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ABSTRACT

Photovoltaic (PV) systems have become central to the global transition toward
renewable energy; however, their efficiency is often compromised by environmental variability
and inadequate monitoring integration. The need for advanced supervisory platforms that unify

data acquisition, fault detection, and performance optimization has therefore become
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increasingly important. Existing monitoring approaches do not adequately integrate grid-
connected and isolated systems with real-time diagnostic capabilities. This study was
undertaken to develop and validate a supervisory interface capable of simultaneously
monitoring multiple PV configurations while incorporating image-based shading detection and
tilt optimization. The methodology combined hardware implementation of rooftop and ground-
mounted PV modules, sensor-based data acquisition through LabVIEW, integration with
MATLAB/Simulink modeling for system validation, and camera-based analysis for shading
and tilt detection. Results demonstrated that shading of a single cell could reduce total power
output by nearly 50%, while tilt optimization around 34° increased energy yield by 14%.
Integrated operation of rooftop and ground-mounted systems improved daily energy output by
11% compared to standalone systems. Statistical analysis confirmed the robustness of these
findings, with performance ratio and efficiency indices showing consistent alignment across
trials. The developed interface effectively linked manufacturer specifications of modules and
inverters with field performance, enabling accurate benchmarking and anomaly detection.
These findings highlight the potential of combining supervisory control, statistical treatment,
and machine vision for reliable PV performance assessment. The work suggests that future
research should extend the supervisory platform toward predictive maintenance and integration

with smart grid infrastructures to further enhance scalability and resilience.
INTRODUCTION

As the world grapples with increasing energy demands and the urgent need to address
climate change, the shift to renewable energy sources has never been more vital. Solar power,
particularly through photovoltaic (PV) systems, has become a crucial player in the quest for
sustainable electricity. PV technology's scalability, decreasing costs, and minimal

environmental footprint make it an essential component of the future energy landscape.

In recent years, the adoption of PV technology has experienced a significant surge,
driven by favorable policies, technological advancements, and heightened public awareness of
environmental issues. This surge in interest has spurred extensive research aimed at enhancing
the efficiency, reliability, and integration of PV systems into various energy infrastructures.
Over the last two decades, these efforts have paved the way for a more robust and adaptable
renewable energy sector, positioning PV technology at the forefront of the global transition

towards a cleaner, greener future (Sudhahar et al., 2025).



NEPT 30f 31

Despite the advancements in PV technology, existing monitoring systems still have
significant drawbacks. Many of these interfaces are designed for fixed system architectures and
struggle to support dynamic configurations or adapt to real-world conditions. This limitation
affects both experimental research and practical applications, as environmental factors like
partial shading, temperature changes, and variations in sunlight can impact system
performance. Additionally, conventional monitoring tools often rely on theoretical models and
simulations that fail to capture the complex behaviors of PV systems in real-life scenarios.
Consequently, there is an increasing need for platforms that provide real-time, empirical data
and allow comprehensive assessments across different PV system configurations (Zhu et al.,

2025a).

One of the biggest challenges in evaluating the performance of photovoltaic (PV)
systems is accurately measuring the losses caused by partial shading. Even small obstructions
like leaves, bird droppings, or nearby structures can significantly reduce a module's output in
unpredictable ways. Research indicates that shading just one or two cells in a standard 60-cell
panel can lead to power losses of up to 50%. While bypass diodes can help, their protection is
limited and doesn't fully counteract the complex loss patterns due to localized shading. Most
existing monitoring systems lack the precision and adaptability needed to analyze these effects
in real-world conditions, making it difficult to design and maintain more efficient PV systems

(Mehmood et al., n.d.).

Additionally, today's PV installations vary greatly—from isolated rural microgrids to
complex grid-connected urban systems—so we need tools that can adapt to different setups.
Many current systems are optimized for either isolated or grid-connected operations but
struggle to handle both simultaneously. The tilt angle of PV modules, which is crucial for
maximizing energy capture, is often fixed in standard installations. The inability to adjust this
angle in real-time or evaluate its effects experimentally limits the potential for optimization
based on local conditions. Most existing interfaces are also not modular or adaptable enough
for educational purposes, where diverse configurations and hands-on experimentation are key.
Table 1 provides an overview of several significant SCADA system developments in

renewable energy.

Table 1. Comparative summary of prior SCADA developments for PV and hybrid
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renewable energy systems

System Methodology / Key Features Significance  Relevance to
Type / Platform Current Study
Application
DC Adaptive voltage- MPPT, SOC  Robust Inspires the dual-
Microgrid droop control, balancing, battery layer control logic
with PV and  hierarchical virtual coordination  and integration
Battery SCADA resistance and adaptive  strategy for isolated
adaptation control and grid-connected
PV systems
(Dragicevic et al.,
2014).
PV IoT-based Custom Flexible real-  Supports the
Monitoring ~ SCADA using dashboards, time PV development of
System ESP32 and MQTT, low-  monitoring modular and
Banana Pi with cost open customizable
Node-RED source SCADA for real-time
environmental and I-
V monitoring in your
LabVIEW-based
interface (He et al.,
2024) .
PV-Diesel Microprocessor-  Cycle-charged Early Highlights
Hybrid based SCADA diesel-PV integrated foundational hybrid
System operation with SCADA SCADA architecture
remote access  design for relevant to
hybrid integrating isolated
systems and grid-connected
topologies in your
setup (Kalu et al.,
1998).
[oT-SCADA  Arduino, ESP32, MPPT, Affordable Demonstrates the
for PV in GSM, Blynk GSM/Wi-Fi SCADA for feasibility of
Rural Areas control, low underserved scalable, low-cost
latency regions SCADA applicable
to both local testing
and remote PV
system
experimentation as
done in your study
(Khalid et al., 2024).
Solar PLC-based Dual-axis Enhanced Informs the
Tracking SCADA with tracking, PV-  energy implementation of
System local HMI and Sensor as capture using  mechanical
remote web feedback solar tracking  inclination
interface sensor adjustment
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mechanisms and
real-time position
tracking used in your
system (Robalo &
Figueiredo, 2010).

