

Type of the Paper (Original Research)

Comparative Assessment of Solar Distillation of Greywater with and without Boiling for the Production of Distilled Water

Mariel Alejandra Quispe Collao¹, Efren Eugenio Chaparro Montoya²†, Yessenia Danidtza Gomez Aguilar³, Javier Lozano Marreros⁴, Augusto Cahuapaza Morales⁵, Keila Abigail Muñante Carrillo⁶, Leo Ulises Michaell Tirado Rebaza⁷ and Miryam Milagros Vera Alcázar⁸

¹Jorge Basadre Grohmann National University, Tacna, Peru. E-mail: mariel.quispecollao@gmail.comOrcid: https://orcid.org/0000-0002-4692-6330

²Jorge Basadre Grohmann National University, Tacna, Peru. E-mail: echaparrom@unjbg.edu.peOrcid: https://orcid.org/0000-0003-4230-4929

³Jorge Basadre Grohmann National University, Tacna, Peru. E-mail: ygomeza@unjbg.edu.peOrcid: https://orcid.org/0009-0003-8468-1877

⁴Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú. E-mail: jlozanom@unjbg.edu.pe Orcid: https://orcid.org/0000-0003-2827-4583

⁵Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú. Email: acahuapazam@unjbg.edu.pe, Orcid: https://orcid.org/0000-0002-5283-9081

⁶Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú. E-mail: kmuñantec@unjbg.edu.pe, Orcid: https://orcid.org/0000-0002-3815-4887

⁷Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú. E-mail: leo.tirado@unjbg.edu.pe, Orcid: https://orcid.org/0000-0002-6599-8866

⁸National University of San Agustín de Arequipa, Arequipa, Peru. E-mail: mveraa@unsa.edu.peOrcid:https://orcid.org/0000-0003-1127-5870

†Corresponding author: Efren E. Chaparro Montoya; echaparrom@unjbg.edu.pe

Key Words	Thermal solar energy, Solar still, Greywater, Sustainable development				
DOI	https://doi.org/10.46488/NEPT.2026.v25i02.D1834 (DOI will be active only after				
	the final publication of the paper)				
Citation for the	Quispe Collao, M.A., Chaparro Montoya, E.E., Gomez Aguilar, Y.D., Lozano				
Paper	Marreros, J., Cahuapaza Morales, A., Muñante Carrillo, K.A., Tirado Rebaza,				
	L.U.M. and Vera Alcázar, M.M., 2026. Comparative assessment of solar distillation				
	of greywater with and without boiling for the production of distilled water. <i>Nature</i>				
	Environment and Pollution Technology, 25(2), D1834.				
	https://doi.org/10.46488/NEPT.2026.v25i02.D1834				

ABSTRACT

Water scarcity in arid urban environments has driven the utilization of graywater for potential reuse. Among low-cost water treatment technologies, solar distillation is an attractive option; however, its field performance with real effluents and the direct comparison between boiling and non-boiling configurations remain scarcely documented. In this study, the solar distillation of domestic graywater was compared using (i) a boiling system, consisting of a CK-002 solar cooker coupled to a black-painted copper still, copper coil, and condenser, and (ii) a non-boiling system, consisting of a single-slope solar still with a glass cover. Graywater was collected from five households in

NEPT 2 of 21

Tacna (Peru), and 5 L batches were treated per trial for 11 h on sunny days, recording the distillate volume, physicochemical parameters (pH, conductivity, turbidity, nitrates, nitrites, sulfates, BOD₅, and COD), total metal concentrations, and microbiological indicators of fecal coliforms, Escherichia coli, and heterotrophic bacteria. Results showed that the boiling solar distillation system produced 2,790 mL of distillate, compared to 1,725 mL from the non-boiling system, with a statistically significant difference (α = 0.05). Regarding physicochemical results, significant differences were found only in turbidity, conductivity, and nitrates, with the non-boiling system achieving the best performance (removal > 90%). Total metal removal from graywater (initial concentration 445.03 mg/L) was 98.63% (6.06 mg/L) for the boiling system and 98.56% (6.37 mg/L) for the non-boiling system. Microbiological results for both distillate samples were similar: fecal coliform counts (MPN/100 mL) were reduced by 99.76%; heterotrophic bacteria counts (CFU/mL at 35 °C) by 99.99%; and E. coli counts (MPN/100 mL at 44.5 °C) by 98.04%. Solar distillation, with and without boiling, enabled substantial reduction of microbiological contaminants and total metals; however, due to the persistence of non-volatile organic compounds, such as biodegradable organic matter, which remain above the limits established in the Peruvian Environmental Quality Standards, its optimal use is as a barrier within a treatment train intended for restricted reuse, or in combination with post-treatments to meet regulatory requirements.

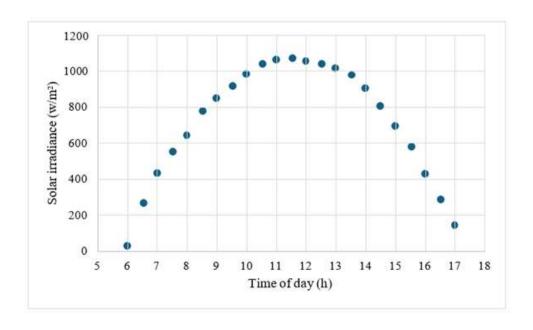
INTRODUCTION

At the global level, the demand for freshwater continues to rise due to population growth, the need to meet basic consumption requirements, pollution, global warming, and climate change, factors that reduce the availability of this essential resource and compromise the sustainability of ecosystems and human societies (González, 2013; Huaquisto & Chambilla, 2019; Castro & Rajadel, 2021; Petrescu et al., 2022; Matta et al., 2024). This issue is particularly critical in arid and semi-arid regions (Jalink & Dieperink, 2024), where water stress occurs more frequently (Xu et al., 2022; Karmaker et al., 2024). The city of Tacna, located in the desert zone of southern Peru, faces severe water scarcity exacerbated by decreasing precipitation in the high Andean region, climate change, and inefficient water resource management, factors linked to urbanization processes (Meng et al., 2022; Shen & Yao, 2022). Domestic activities generate wastewater whose inadequate disposal poses a sanitary risk (Horbatuck & Beruvides, 2024). Among these is graywater, which in some cases is discharged into open channels (Nuñez et al., 2014), originating from sinks, showers, washing machines, dishwashers, and laundries, and accounting for approximately 75% of the total volume of domestic wastewater (Murcia-Sarmiento et al., 2014; Anaya et al., 2022). Such disposal and management practices do not ensure sustainable use of water resources, underscoring the need to implement safe treatment and reuse technologies (Castro & Moncada, 2022).

