the mechanical tilt 

adjustment system, enhance resistance to environmental factors like wind loads, and improve 

software compatibility with other renewable energy platforms. Future studies could explore 

integrating predictive analytics and machine learning to forecast performance issues and 

optimize output dynamically. This work lays the groundwork for smart PV monitoring systems 

that can be adapted and scaled for global renewable energy applications. 
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