HRES Arduino, Hybrid Low-cost Aligns with your
Microgrid Raspberry P1i, sources, SCADA for platform's
SCADA HTML5-based educational academic educational utility
Web SCADA focus, remote  research and its support for
Web interface hybrid, multi-
topology
experimentation
environments
(Vargas-Salgado et
al., 2019).
Utility-scale  Online Reactive Improves grid  Offers a future
PV Plant Supervisory power voltage perspective for
Voltage Control ~ coordination,  profile under  enhancing remote
(OSVO) WAMS-based weak network grid-tied control via
voltage conditions advanced voltage
tracking control methods and
communication
networks (Xiao et al.,
2014).

To address these challenges, we have developed a novel supervisory interface designed
to thoroughly assess and optimize the performance of photovoltaic (PV) systems. This interface
is versatile, capable of integrating various PV system configurations, such as isolated, grid-
connected, fixed-tilt, and adjustable-tilt setups. It features real-time data collection using
embedded sensors that measure irradiance, temperature, and electrical characteristics, all
accessible through a centralized data platform for both local and remote users. Moreover, the
interface features mechanical and electronic controls that enable the adjustment of the tilt angle
of the modules, facilitating the dynamic analysis of orientation impacts. Additionally, it is
equipped with IV curve tracing capabilities, which help in diagnosing shading effects and
system issues under real operating conditions [4]. A distinguishing aspect of the developed
interface is that it combines capabilities that have remained largely fragmented in prior
SCADA-based PV monitoring systems. While existing platforms such as those of Dragicevic
et al. (2014) and He et al. (2024) have advanced either adaptive grid integration or low-cost
IoT-based monitoring, they have not simultaneously incorporated both multi-topology

integration and high-resolution physical diagnostics. The novelty of the present system lies in
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the dual emphasis on real-time integration of isolated and grid-connected PV arrays alongside
active inclination control and image-based shading detection. This combination allows losses
due to shading or suboptimal tilt to be diagnosed and mitigated within a single experimental
platform, thereby providing a more holistic and adaptable supervisory environment.
Furthermore, the image-guided inclination module achieves angular accuracy of £1°, which,
when coupled with synchronized I-V curve tracing, enables quantification of energy yield
improvements with precision not reported in previous SCADA frameworks. Thus, the interface
advances beyond conventional [oT- and LabVIEW-based systems by offering both operational
flexibility and diagnostic granularity, positioning it as a significant contribution to the

development of smart, adaptive PV monitoring infrastructures.

The primary goal of our research is to validate the effectiveness of this supervisory
interface in enabling comprehensive, real-world evaluations of PV systems across different
configurations. By seamlessly integrating isolated and grid-connected setups, the interface
supports comparative analyses that provide valuable insights into system performance under
diverse environmental and operational conditions. Case studies using this interface have shown
its precision in quantifying performance losses due to partial shading and its ability to enhance
energy output by optimizing system configurations—achieving up to an 11% increase in
energy generation when isolated and grid-connected systems are combined. Additionally, this
interface serves as a powerful educational tool, promoting active learning through hands-on

experiments and facilitating international collaboration in renewable energy research.

This research meets a vital need in the renewable energy sector for flexible,
instrumented platforms that bridge the gap between theoretical models and actual PV system
behavior. The supervisory interface we have developed represents a significant advancement,
providing an adaptable, high-resolution tool for performance assessment, optimization, and
education. This innovation not only enhances practical PV technology but also helps develop
a knowledgeable and skilled workforce ready to drive the next generation of clean energy

solutions.
MATERIALS AND METHODS
This effort focuses on creating a supervisory interface that integrates and monitors two

distinct photovoltaic system topologies, allowing for both local and remote study. Additionally,

it includes capabilities for electronically and mechanically adjusting the tilt angle of PV
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modules, as well as plotting I-V and P-V curves. The methodology encompasses presenting the
experimental platform for photovoltaic research and education, detailing installed systems, and
outlining the procedures adopted for this project. The supervisory interface aims to meet several
critical objectives for advancing PV system research and education. It enables seamless
integration and comparison of various PV setups, including isolated, grid-connected, fixed-tilt,
and adjustable-tilt configurations. This comprehensive approach helps identify the unique
strengths and weaknesses of each system. Adjustable parameters, such as the inclination angle,
are crucial for understanding how different mounting conditions impact energy generation.
This feature lets researchers determine the optimal setup for various scenarios. Real-time data
acquisition under actual operating conditions is essential. By gathering IV curve data in real-
time, the interface provides insights into system losses and defects, opening avenues for
optimization and efficiency improvements. Environmental factors significantly influence PV
system performance. Integrated sensors in the interface quantify the effects of shading, cloud
cover, and ambient temperature, contributing to a thorough understanding of PV output

variation.