Studies have reported water consumption levels of up to 275 L per person per day, exceeding the international averages of 200 to 250 L/day (Blanco et al., 2014). It is estimated that, per person, graywater generation reaches approximately 48 L/day from showers and 17.6 L/day from sinks (Burbano, 2015), volumes that represent significant potential for reuse, making their treatment a priority strategy to optimize water use. Safe graywater reuse requires treatment technologies that ensure the removal of physical, chemical, and microbiological

NEPT 3 of 21

contaminants, minimizing risks and preventing adverse environmental impacts (Montalván-Estrada et al., 2019; Hernández-Aguilar et al., 2022; Araque, 2022). Several studies indicate that, for this type of effluent, physicochemical treatments are more effective than biological ones due to the low biodegradability of some compounds present (González & Chiroles, 2010; Borsato et al., 2018). Within the global transition toward a net-zero emissions economy (Osman et al., 2019; Czepło & Borowski, 2024; Krátký et al., 2024), international commitments to mitigate climate change are driving the adoption of solar energy (Lee et al., 2020), a widely available resource with zero direct CO₂ emissions during operation. Sustainable development must be applied by improving environmental, social, and economic indicators, ensuring living conditions for humanity (Casulo, 2018; Madroñero-Palacios & Guzmán-Hernández, 2018; García-Parra et al., 2022). The expansion of renewable energies, including solar, aligns with SDG 7 by promoting access to affordable, reliable, sustainable, and modern energy (Hernandez-Escobedo et al., 2023; Rekeraho et al., 2024; Jiménez-García et al., 2024). In parallel, climatic, demographic, and social changes are putting pressure on water resource availability, reinforcing the need for its safe reuse (Bruzzoniti et al., 2024; Ramaprasad & Syn, 2024).


The use of solar thermal energy is a viable alternative for water distillation processes, especially in regions with high solar radiation (Amin et al., 2022; Bacha et al., 2023). Among the simplest technologies are single-slope solar stills with glass covers, used for seawater desalination in coastal areas (Alsaman et al., 2022). Their operation is based on the direct utilization of solar radiation as a heat source (Torchia-Nuñez et al., 2010), avoiding the use of fossil fuels during operation; therefore, the cost of using solar energy is negligible (Chaparro, 2015), making it an economically viable alternative and highlighting its contribution to reducing greenhouse gas emissions (Coelho et al., 2020; Abdalha et al., 2022). Although numerous studies have explored alternative treatments for graywater, research applying solar energy in distillation processes for its recovery remains limited. Therefore, it is relevant to evaluate the process and its configurations to generate experimental evidence of its feasibility (Hussein et al., 2022; Kaviti et al., 2023; Soltanian et al., 2024). In this context, the objective of this study was to compare two solar distillation systems, one with boiling and one without boiling, in order to assess their efficiency in producing distillate under high-radiation climatic conditions characteristic of arid zones, such as those found in the city of Tacna.

2. MATERIALS AND METHODS

2.1. Research Site

The experimental procedures were conducted at the School of Environmental Engineering, Jorge Basadre Grohmann National University, and in the Pocollay district, both located in the province of Tacna. During November and December 2022, solar irradiance was recorded from 6:00 a.m. to 5:00 p.m. using a horizontal solarimeter throughout the experiments (Fig. 1).

NEPT 4 of 21

Fig. 1: Time of day vs average solar irradiance (W/m²) on clear days during November and December 2022.

2.2. Graywater sampling

A non-probabilistic convenience sampling was carried out in five households located in the PJ Para Chico neighborhood, in the district of Tacna, Peru. In each household, 20 L of graywater were collected from three sources: kitchen sinks, laundry areas, and personal hygiene areas. Samples were taken in high-density polyethylene (HDPE) containers previously washed and rinsed with distilled water. Sampling was performed over a 24-hour period to capture daily variations, obtaining a total of 100 L of composite sample stored in a 200 L polyethylene tank. To preserve the original characteristics of the water, the composite sample was kept in a covered and ventilated area at ambient temperature (20–25 °C).

2.3. Gray water analysis

pH and electrical conductivity were measured with a Hach HQ40D multiparameter instrument, calibrated before each session with traceable standard solutions. Turbidity was measured with a TurbiQuant 1100 T turbidimeter (±0.01 NTU) following the SM 2130B method. Nitrates and nitrites were determined by spectrophotometry according to SM 4500-NO₃⁻ E and SM 4500-NO₂⁻ B. Sulfates were quantified by turbidimetry (SM 4500-SO₄²⁻ E). COD was measured by closed digestion and spectrophotometry (SM 5220 D) and BOD₅ by incubation at 20 °C for 5 days (SM 5210 B). Total metals were determined by ICP-AES (EPA 200.7) after acid digestion (SM 3030 B). Microbiological parameters were analyzed using the MPN method for fecal coliforms (SM 9221 E) and E. coli (SM 9223 B), and plate count for heterotrophic bacteria (SM 9215 B).

NEPT 5 of 21

2.4 Solar distillation with and without boiling

Solar distillation was performed under ambient conditions from 6:00 a.m. to 5:00 p.m. Both distillation units were reoriented toward the sun every 30 minutes. Solar irradiance was measured using a horizontal solar-imeter. Gray water temperature was monitored using an alcohol thermometer (0–150 °C) and a thermocouple connected to a multitester.

For the distillation without boiling, the methodology of Rodriguez (2021) was followed using a single-slope solar still (dimensions: length = 96 cm, width = 80 cm, height = 50 cm, base height = 10 cm, air chamber height = 40 cm, volume = 57 L, weight = 18 kg), as shown in Figure 2. In each trial, 5 L of gray water was introduced into the still. Distillation time was monitored using a clock under clear sky conditions.

Fig. 2: Single-slope solar still.