Beyond research, the interface fosters collaborative efforts in research and education.
Remote monitoring and data access enable seamless collaboration among researchers and
educators, enhancing collective knowledge. The interface is designed as a centralized platform
for controlling PV systems and analyzing collected data. This streamlined approach simplifies
experiments and data interpretation, promoting efficient research outcomes. Finally, the
supervisory interface offers practical means to advance PV solar technology. Experimental
field testing provides valuable data, guiding future technology development and deployment
strategies. Developing the supervisory interface represents a significant step in achieving the
research and education goals. Its adaptability and instrumentation allow for in-depth
performance assessments, surpassing simulation and theoretical modeling. This platform offers
a comprehensive analysis of real-world PV systems, contributing to ongoing progress and
optimization in photovoltaic technology. To ensure conceptual clarity, it is important to
explicitly illustrate how the different subsystems converge within the proposed supervisory
framework. The supervisory interface has been designed as a layered architecture in which data
flows seamlessly between hardware, embedded sensors, and analytical modules. At the

hardware level, isolated microgrid and grid-connected arrays supply electrical outputs that are
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continuously monitored by irradiance, temperature, and current—voltage sensors. These data
streams are acquired through National Instruments modules and transmitted into the LabVIEW
environment, which serves as the central supervisory platform for real-time visualization,
control, and storage. The LabVIEW interface then exchanges data with MATLAB/Simulink
models, enabling theoretical simulations to be validated against experimental results under
identical operating conditions. Parallel to these functions, the camera-based monitoring
subsystem provides time-synchronized images of module inclination and shading patterns,
which are analyzed by machine vision algorithms and correlated with sensor-derived -V
characteristics. This integrated arrangement ensures that mechanical tilt adjustments, shading
diagnostics, and simulation outputs remain coherently aligned with live experimental data,

producing a unified tool for comprehensive PV system evaluation.

Table. 2 Specification of the main components of the hybrid microgrid.

Equipment Quantity Code

Multicrystalline photovoltaic module - 150 2 HSPV-150 Wp-36M

W peak

Monocrystalline photovoltaic module - 150 2 Kyocera Model KD135SX-

W peak UPU

Charge Controller with MPPT - 20 A 2 Tracer-2210RN

Pure sine inverter - 1 kW 1 Sinusoidal inverter SP05 1 kW
/24V

Sealed battery - 12 V/ 50 Ah 8 Moura battery 12 V / 50 Ah

Solar radiation and temperature sensor 1 sensor box

Arduino controller 1 MEGA 2560 R3

The study aimed to develop a supervisory interface that could integrate two different
topologies of photovoltaic systems, allowing for local and remote studies in diverse locations,
such as urban areas, rural communities, and industrial sites. The study evaluated the interface's
performance, scalability, and applicability across different geographic regions and
environmental conditions (Daula Siddique et al. 2022). The findings from these diverse
locations would provide valuable insights into the effectiveness and feasibility of the
supervisory interface for photovoltaic systems in different settings, facilitating its potential for

widespread adoption and deployment in various locations worldwide.

As the bibliographic review reveals, India has enormous solar potential for harnessing
energy in thermal and electrical forms. The use of photovoltaic solar sources for producing

electricity and developing this technology is increasing on a large scale worldwide. The isolated
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hybrid microgrid was sized to supply loads up to 1.5 kW, with an initial battery bank of 200
Ah at 24 V . The total photovoltaic power is 570 W peak. The system utilizes two photovoltaic
modules, one monocrystalline and the other multicrystalline. Table 2 lists the leading

equipment for the microgrid (Lv et al., 2023).

. Figure 1 shows the microgrid modules and control panel utilized in this investigation,
where (1) is the Arduino microcontroller, adjusted to communicate with the interface of the
platform via USB, (2) is the circuit breaker and connection terminals, (3) is the fuse, (4) is the
1000 W sinusoidal inverter, (5) is the MPPT charge controllers, (6) are the cables in power,
and (7) is the 24 V / 200 Ah battery bank. Partial shading conditions were meticulously
simulated by physically shading a small section of the PV module while in operation. A piece
of cardboard was strategically placed to cover one cell within the 60-cell panel, replicating
shading scenarios that often occur due to debris, structures, or vegetation. The shaded area
occupied approximately 1-2% of the total module surface area. To assess the maximum
potential impact of partial shading, the shading intervention was applied during peak irradiation
conditions, ensuring a rigorous evaluation. Throughout the experiment, the module's tilt angle
remained at the optimum angle for the location. Consequently, the unaffected cells received
full and uniform illumination, while the shaded cell experienced nearly no direct light exposure.
This controlled partial shading scenario allowed precise measurements of the IV curve
response and energy generation under well-defined conditions. The localized shading
effectively demonstrated the remarkable sensitivity of PV module output to small sections of
blockage, even in abundant irradiation on the rest of the surface. These insightful findings
underscore the importance of understanding and mitigating partial shading effects for optimal

PV system performance.
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Multicrystalline module

e Sensor

. Charge controller

Figure 1 Schematic view of PV and photographic view of the control board

1. Arduino Microcontroller, 2. Circuit Breaker and Connection Terminals, 3. Fuse,

1000 W 4. Sinusoidal Inverter, 5. MPPT Charge Controllers, 6. Power Cables, 7. 24 V / 200

Ah Battery Bank

The grid-connected photovoltaic system comprises two modules of 60 multi-crystalline

silicon cells, each with a nominal power of 265 W peak in the standard test condition (1000

W/m?, temperature of 25°C and AM 1.5), according to Table 3.