For the boiling-based distillation, as shown in Figure 3, a reused CK-002 parabolic solar cooker was employed. The system included a copper still (capacity = 5 L, painted black, weight = 3.3 kg), with a copper coil (diameter = 2.54 cm, length = 1.95 m) and a condenser (capacity = 10 L). The solar cooker had a diameter of 1.5 m and a solar collection area of 1.767 m². The total system weight was 12.6 kg. The procedure was based on the methodology of Chaparro, (2015) with modifications. The distilled water volume was measured using a 250 mL graduated cylinder.

NEPT 6 of 21

Fig. 3: Solar still with a solar cooker ck-002.

2.5. Solar distillation process temperatures

For the solar distillation without boiling, the best-fitting model for temperature evolution was an inverse cubic polynomial with a coefficient of determination of $R^2 = 0.9894$ and an adjusted $R^2 = 0.9877$:

For distillation with boiling, the best-fitting model was also an inverse cubic polynomial ($R^2 = 0.8366$; adjusted $R^2 = 0.8108$):

Y (temperature, °C) =
$$196.1971 - 4067.7237X + 50030.1661X^2 - 188974.39X^3 \dots$$
 ...(2)

2.6. Volume of distilled water

The distillation volume over time without boiling followed a cubic polynomial ($R^2 = 0.9997$; adjusted $R^2 = 0.9997$):

Y (volume, mL) =
$$1503.9430 - 596.2048X + 69.5195X^2 - 1.9796X^3$$

With boiling, the distillation volume also followed a cubic polynomial ($R^2 = 0.9993$; adjusted $R^2 = 0.9992$):

$$Y \text{ (volume, mL)} = 7494.2990 - 2546.5682X + 263.5392X^2 - 7.6593X^3 \dots (4)$$

NEPT 7 of 21

2.7. Analysis of distilled water

The pH and electrical conductivity of the distilled water were measured with a Hach HQ40D multiparameter instrument calibrated before each session using traceable standard solutions, following methods SM 4500-H⁺ B and SM 2510 B, respectively. Turbidity was determined with a TurbiQuant 1100 T turbidimeter (±0.01 NTU) according to SM 2130 B, and removal efficiency was calculated according to Martínez-Orjuela et al. (2020):

Where T_0 = turbidity of gray water and T_1 = turbidity of distilled water.

Nitrate, nitrite, sulfate, COD (SM 5220 D), BOD₅ (SM 5210 B), and total metal concentrations (EPA 200.7 after digestion SM 3030 B) were determined following the same procedures described for graywater.

Microbiological analysis included fecal coliforms (SM 9221 E), Escherichia coli (SM 9223 B), and heterotrophic bacteria counts (SM 9215 B), expressed as MPN/100 mL or CFU/mL, as appropriate. All samples were analyzed in duplicate, with quality control through blanks and verification standards.

2.8. Statistical analysis

The evolution of temperature and volume in the distillation process was analyzed using the coefficient of determination (R²). Each experiment was conducted in triplicate. Normality (Shapiro–Wilk) and homoscedasticity (Levene) were verified. For multiple comparisons, a one-way ANOVA and Tukey HSD test were applied with a 95% confidence interval (Wong-González, 2010). The analysis was performed using Excel software.

3. RESULTS

3.1. Solar distillation temperatures with and without boiling

Figure 4 shows the gray water temperature profiles during solar distillation with and without boiling. The highest solar irradiance occurred between 10:00 a.m. and 2:00 p.m. (Figure 1), significantly influencing the increase in temperature.

The distillation process started at 6:00 a.m. with gray water at 20 °C. In the boiling-based system, the temperature rose rapidly and linearly due to the concentration of solar thermal energy reflected by the parabolic solar cooker onto the black-painted copper still. At 7:30 a.m., the temperature reached 96.3 °C, at which point the first drop of distillate was collected. The temperature then increased slightly, reaching a peak of 97 °C at 9:30 a.m., and remained constant until 3:00 p.m., after which it decreased linearly, ending at 5:00 p.m. at 77 °C.

NEPT 8 of 21

In the system without boiling, the water temperature also started at 20 °C and increased linearly. The first distillate was collected at 6:30 a.m. The maximum temperature of 64 °C was reached at 11:30 a.m., followed by a linear decrease until the process ended at 5:00 p.m. with a final temperature of 37 °C.

At 9:30 a.m., a comparison showed that gray water in the boiling-based system reached 97 °C, significantly higher than the 54 °C recorded in the non-boiling system.

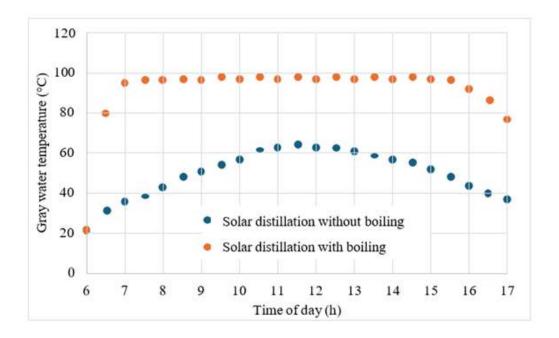


Fig. 4: Gray water temperatures during solar distillation with and without boiling.

Solar distillation was conducted over three cloudless days, with both distillers reoriented every 30 minutes. Figure 5 shows the accumulated volume of distilled water. In the boiling-based system, the first drop was collected at 7:30 a.m. and distillation ended at 3:30 p.m., with a total volume of 2790 ml. In the non-boiling system, distillation began at 6:30 a.m. and ended at 5:00 p.m., yielding 1725 ml.

NEPT 9 of 21

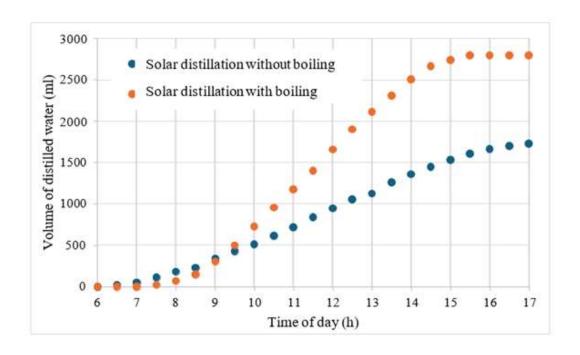


Fig. 5: of distilled water during solar distillation with and without boiling.

3.2. Volume and analysis of distilled water

Both distillation systems operated for 11 hours. However, the boiling-based system yielded a significantly higher volume of distilled water ($\alpha = 0.05$). While both processes ran for the same duration, their efficiency differed. Interestingly, the non-boiling process achieved greater removal efficiencies in turbidity (99.48% vs. 95.79%) and electrical conductivity (98.54% vs. 95.32%) (Table 1).