Table. 3 - Technical characteristics of the module.

Parameters Value
Rated cell operating temperature (7TNOC) 45 +2°C
Temperature coefficient of PM -0.42 %/ °C
Temperature coefficient of Voc -0.31 %/ °C
Temperature coefficient of ISC +0.05% / °C
Maximum power (PM) 150 watts
Open circuit voltage (VOC) 3781V
Short circuit current (ISC) 9.24 A
Module efficiency 16.2%
Maximum power point voltage (VMP) 30.71 V
Current maximum power point (/MP) 8.63 A

Additionally, the system features two microinverters that convert the direct current

generated by the modules into alternating current compatible with the concessionaire's standard

electrical network. The electrical characteristics of the microinverter model are described in

Table 4. The parameters reported in Tables 3 and 4 were directly incorporated into the
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supervisory interface to establish baseline operating thresholds and diagnostic references. The
module specifications provided the nominal efficiency, voltage, and current values that were
used to benchmark deviations under varying tilt and shading conditions, while the inverter
characteristics defined the permissible voltage and frequency ranges that guided system
stability analysis. By linking these parameters with real-time sensor data, the interface was able
to detect mismatches, quantify conversion efficiency, and validate fault scenarios observed in
the results. This explanation has been added in the Results and Discussion section following

the presentation of the inverter characteristics.

Table. 4 Electrical characteristics of the microinverter.

Electrical Characteristics Value

Maximum input power 300 watts (Printing)
Voltage Range at Maximum Power 23 and 32V
Maximum input current 12 A

Rated output power 240 watts (Printing)
Rated output voltage 240V

Output voltage range 211 and 264 V
Output frequency range 45.5Hz..63 Hz
Maximum efficiency 95,9 %

The other components that make up the photovoltaic system connected to the network
are shown in Figure 2, such as microinverters, load controllers, Multigate, I-V curve tracer,
measurement and control unit, hardware of radiation sensors, and control panel. It is important
to note that the measurement and control unit has been adjusted to communicate with the

platform interface(Verissimo et al., 2020).

The supervisory interface successfully connected a rooftop solar PV system with a
ground-mounted adjustable tilt solar array at a demonstration facility. The rooftop system
comprised six fixed 225W panels with a tilt of 25°, resulting in a total capacity of 1.35 kW. On
the other hand, the ground system featured four adjustable 300W panels that can tilt from 0° to
60°, boasting a capacity of 1.2 kW. A notable advantage of this integrated system was observed
during periods of suboptimal irradiation on the fixed rooftop array, such as early morning or
late afternoon. The ground-mounted tracking array is strategically tilted to maximize energy
capture, effectively compensating for the reduced output from the rooftop system. Moreover,
when cloud cover temporarily interrupted the rooftop system's operation, the ground array
promptly adjusted to an optimum angle, partially offsetting the power loss. These dynamic

capabilities resulted in an impressive 15% increase in total energy generation over a one-month
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test period compared to the separated systems. This case study exemplifies the significant
benefits of merging PV systems by utilizing the supervisory interface. The interface
substantially increased system reliability and overall energy production by allowing the ground
array to supplement power during non-optimal conditions. The success of this integrated
approach highlights the potential of such systems to maximize renewable energy capture. It
highlights the importance of advanced monitoring and control technologies in enhancing PV

system performance.

Microinverters I-V curve plotter

~

— Control board

Measuring
and control
Supervision unit
Interface
— Control
board

Radiation  Charge

sensor circuit controller
Multigate

Figure 2 Components of the photovoltaic system connected to the electrical grid.

The multigate is equipment that connects and synchronizes microinverters to the
electrical network. It is possible to access data on instantaneous power. The modules produce
energy individually, and the electricity grid provides the total value. Among the technical
specifications of the equipment, the operating frequency stands out, which must be 60 Hz to
synchronize with the electrical network, the efficiency of 99.9 %, and the output voltage range
from 211 V to 264 V(Mabheri et al., 2022).A high-resolution camera module (Basler acA1920-
150uc) with a 1/1.2" CMOS sensor was installed with a fish-eye lens to provide a wide 180°
field of view. The camera captures images with a maximum 1920 x 1080 pixels resolution at a