Table 1: Tukey test ($\alpha = 0.05$) for the volume and physicochemical parameters of distilled water obtained from 5 l of grey water in two solar stills for 11 hours on sunny days.

Parameter	Gray water	Non-boiling distillation	Boiling-based distillation
Distillate volume (mL)	-	1725.00 ^b	2790.00°
рН	6.54 a	6.238 ^b	6.24 ^b
Turbidity (NTU)	501.30 a	2.60°	21.10 ^b
Electrical conductivity (μS/cm)	2560.00 a	37.30°	119.80 ^b

^{abc} Different superscript letters indicate significant differences.

NEPT 10 of 21

Table 2 presents the physicochemical analysis and removal efficiencies. Nitrate removal ranged from 61.59% to 98.72%, with the non-boiling method showing greater nitrate removal. Removal of nitrites (90.49%), sulfates (95.34%), COD (94.83%), and BOD₅ (93.75%) was similar for both methods.

Table 2: Physicochemical parameters and removal efficiencies.

		Non-bo distilla	U	Boiling-based distillation	
Parameter	Gray water	Distilled water	Removal (%)	Distilled water	Removal (%)
Nitrates (mg/L)	26.69	0.34	98.72	10.25	61.59
Nitrites (mg/L)	2.21	< 2	90.49	< 2	90.49
Sulfates (mg/L)	107.52	< 5	95.34	< 5	95.34
COD (mg/L)	1936.63	< 100	94.83	< 100	94.83
BOD ₅ (ppm)	1600.20	< 100	93.75	< 100	93.75

Table 3 shows total metal concentrations and removal efficiencies. The initial gray water sample contained 445.03 mg/L of total metals. Removal was 98.63% (6.06 mg/L) in the boiling system and 98.56% (6.37 mg/L) in the non-boiling system. While both methods effectively removed metals, the boiling-based system required higher solar irradiance, whereas the non-boiling system performed consistently even under cloud cover.

Table 3: Total metal concentrations and removal efficiencies.

Parameter	Gray water	Non-boi distillat	0	Boiling-based distillation		
		Distilled water	Removal (%)	Distilled water	Removal (%)	
Aluminum (mg/L)	1.46	0.53	63.65	0.28	80.63	
Arsenic (mg/L)	0.06	0.05	22.38	0.05	22.38	
Boron (mg/L)	1.41	0.06	95.63	0.05	96.26	
Barium (mg/L)	0.03	0.01	54.28	0.01	60.00	
Calcium (mg/L)	68.95	1.46	97.87	1.63	97.62	
Cobalt (mg/L)	0.01	0.00	100.00	0.00	40.00	
Chromium (mg/L)	0.07	0.03	62.02	0.02	67.08	
Iron (mg/L)	3.69	0.15	95.83	0.15	95.91	
Potassium (mg/L)	17.14	0.75	95.59	0.70	95.91	
Lithium (mg/L)	0.14	0.07	47.65	0.03	79.19	
Magnesium (mg/L)	19.09	0.31	98.36	0.40	97.85	
Manganese (mg/L)	0.09	0.01	86.31	0.01	87.36	

NEPT 11 of 21

Molybdenum (mg/L)	0.06	0.05	12.30	0.04	27.69
Sodium (mg/L)	330.10	2.77	99.16	2.66	99.1
Nickel (mg/L)	0.01	0.00	100.00	0.00	100.00
Phosphorus (mg/L)	1.36	0.01	98.90	0.00	100.00
Selenium (mg/L)	0.01	0.01	0.00	0.01	13.33
Tin (mg/L)	0.05	0.04	17.24	0.00	100.00
Strontium (mg/L)	0.37	0.00	100.00	0.00	100.00
Titanium (mg/L)	0.13	0.00	100.00	0.00	100.00
Zinc (mg/L)	0.80	0.06	52.26	0.02	96.62

Table 4 presents the microbiological results. Both distillation methods achieved similar reductions: fecal coliforms by 99.76%, heterotrophic bacteria by 99.99%, and *E. coli* by 98.04%.

Table 4: Microbiological analysis of gray water, distilled water and removal.

		Non-boiling solar distillation		Boiling-based distillation	
Parameter	Gray water	Distilled water	Removal (%)	Distilled water	Removal (%)
Fecal coliform (MPN/100 mL)	75x10	< 1.8	99.76	< 1.8	99.76
Heterotrophic bacteria (CFU/mL at 35°C)	47x10 ⁵	< 10	99.99	< 10	99.99
E Coli (MPN/100 mL at 44.5°C)	92	< 1.8	98.04	< 1.8	98.04

4. DISCUSSION

4.1. Temperatures in the two solar distillation processes

In the boiling system, water reached maximum temperatures between 96.3 and 97 °C, whereas in the non-boiling system the maximum range was 37 to 64 °C (Figure 4). These differences are attributed to the capacity of the CK-002 parabolic solar cooker to concentrate solar energy at a focal point, increasing the internal temperature of the copper still coated with black paint, which enhances thermal absorption due to its low reflectance (3–4%) (Manchado, 2010) and high thermal conductivity (Otiniano et al., 2013). This behavior is consistent with Chaparro (2016), who reported a rapid temperature increase in parabolic systems with dark surfaces, and contrasts with the gradual heating observed in single-slope solar stills (Rodriguez, 2021).

NEPT 12 of 21

The rapid attainment of boiling temperature in the parabolic system (7:30 a.m., irradiance 931.16 W/m²) contrasts with the earlier onset of distillate production in the non-boiling system (6:30 a.m., irradiance 647.76 W/m²), suggesting that the non-boiling configuration can initiate condensation with a lower thermal input. The literature indicates that irradiance and exposure time are critical determinants in initiating and sustaining the evaporation process (Salinas-Freire et al., 2019; Fernández & Gentili, 2021). Likewise, seasonality plays a critical role: in Tacna, the highest irradiance values are recorded in spring and summer (Rodriguez, 2021), which explains the maintenance of temperatures near boiling for several hours in this study.

These results confirm that the thermal range achieved influences both the evaporation rate and the potential for microbiological inactivation. In the boiling system, the higher temperature promotes pathogen removal through prolonged thermal inactivation (Rougier et al., 2021), whereas in the non-boiling system the main mechanism is physical separation by evaporation—condensation, dependent on lower thermal gradients.

4.2. Volume and analysis of distilled water

The distillate yield was significantly higher (p < 0.05) in the boiling system (55.8%, 2,790 mL) compared to the non-boiling system (34.5%, 1,725 mL) (Figure 5). This result is explained by the higher evaporation rate associated with temperatures close to 100 °C and the high heat transfer in the copper still exposed to concentrated radiation (Chaparro, 2015). The hourly production was 167.68 mL/h with boiling and 156.82 mL/h without boiling, values similar to those reported by Rodriguez (2021) for seawater distillation using a single-slope still (167.58 mL/h), but lower than those of Bustinza (2020) in larger-scale systems (452 L/day), a difference attributable to variations in design, capture area, and irradiance conditions (Sanchez & Yagkug, 2020; Cordova et al., 2021). Both systems, by using solar thermal energy, do not generate carbon dioxide emissions (Halvorsen & Skogestad, 2011). However, as noted by Wei et al. (2021), efficiency could be improved by integrating flatplate solar collectors to optimize heat capture and transfer.

In the physicochemical analysis, the pH of the recovered water in both systems ranged from 6.23 to 6.24, with no significant differences (p < 0.05) (Table 1), which is attributed to atmospheric CO₂ absorption and the formation of carbonic acid in the distilled water, a phenomenon reported by Flores (2015), Rojas (2018), and Yusof et al. (2022).

The initial turbidity of graywater (501.3 NTU) was significantly reduced after solar distillation, with values between 2.6 and 21.1 NTU (removal from 99.48% to 95.79%), results consistent with Yusof et al. (2022), who reported reductions from 79.1 NTU to 2–2.6 NTU. The electrical conductivity of the distillate ranged from 37.30 to 119.80 μ S/cm (removal from 98.54% to 95.32%), also differing significantly, indicating lower dissolved salt concentrations. These results are close to those obtained by Yusof et al. (2022) (41.2–48.3 μ S/cm) and Mendez (2021) (60.984 μ S/cm in distilled seawater). However, they exceed the 5–10 μ S/cm range reported

NEPT 13 of 21

by Rodríguez-Mambuca et al. (2013), which could be due to bubbling and agitation in the boiling system carrying microdroplets or volatile salts into the condensate, increasing dissolved solids (Wei et al., 2021).

Nitrate concentrations ranged from 0.34 to 10.34 mg/L (Table 2). In the boiling system, the value was similar to that of Yusof et al. (2022) (0.9–1.1 mg/L). The greater efficiency of the non-boiling system in this parameter could be due to a milder thermal regime, which may limit volatilization of intermediate nitrogen species, preventing their reintroduction into the condensate, whereas in boiling conditions volatile/semi-volatile species or aerosols may be carried over.

Nitrite content decreased from 2.21 mg/L in graywater to 2 mg/L in both treatments, above the range of 0.03-0.04 mg/L reported by Yusof et al. (2022). Sulfates decreased significantly (p < 0.05) from 107.52 mg/L to 5 mg/L in both systems, representing a 95.34% removal, consistent with the value of 7 mg/L and 97.2% efficiency reported by Bustinza (2020).

Regarding organic matter, the initial COD and BOD₅ values (1,936.63 mg/L and 1,600.2 mg/L, respectively) were reduced by 94.84% and 93.75% in both systems, reaching concentrations below 100 mg/L. These results are higher than those obtained by Rojas (2018) in his hydraulic system (COD: 42 mg/L; BOD₅: 30 mg/L), although still above those reported by Yusof et al. (2022) (COD: 8–9.2 mg/L; BOD₅: 0.2–0.5 mg/L). The difference may be due to the initial organic load; likewise, this persistence is explained by the fact that a large proportion of dissolved organic matter in graywater corresponds to surfactants, detergents, and low-volatility compounds that do not enter the vapor phase and are therefore not removed by simple phase change. In the boiling system, microdroplet carryover can reintroduce organic fractions into the condensate, increasing residual COD. Differences with studies reporting much lower COD/BOD₅ after distillation can be attributed to still design, influent quality (initial surfactant load), and operational conditions (capture area, thermal regime). Intermediate values obtained with other hydraulic treatments (Rojas, 2018) support the conclusion that distillation alone does not ensure regulatory compliance for biodegradable organics, and post-treatments are therefore required.

Total metal removal was high in both systems (> 98.5%) (Table 3), consistent with Tleimat et al. (1992) (\approx 99%) for vapor-compression distillation. This supports the effectiveness of phase-change separation for metal removal, although residual traces may persist due to fine droplet entrainment in the vapor, as variability in individual removal efficiency was observed. Elements such as Na, Ca, Mg, Fe, and K showed removal rates above 95%, whereas As, Se, and Mo had efficiencies below 30% in some cases. This may be explained by the formation of more volatile or soluble chemical species at distillation temperatures, such as hydrides or organometallic compounds, which can pass through the condensation system (Krishnan et al., 2008).

NEPT 14 of 21

Microbiological analysis (Table 4) showed that in both systems, fecal coliform concentrations were below 1.8 MPN/100 mL, meeting DIGESA (2010) limits. Yusof et al. (2022) reported values of 2–3 CFU/100 mL in their study, and Flores (2015) reported total absence of microorganisms. Heterotrophic bacteria counts were reduced to below 10 CFU/mL at 35 °C, far below the limit of 500 CFU/100 mL established by the Environmental Health Directorate (DIGESA, 2010). E. coli counts were also below 1.8 MPN/100 mL, meeting regulatory standards. Microbiological inactivation in the boiling system is primarily due to sustained exposure to temperatures near 100 °C, whereas in the non-boiling system the probable mechanism is physical separation of microorganisms during evaporation and subsequent condensation, a process that prevents the transfer of intact cells into the distillate (Yusof et al., 2022; Flores, 2015). The data confirm that while a boiling system produces a higher volume of distillate, a non-boiling system shows greater efficiency in the removal of turbidity, conductivity, and nitrates. Both achieved microbiological and total metal reductions above 98%, although certain parameters (COD, BODs) do not meet the reference values for direct reuse established by Supreme Decree No. 004-2017-MINAM (Ministry of the Environment [MINAM], 2017), indicating the need for post-treatment.