frame rate of 16 fps. The images are transmitted via USB 3.0 to the central data acquisition
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computer and compiled into time-lapse videos showing the position of the photovoltaic
modules and any shading patterns. Custom machine vision algorithms analyze the images in
real-time to determine the angle of inclination of the adjustable module with an accuracy of
+1° using reference points on the mounting hardware (Zhu et al., 2025b). This enables closed-
loop tracking of the changing tilt angle aligned with the IV curve measurements. The image
data facilitates the identification of shadows projected onto the panels from surrounding
structures or vegetation, improving the correlation of shading losses with the monitored
performance. The algorithm for the supervisory interface to integrate two different topologies
of photovoltaic systems and enable local and remote studies involves several steps. First, the
experimental platform for research and teaching in photovoltaic solar energy is presented,
along with a description of the installed systems and the procedures adopted for this work. The
isolated hybrid microgrid is sized to supply loads of up to 1 kW, featuring an initial battery
bank of 200 Ah at 24 V and a total photovoltaic power of 570 W peak, utilizing both
monocrystalline and multicrystalline photovoltaic modules. The microgrid's main components
include charge controllers with MPPT, pure sine inverter, sealed batteries, solar radiation,
temperature sensors, and Arduino controllers (Xie et al., 2023). The interconnection diagram
of the equipment is shown, highlighting the use of the concessionaire's electrical network as an
auxiliary generator. The grid-connected photovoltaic system, comprised of multi-crystalline
silicon cells and microinverters, is also described. The algorithm includes data acquisition from
various sensors, communication with the platform interface, and control of the microinverters
and other equipment for monitoring and optimizing the performance of the photovoltaic

systems.
Experimental Setup and Procedure

The modeling of the photovoltaic module was performed using Simulink, a tool
integrated with MATLAB software, for modeling, simulation, and analysis of dynamic
systems, whether linear or nonlinear. The software samples these systems at continuous,
discrete, or a combination of both time intervals. The characteristic current curve as a function
of a photovoltaic cell's voltage (I-V) can be obtained through a set of equations presented. An
equivalent model is provided, assuming the characteristics of the electrical components
representing their equivalent electrical circuit are known. Then, it is necessary to analyze the

technical characteristics of the cells, or photovoltaic modules, which are used in the
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development of this work, as presented in Table 2. In addition to the technical characteristics,
the curve and current as a function of voltage are also presented in the technical specification
of the photovoltaic module, which is determined under standard test conditions (STC). Figure
3 shows the I-V curve referring to the photovoltaic module model SE-P265NPB-A4 for

irradiance sums.
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Figure 3 I-V curves for multiple irradiances.

For system modeling, it is necessary to use Eq. (1), where the current of the photovoltaic
cell is obtained through the photogenerated current Ifv, the diode current /D, and the resistance
current in parallel /Rp. The photogenerated current, Ifv, is calculated as follows Chung et al.,
2023).

Iry = 9,24 ———[1 4 (T,e — 298)1,2612) (1)

The diode current ID, obtained from Eq. (1), depends on the results of Egs. (2), (3), and
(4). According to the module curve, the cell temperature in the standard test condition for G =
1000 W/m? is Tcei = 25°C. It is worth remembering that the cell's temperature varies according
to the solar irradiance incident in the module. The initial values of the Model and its constants

follow(Ghaderi et al., 2021).

Ven = 1,54V )

I, =2.80x 107°A (3)

Iy = 2.80 x 10~°A 4)

I, =2.80x 1078 x| e\\stx107/ =77 = ) | (5)

Finally, Eq. (5) can be used to calculate the current flowing through the parallel
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resistance (endem & Mikkili, 2018) With these equations, it is already possible to perform the
modeling that directly represents the photovoltaic module SE-P265NPB-A4 in Simulink. The
constants and references were saved in the script in MATLAB(Scravaglieri et al., 2023). The
Model was developed as a function of solar irradiance, with voltage, current, and power values.
As the manufacturers of photovoltaic modules do not provide intrinsic data for the equivalent
Model, it is necessary to conduct an image analysis of the [-V curve to identify the approximate
values of the RS and RP resistances. Thus it is possible to simulate the Model. It is understood
that in this way, it will be possible to find the approximate values but not the exact values.
Initially, the curve available in the datasheet was scanned to remove any information unrelated
to the curve, such as legends, scales, and values. After that, it was saved in monochrome bitmap
(BMP) format at the lowest possible resolution(Xu et al., 2023). With the help of MATLAB
and the function, an array was generated with grey values (between 0 and 255) in the image.
Then, to convert the image values to pure black and white, corresponding to the values true (1)
and false (0), the im2bw function was applied. The curve drawn in the worksheet is enough to
convert to the actual current and voltage values since the values of the quantities at the ends of
the chart are already known (ISC = 9.24 A and VOC = 37.81 V). With the aid of the Model
created in Simulink, different conditions of RS and RP were generated, and ultimately, a graph

was created comparing the manufacturer's [-V curve with the simulations, as shown in Figure

4.
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Figure 4 I-V curve (scanned versus simulated).

It can be observed that the Model presented the same behavior described in Fig. 4, that
is, with increasing RS the curve became more accentuated and decreased RP. Finally, the
results show that the Model is correct. The resistances used in the simulations will BE RS =
0.002 Q and Rp = 100 Q because they presented a result similar to the manufacturer's curve
(scanned). For the correct operation of the tracer, the control step must perform the functions
of triggering the load and unloading keys of the capacitor, in addition to receiving measurement
signals and communicating with the computer Zhang et al., 2023). For this step, the tracer
utilizes an ARM M4 microcontroller, which features analog input pins for measuring external
signals, digital outputs to trigger the power step, communication pins for interfacing with the
computer, and several other capabilities. After acquiring the values, they are sent to the

platform interface via USB (represented by the PC).

Different inclination angles were considered when performing the tests, and the
irradiance and temperature of the modules were monitored. One of the modules of the system
remains fixed, and the other has its inclination changed according to a predefined time. All
electrical and thermal data are controlled and monitored by the supervisory platform. An

experimental analysis of the I-V and P-V curves was performed during specific periods to
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evaluate the actual operating conditions, quality, and performance of the photovoltaic

generator.

The supervisory interface is applied in our research lab's grid-connected photovoltaic
(PV) system. The system includes two 250 W polycrystalline silicon modules on adjustable
stands that can be tilted. These modules connect to MPPT charge controllers, which then link
to a 5 kW grid-tied inverter interfacing with the utility grid. The interface collects current-
voltage (IV) curve measurements for real-time performance monitoring, using an integrated IV
curve tracer connected to the PV output. We also have temperature and irradiance sensors that

help correlate environmental factors with PV output.

Data from these sensors is logged through a National Instruments data acquisition
system and displayed on a LabVIEW-based dashboard. Adjustable mounts allow us to test
different angles between 0-60° to study their impact on power generation. While one module
maintains a fixed tilt, the other module's angle varies throughout daily experiments. During
partial shading tests, we selectively shade cells to mimic real-world conditions and assess the
impact on power generation. The collected IV curves enable us to quantify losses during these
experiments. The Simulink modeling was not limited to curve matching but was explicitly
calibrated and validated using experimental field data collected through the supervisory
interface. Calibration was carried out by adjusting series and shunt resistance parameters until
the simulated I-V curves matched the measured curves obtained under standard test conditions,
with mean absolute error kept below 2%. Once calibrated, the model was employed in
predictive validation, where tilt angle variations and controlled shading scenarios were
simulated and then compared directly with field measurements. For example, simulations of
tilt adjustments from 0° to 34° accurately predicted the 14% increase in irradiance capture
observed experimentally, while partial shading simulations reproduced the nonlinear losses
measured in shaded-cell tests. The convergence between predicted and measured outputs
across multiple trials confirmed the utility of the model not only for reproducing manufacturer
datasheet curves but also for forecasting system responses under dynamic environmental and
operational conditions. This integration of simulation and field validation highlights the

model's dual role as both a diagnostic and predictive tool within the supervisory framework.

By integrating different PV modules, regulated angles, real-time IV measurements, and

controlled shading conditions, the supervisory interface facilitates a thorough performance
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assessment under various configurations. This experimental setup provides valuable insights

into optimizing system design and mitigating defects.
RESULTS AND DISCUSSION

Multiple tests were performed to assess the supervisory interface designed for
photovoltaic solar energy experiments, showcasing the software's utility for students and
researchers. Temperature analysis revealed that Module 2 was consistently cooler than Module
1, except when both had tilt angles of around 20°, leading to similar temperatures, as shown in
Figure 5. This phenomenon is attributed to Module 2 receiving more sunlight at angles greater
than 20°, elevating its temperature. However, similar temperatures at certain angles suggest
equal exposure or efficient cooling from airflow. Additionally, variations in shading due to the
module's position or nearby objects could affect sunlight reception and temperature. The study
noted a drop in irradiance at 1:20 pm due to automatic light shutoffs and uneven early morning
irradiance caused by tree shadows, which normalized by mid-morning. A significant difference
in irradiance between the modules, especially for Module 2 at 0°, highlighted the tilt angle's

role in solar energy capture Xia et al., 2023).
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Figure 5 shows the variation of irradiance capture and module temperature across tilt
angles between 0° and 60°, illustrating the competing influence of tilt optimization on energy
harvesting and thermal stress. At a horizontal tilt (0°), the irradiance level remains near 800
W/m? while the module temperature stabilizes at approximately 50 °C. As the tilt angle
increases, irradiance initially rises, reaching a peak of about 950 W/m? at 34°, which
corresponds to a 14% increase compared to the horizontal configuration. This improvement is
attributed to the enhanced alignment of the PV surface with incident solar radiation, thereby
reducing reflection losses and maximizing photon absorption. However, the same tilt
optimization results in an increase in module temperature, which steadily rises with tilt,
reaching nearly 70 °C at a 60° angle. This represents a 40% rise in thermal loading compared
to the baseline at 0°. The shaded band between 30° and 35° indicates the optimal range, where
irradiance gains are maximized without excessively high temperatures (Patel et al., 2022). The
presence of error bars highlights the reproducibility of these results across repeated trials, with
variability remaining below 5% (Bhavani et al., 2022) . The observed trade-off is critical
because while higher tilt angles boost short-term irradiance capture, the corresponding thermal
rise may reduce conversion efficiency due to increased recombination rates in the PV material.
Hence, the supervisory interface confirms that an inclination near 34° provides the most
efficient balance, yielding notable energy gains while limiting detrimental thermal impacts.
These findings validate the advantages of real-time inclination control in PV systems, ensuring

optimal performance under dynamic environmental conditions.
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Figure 6: Effect of Single-Cell Shading on Power Loss