5. CONCLUSIONS

The treatment of urban graywater through solar distillation constitutes an environmentally sustainable alternative, utilizing renewable energy and producing no greenhouse gas emissions. Both systems evaluated, with and without boiling, proved technically viable for obtaining distilled water from 5 L of graywater, achieving yields of 55.8% in the boiling system and 34.5% in the non-boiling system. The maximum temperature recorded in the solar still with boiling (CK-002 parabolic solar cooker), 97 °C, was considerably higher than that obtained in the single-slope non-boiling still (64 °C), which explains its greater volumetric yield.

In terms of quality, the distilled water from both systems exhibited comparable physicochemical and microbiological characteristics. The Environmental Quality Standards (EQS) were met for microbiological parameters, including fecal coliforms (MPN/100 mL), heterotrophic bacteria (CFU/mL at 35 °C), and E. coli (MPN/100 mL at 44.5 °C), as well as for most of the physicochemical parameters required for irrigation water, with the exception of chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD₅). The total metal removal efficiency was high in both cases, ranging from 98.56% (boiling) to 98.63% (non-boiling).

These results demonstrate that solar distillation, both with and without boiling, is an efficient option that can be considered as an alternative graywater treatment technology, applicable and improvable to contribute to the sustainable management of water resources.

NEPT 15 of 21

6. RECOMMENDATIONS

It is recommended to implement post-treatment processes for distilled water obtained through solar distillation of graywater, in order to make it suitable for human consumption and for irrigating horticultural crops in domestic gardens. Suggested options include physicochemical treatments with coagulant–flocculants (conventional or organic), activated carbon adsorption, or other complementary methods that can reduce COD and BODs to levels compatible with quality standards for potable and agricultural use.

Gratitude

This work is part of the thesis of the second author to obtain her professional degree in Environmental Engineering, who thanks the Jorge Basadre Grohmann National University for the ease of use of laboratories and her advisor, Dr. Efren Eugenio Chaparro Montoya.

Acknowledgments: This study is part of the undergraduate thesis of the second author, conducted in partial fulfillment of the requirements for the professional degree in Environmental Engineering. The author gratefully acknowledges the support of the Jorge Basadre Grohmann National University for providing access to laboratory facilities, and extends special thanks to her advisor, Dr. Efren Eugenio Chaparro Montoya, for his guidance.

Author Contributions: Conceptualization, methodology, formal analysis, and original draft preparation: EECHM and MAQC; supervision, resources, and project administration: YDGA, JLM, ACM, NTDC, KAMC, and MMVA; writing, review and editing, project administration, and validation: MMVA. All authors have read and approved the final version of the manuscript.

Funding: The authors conducted this research using personal resources, without external financial support.

Conflict of interests: The authors declare that they have no conflict of interest.

Data availability: The data supporting the findings of this study are included within the article. Any further inquiries may be directed to the corresponding author.

REFERENCES

- Abdalha, H., Alsalame, M., Hussain, M. I., Amjad, W., Ali, A., & Lee, G. H. (2022). *Thermo-Economic Performance Evaluation of a Conical Solar Concentrating System Using Coil-Based Absorber*. 15(9), 3369. https://doi.org/10.3390/en15093369
 - Aguilera, I., Pérez, R., & Marañón, A. (2010). Determinación de Sulfato por el método turbidimétrico en aguas y aguas residuales. Validación del método. *Revista Cubana de Química*, *XXII*(3), 39–44. https://www.redalyc.org/pdf/4435/443543720007.pdf
 - Alsaman, A. S., Hassan, A. A., Ali, E. S., Mohammed, R. H., Zohir, A. E., Farid, A. M., Eraqi, A. M. Z., El-Ghetany, H. H., & Askalany, A. A. (2022). Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend. *Energies*, 15(21), 8099. https://doi.org/10.3390/en15218099
 - Amin, M., Umar, H., Amir, F., Ginting, S. F., Sudarsana, P. B., & Septiadi, W. N. (2022). Experimental Study of a Tubular Solar Distillation System with Heat Exchanger Using a Parabolic Trough Collector. *Sustainability (Switzerland)*,

NEPT 16 of 21

- 14(21), 13831. https://doi.org/10.3390/su142113831
- Anaya, F., Espinosa, E. N., Loayza, J. E., Zamudio, R. A., & Yáñez, M. A. (2022). Diseño de un sistema de tratamiento de aguas grises claras para reuso como agua de regadio. *Revista de La Sociedad Química Del Perú*, 88(1), 52–62. https://doi.org/10.37761/rsqp.v88i1.375
- Araque, M. (2022). Diseño hidraúlico de plantas de tratamiento de agua potable. In *Engenharia Sanitária e Ambiental*. https://books.scielo.org/id/m8d8m/pdf/araque-9789978108208.pdf
- Bacha, H. Ben, Abdullah, A. K. S., Essa, F. A., & Omara, Z. M. (2023). Energy, Exergy, Economic, and Environmental Prospects of Solar Distiller with Three-Vertical Stages and Thermo-Storing Material. *Processes*, 11(12), 3337. https://doi.org/10.3390/pr11123337
- Barzallo, D., Vera, H., Gavin, C., & Lazo, R. (2021). Determinación simultánea de metales traza en muestras de suelo mediante espectrometría de emisión atómica con plasma de acoplamiento inductivo (ICP-OES). *Ecuadorian Science Journal*, *5*(4), 130–139. https://doi.org/10.46480/esj.5.4.176
- Blanco, H., Lara, M., Velezmoro, A. C., & Aguilar, V. H. (2014). Consumo de agua en actividades domésticas. Caso de estudio: Estudiantes de la asignatura saneamiento ambiental de la UCV. *Revista de La Facultad de Ingenieria*, 29(1), 51–56. https://ve.scielo.org/pdf/rfiucv/v29n1/art07.pdf
- Borsato, E., Galindo, A., Tarolli, P., Sartori, L., & Marinello, F. (2018). Evaluation of the grey water footprint comparing the indirect effects of different agricultural practices. *Sustainability (Switzerland)*, 10(11), 1–15. https://doi.org/10.3390/su10113992
- Bruzzoniti, M. C., Del Bubba, M., Giordani, E., Fibbi, D., Beldean-Galea, M. S., Piesik, D., & Rivoira, L. (2024). Organic Micropollutants in the Agricultural Chain of Production of Strawberries by Irrigation with Treated Wastewater and Assessment of Human Health Implications. *Water*, 16(6), 830. https://doi.org/10.3390/w16060830
- Burbano, J. L. (2015). Análisis de la reutilización de las aguas grises en edificaciones domiciliarias [Universidad de Especialidades Espiritu Santo]. In *Ekp* (Vol. 13). http://repositorio.uees.edu.ec/bitstream/123456789/420/1/analisis de la reutilizacion de aguas grises en edificaciones domiciliarias.pdf
- Bustinza, C. (2020). Sistema de desalinizacion solar para purificacion de agua de mar [Universidad Nacional de San Antonio Abad del Cusco]. http://repositorio.unsaac.edu.pe/bitstream/handle/UNSAAC/5449/253T20200241_TC.pdf?sequence=1&isAllowed= y
- Castro, N. A., & Rajadel, O. N. (2021). Otra cara de la problemática del agua y el cambio climático; dos realidades sinérgicas yuxtapuestas. *Universidad y Sociedad*, 13(4), 351–360. http://scielo.sld.cu/pdf/rus/v13n4/2218-3620-rus-13-04-351.pdf
- Castro, O. E., & Moncada, J. A. (2022). Educación ambiental para el manejo sustentable del agua en la comunidad toro muerto, río Caroni. 8(15), 61–84. http://ve.scielo.org/pdf/arete/v8n15/2443-4566-arete-8-15-61.pdf
- Casulo, J. C. (2018). Los objetivos de desarrollo sostenible y la academia. *Medisan*, 22(8), 838–848. http://scielo.sld.cu/pdf/san/v22n8/1029-3019-san-22-08-838.pdf
- Cedeño, C. J. (2006). *Metales en agua por plasma acoplado por inducción(Cd, Cr, Cu, Ni, Pb, Zn)*. http://www.ideam.gov.co/documents/14691/38155/Metales+en+agua+por+Plasma+Acoplado+por+Inducción..pdf/d