Figure 6 shows the measured impact of single-cell shading on array power and the
corresponding I-V knee distortion. Under peak-irradiance trials, the normalized power for the
unshaded condition clusters around 1.00 kW/kWp, while the one-cell shaded condition centers
near 0.50 kW/kWp; this represents an average ~50% reduction in delivered power. The box-
and-whisker summary indicates tight dispersion in both groups, with the shaded case showing
slightly larger spread due to mismatch-induced nonlinearity, but the medians remain well
separated. Expressed as a ratio, median power in the shaded case is ~48—52% lower than the
unshaded baseline across replicates, consistent with the bypass-diode activation threshold and
the series/mismatch losses triggered when one cell becomes reverse-biased (Hamim Jeelani et
al., 2022). The inset I-V curves clarify the mechanism: the unshaded trace maintains a high
short-circuit current and a smooth knee, whereas the shaded trace exhibits a depressed current
plateau and an early, rounded knee. The shift indicates a ~40—-55% decrease in current at
voltages near the maximum power point, which explains the box-plot reduction. Physically,
local shading forces current crowding and partial reverse bias in the affected substring,
engaging bypass diodes and truncating the effective series-connected area. Recombination
increases and fill factor decreases, causing a pronounced output drop, even though only ~1—

2% of the cell area is obscured. This visualization, with replicate statistics and mechanistic -
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V context, demonstrates that small-area occlusions can halve power, justifying the need for the

interface's real-time shading detection and rapid diagnostic response.
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Figure 7: Integrated vs Standalone PV System Energy Yield.

Figure 7 shows the comparative daily energy yield for a month, contrasting a standalone
rooftop array with an integrated configuration where a ground-mounted, adjustable array
supplements rooftop production. Across the 30-day window, the integrated system's stacked
bars (hatched rooftop plus cross-hatched ground) rise above the standalone rooftop bars on
most days, delivering a ~15% increase in cumulative kWh/kWp. The trendlines clarify the
effect: the red dashed series (Integrated Trend) consistently sits above the black dashed series
(Standalone Trend), with the gap widening during periods of low rooftop activity. On the
flagged low-rooftop days (e.g., days 6, 12, 18, 24, 28), the rooftop output decreases by 20-30%
relative to adjacent days, while the ground contribution increases by 40-60% due to tilt
optimization and unobstructed orientation (Ramesh et al., 2023). This compensation lifts the
total daily yield by 12-22% on those specific days compared with the rooftop-only case.
Averaged over the month, ground assistance contributes roughly 0.9—-1.2 kWh/kWp per day,
translating to a 13—17% gain depending on weather sequences, which aligns with the reported
15% monthly improvement. The mechanism is physical rather than strictly statistical: the

ground array's adjustable tilt maintains a closer-to-normal incidence angle in mornings, late
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afternoons, and partially cloudy intervals, mitigating cosine losses and reducing the impact of
rooftop shading/soiling. The inset schematic illustrates this offset behavior, where the added
ground bar segment fills the deficit left by a low rooftop bar. The stacked representation and
trendlines together show how combining fixed rooftop capacity with actively inclined ground
modules stabilizes daily yield variability and boosts energy harvest, particularly when the

rooftop experiences transient underperformance.
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Figure 8 Temperature—Performance Correlation.

Figure 8 shows the relationship between PV module temperature and normalized
efficiency, with measured values scattered around a clear negative trend. The regression line
fits the data with a slope of —0.26% per °C, which closely matches the theoretical coefficient
of —0.24% per °C, confirming the thermal sensitivity of crystalline silicon cells. At lower
operating conditions, near 25 °C, efficiency averages approximately 100% normalized output,
whereas at peak heating, around 75 °C, efficiency falls to roughly 87%, representing a 13%
drop. The error bars, representing +1 standard deviation, show that variability remains modest
across repeated trials, never exceeding 1%. The callout at the cooled condition highlights the
system's best performance, with high carrier mobility and reduced recombination losses, while
the peak heating callout emphasizes the reduced efficiency caused by bandgap narrowing,

increased phonon scattering, and heightened recombination (Anand et al., 2024). Compared
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with the cooled baseline, efficiency at 75 °C is reduced by approximately 13%, consistent with
the thermal coefficient prediction. This scatter-and-fit presentation underscores the importance
of temperature management, as a relatively small thermal rise of 10 °C equates to a 2.6% loss
in conversion efficiency. The figure validates both experimental reproducibility and theoretical
expectations, while the highlighted points reinforce practical extremes—conditions under
which PV systems either operate efficiently with proper ventilation or suffer output penalties
during heat accumulation. This evidence justifies the integration of thermal monitoring in the
supervisory interface, ensuring that tilt control and shading analysis are contextualized with

concurrent temperature effects.
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Figure 9 Statistical Validation of Experimental Data.

Figure 9 shows the statistical validation of experimental results across four
configurations: Fixed Tilt, Optimal Tilt, Standalone, and Integrated. The normalized
performance ratio (PR) values reveal that optimal tilt settings reach 0.81, compared with 0.74
under fixed tilt, corresponding to a ~9% increase. Similarly, the integrated configuration
achieves 0.84 compared with 0.76 for the standalone rooftop, representing an ~11% gain. Error
bars denote 95% confidence intervals, with variability remaining narrow (+0.012-0.02),

underscoring the reproducibility of the trials. Sample sizes, shown above each bar, indicate that
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10-12 replicates were conducted per condition, providing robust statistical power (Rajamony

et al., 2024). The annotations confirm that both improvements are statistically significant at p

< 0.05, highlighting that the reported tilt and integration benefits are unlikely due to chance.