NEPT 17 of 21

- 4946215-8e8f-4262-bab2-b236139cfcc8
- Chaparro, E. E. (2015). Evaluación comparativa de tres sistemas de destilación solar de un fermentado de subproductos frutícolas para la obtención de bioetanol en Tacna [Universidad Nacional Jorge Basadre Grohmann]. In *Syria Studies*. http://repositorio.unjbg.edu.pe/bitstream/handle/UNJBG/3573/07_2016_chaparro_montoya_ee_espg_doctorado_cie ncias ambientales.pdf?sequence=1&isAllowed=y
- Chavez, E. A., & Mayhua, C. J. (2019). Diseño de un sistema de reutilización de aguas grises y aprovechamiento de aguas pluviales para un proyecto urbanismo de 12 hectáreas ubicado en el distrito De Pimentel Chiclayo Lambayeque [Universidad San Matin de Porres]. https://repositorio.usmp.edu.pe/bitstream/handle/20.500.12727/6033/chavez_aea-mayhua_bcj.pdf?sequence=1&isAllowed=y
- Coelho, C., Brottier, C., Beuchet, F., Elichiry-Ortiz, P., Bach, B., Lafarge, C., & Tourdot-Maréchal, R. (2020). Effect of ageing on lees and distillation process on fermented sugarcane molasses for the production of rum. *Food Chemistry*, 303, 125405. https://doi.org/10.1016/j.foodchem.2019.125405
- Cordova, P., Barrios, T., & Cordova, I. C. (2021). Modelación del sistema de destilación solar y la desalinización de agua de mar en la Bahia de Paracas. In *Journal of Chemical Information and Modeling* (Vol. 53, Issue 9). http://unicontestado-site.s3.amazonaws.com/site/biblioteca/ebook/Pedro MODELACION DEL SISTEMA DE DESTILACIÓN SOLAR.pdf
- Czepło, F., & Borowski, P. F. (2024). Innovation Solution in Photovoltaic Sector. *Energies*, 17(1), 265. https://doi.org/10.3390/en17010265
- Dirección de Salud Ambiental (DIGESA). (2010). Reglamento de la Calidad del Agua para Consumo Humano: D.S. Nº 031-2010-SA. In *Biblioteca Nacional del Perú* (Issue 9, p. 44). https://cdn.www.gob.pe/uploads/document/file/273650/reglamento-de-la-calidad-del-agua-para-consumo-humano.pdf
- Fernández, M. E., & Gentili, J. O. (2021). Radiación solar y planeamiento urbano: factores e interacciones en Bahía Blanca, Argentina. *Revista de Urbanismo*, 45, 46–66. https://doi.org/10.5354/0717-5051.2021.58824
- Flores, R. C. (2015). Diseño y construcción de un prototipo de destilador de agua, utilizando energía solar [Universidad Politecnica Salesiana Sede Quito]. In *Tesis*. https://doi.org/10.20868/UPM.thesis.39079
- García-Parra, M., De la Barrera, F., Plazas-Leguizamón, N., Colmenares-Cruz, A., Cancimance, A., & Soler-Fonseca, D. (2022). Los objetivos de desarrollo sostenible en America: Panorama. *La Granja*, 36(2), 45–59. https://doi.org/10.17163/lgr.n36.2022.04
- González-Avilés, M., López-Sosa, L. B., Servín-Campuzano, H., & González-Pérez, D. (2017). Adopción tecnológica sustentable de cocinas solares en comunidades indígenas y rurales de michoacán. *Revista Mexicana de Ingeniera Quimica*, 16(1), 273–282. https://www.redalyc.org/pdf/620/62049878026.pdf
- González, C. M. I. (2013). Un futuro a favor de la protección del agua. *Revista Cubana de Higiene y Epidemiologia*, 51(2), 126–128. http://scielo.sld.cu/pdf/hie/v51n2/hie01213.pdf
- González, M. I., & Chiroles, S. (2010). Uso seguro y riesgos microbiológicos del agua residual para la agricultura Safe use and microbiological risks of wastewater for agriculture. *Revista Cubana de Salud Pública*, 37(1), 61–73. http://scielo.sld.cu/pdf/rcsp/v37n1/spu07111.pdf

NEPT 18 of 21

Halvorsen, I. J., & Skogestad, S. (2011). Energy efficient distillation. *Journal of Natural Gas Science and Engineering*, *3*(4), 571–580. https://doi.org/10.1016/j.jngse.2011.06.002