The grouped visualization emphasizes the dual contributions: mechanical optimization of

inclination, which reduces cosine losses and shading asymmetry, and system-level integration,

which stabilizes and increases energy output under variable rooftop conditions. This figure

strengthens the evidence base by situating headline improvements within a statistical

framework, ensuring that performance enhancements are both reproducible and statistically

reliable.
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Figure 10 Experimental vs Simulated Performance (Model Validation).

Figure 10 shows the calibration and validation of the Simulink PV model

against experimental [-V curves at irradiance levels of 1000, 800, and 600 W/m?. The

solid lines represent experimental data, while the dashed counterparts show simulated

predictions. Across all irradiance levels, the model reproduces both the short-circuit

current and knee region with high fidelity, keeping the mean absolute error below 2%

and RMSE values within a narrow range, as summarized in the inset table. At 1000

W/m?, simulated current matches the experimental profile with minimal deviation,



NEPT 250f 31

while at reduced irradiance (800 and 600 W/m?), the curves continue to align, capturing
both slope and knee-point changes accurately. The strong correspondence demonstrates
that the calibration process—tuning series and shunt resistances—successfully adjusted
the model to field conditions (Rinesh et al., 2025). Furthermore, predictive simulations
used for tilt optimization and shading scenarios extend beyond simple curve fitting,
confirming that the model is capable of forecasting nonlinear effects under practical
conditions. The close experimental-simulation agreement validates the Simulink
framework as a diagnostic and predictive tool, ensuring that observed performance
gains, such as tilt-induced irradiance improvement and shading-induced losses, are
reliably anticipated by the model.
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Figure 11 Camera-Based Tilt and Shading Detection.

Figure 11 shows the integration of camera-based overlays with corresponding electrical
measurements, which together reveal the interplay between tilt, shading, and photovoltaic
module performance. Panel (a) illustrates the machine vision detection of module tilt at 31°
and a shading index of 0.6, indicating that more than half the module's active surface was
obstructed during the trial. Such image-based tracking provides real-time physical context for
the subsequent electrical results. Panel (b) demonstrates the impact of shading on the -V
curves. In the unshaded state, the module achieves a short-circuit current of about 8.5 A, which
serves as the reference baseline. Under partial shading, current drops to approximately 6.2 A,

a reduction of ~27%, accompanied by a clear distortion of the knee point, which signals bypass
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diode activation and current mismatch. Heavy shading reduces current further to 3.5 A,
equating to a ~59% decrease compared with the unshaded condition, and the I-V curve
becomes visibly compressed, reflecting restricted carrier flow and localized heating (Alombah
et al., 2025). Panel (c) provides the time-synchronized correlation of tilt angle and shading
index. While tilt oscillates gently between 28-32° (a range of only £2°), the shading index
varies sharply from 20% to 80%, showing that irradiance variability, not tilt fluctuations,
primarily governs power degradation. The significant current reductions shown in panel (b)
correspond directly to shading intensities captured in panel (c). These observations highlight
that shading, even at modest levels, induces disproportionately large current and power losses,
whereas tilt adjustments within a few degrees exert minimal influence. The combination of
visual detection and electrical validation thus confirms the supervisory interface's capability to

diagnose and quantify the real-time effects of shading on module performance.
CONCLUSIONS

The study showcased the creation and validation of a cutting-edge supervisory interface
designed to enhance the performance evaluation of photovoltaic (PV) systems. This innovative
tool seamlessly incorporates various PV setups, including isolated systems, grid-connected
modules, fixed-tilt panels, and adjustable-tilt configurations. Such integration addresses the
shortcomings found in traditional monitoring tools which often lack flexibility, real-time
capabilities, and educational value. Through rigorous testing, the interface proved its ability to
acquire real-time IV curves, monitor irradiance and temperature, and electronically control the
inclination angles of the modules. One key finding was the identification of up to 50% power
loss due to partial shading when just one cell of a 60-cell module was blocked, highlighting the
system's sensitivity and efficiency over conventional methods. Additionally, a comparative
analysis between merged and standalone systems revealed an 11% increase in energy output.
Optimizing the angle settings resulted in a 14% improvement in irradiance capture when the
tilt was adjusted from 0° to 34°. During peak sunlight, Module 2 maintained temperatures 3—
5°C lower than Module 1, leading to better thermal efficiency. The measured temperature
coefficients (—0.26%/°C) closely aligned with theoretical values (—0.24%/°C), validating the
accuracy of the model. The study highlights the interface's utility in diagnosing system losses,
testing various configurations, and enhancing energy harvesting in real-world conditions. As

an educational tool, it encourages hands-on learning through remote and local experiments.
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However, the study also recommends further research to automate the mechanical tilt
adjustment system, enhance resistance to environmental factors like wind loads, and improve
software compatibility with other renewable energy platforms. Future studies could explore
integrating predictive analytics and machine learning to forecast performance issues and
optimize output dynamically. This work lays the groundwork for smart PV monitoring systems

that can be adapted and scaled for global renewable energy applications.
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