- Hernández-Aguilar, H., García-Lara, C. M., Nájera-Aguilar, H., Gutiérrez-Hernández, R., Martínez-Salinas, R., & Araiza Aguilar, J. A. (2022). *Evaluation of the Toxicity of Cafeteria Wastewater Treated by a Coupled System (ARFB-SD)*. 10(8), 1442. https://doi.org/10.3390/pr10081442
- Hernandez-Escobedo, Q., Muñoz-Rodríguez, D., Vargas-Casillas, A., Juárez Lopez, J. M., Aparicio-Martínez, P., Martínez-Jiménez, M. P., & Perea-Moreno, A. J. (2023). Renewable Energies in the Agricultural Sector: A Perspective Analysis of the Last Three Years. *Energies*, 16(1), 1–17. https://doi.org/10.3390/en16010345
- Horbatuck, K. H., & Beruvides, M. G. (2024). Water Infrastructure System Leakage Analysis: Evaluation of Factors Impacting System Performance and Opportunity Cost. 16(8), 2080. https://doi.org/10.3390/w16081080
- Huaquisto, S., & Chambilla, I. G. (2019). Análisis Del Consumo De Agua Potable En El Centro Poblado De Salcedo, Puno. *Investigacion & Desarrollo*, 19(1), 133–144. https://doi.org/10.23881/idupbo.019.1-9i
- Hussein, A. K., Rashid, F. L., Abed, A. M., Al-Khaleel, M., Togun, H., Ali, B., Akkurt, N., Malekshah, E. H., Biswal, U., Al-Obaidi, M. A., Younis, O., & Abderrahmane, A. (2022). Inverted Solar Stills: A Comprehensive Review of Designs, Mathematical Models, Performance, and Modern Combinations. Sustainability (Switzerland), 14(21), 13766. https://doi.org/10.3390/su142113766
- Isea, D., Vargas, L., Durán, J., Delgado, J., & Mendoza, R. (2015). Parámetros biocinéticos que rigen la ecuación de la DBO en aguas residuales de una industria procesadora de cangrejos. *Rev. Téc. Ing. Univ. Zulia*, 38(2), 112–121. http://ve.scielo.org/scielo.php?pid=S0254-07702015000200003&script=sci arttext
- Jalink, H., & Dieperink, C. (2024). Towards Design Principles for Good Multi-Level Drought Risk Governance: Some Lessons from the Rhine Basin. *Water (Switzerland)*, 16(6), 879. https://doi.org/10.3390/w16060879
- Jareanjit, J., Siangsukone, P., Wongwailikhit, K., & Tiansuwan, J. (2014). Development of a mathematical model and simulation of mass transfer of solar ethanol distillation in modified brewery tank. *Applied Thermal Engineering*, 73(1), 723–731. https://doi.org/10.1016/j.applthermaleng.2014.08.021
- Jiménez-García, J. C., Moreno-Cruz, I., & Rivera, W. (2024). Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production. *Processes 2024, Vol. 12, Page* 427, 12(3), 427. https://doi.org/10.3390/pr12030427
- Karmaker, S., Bandyopadhyay, S., & Bauer, S. (2024). Geospatial Approaches to Improve Water Availability through Demand Assessment in Agriculture Based on Treated. 16(5), 704. https://doi.org/10.3390/w16050704
- Kaviti, A. K., Teja, M., Madhukar, O., Teja, P. B., Aashish, V., Gupta, G. S., Sivaram, A., & Sikarwar, V. S. (2023).
 Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins. *Energies*, 16(18), 1–14.
 https://doi.org/10.3390/en16186606
- Krátký, L., Ledakowicz, S., Slezak, R., B'elohlav, V., Peciar, P., Petrik, M., Jirout, T., Peciar, M., Siménfalvi, Z., Šulc, R., & Szamosi, Z. (2024). *Emerging Sustainability in Carbon Capture and Use Strategies for V4 Countries via Biochemical Pathways : A Review. 16*(3), 1201. https://doi.org/10.3390/su16031201
- Krishnan, V., Ahmad, D., & Jeru, J. B. (2008). Influence of COD:N:P ratio on dark grey water treatment using a sequencing batch reactor. *Journal of Chemical Technology and Biotechnology*, 83(5), 756–762.

NEPT 19 of 21

- https://scijournals.onlinelibrary.wiley.com/doi/10.1002/jctb.1842
- Lee, Y., Jeong, H., Park, J. T., Delgado, A., & Kim, S. (2020). Experimental investigation on evaluation of thermal performance of solar heating system using Al2O3 nanofluid. *Applied Sciences (Switzerland)*, 10(16). https://doi.org/10.3390/app10165521
- Macía, A., Estrada, D., Chejne, F., Velázquez, H., & Rengifo, R. (2005). Metodología para el diseño conceptual de cocinas solares. *Dyna*, 72(146), 65–88. http://www.scielo.org.co/pdf/dyna/v72n146/a06v72n146.pdf
- Madroñero-Palacios, S., & Guzmán-Hernández, T. (2018). Desarrollo sostenible. Aplicabilidad y sus tendencias. *Revista Tecnología En Marcha*, 31(3), 122–130. https://doi.org/10.18845/tm.v31i3.3907
- Manchado, M. (2010). Caracterización de una cocina solar parabólica. *Universidad Carlos Iii De Madrid*, 203. https://e-archivo.uc3m.es/handle/10016/10799
- Marín-Velásquez, T. D., & Arriojas-Tocuyo, D. D. J. (2020). Remoción de turbidez de agua mediante filtración utilizando cáscara de coco (Cocos nucífera) a nivel de laboratorio. *Revista ION*, 33(2), 99–110. https://doi.org/10.18273/revion.v33n2-2020008
- Martínez-Orjuela, M. R., Mendoza-Coronado, J. Y., Medrano-Solís, B. E., Gómez-Torres, L. M., & Zafra-Mejía, C. A. (2020). Evaluación de la turbiedad como parámetro indicador del tratamiento en una planta potabilizadora municipal. *Revista UIS Ingenierías*, 19(1), 15–24. https://doi.org/10.18273/revuin.v19n1-2020001
- Matta, E., Bresciani, M., Giardino, C., Chiarle, M., & Nigrelli, G. (2024). Water Colour Changes in High-Elevation Alpine Lakes during 2017 2022: A Case Study of the Upper Orco Valley Catchment. 16(7), 1057. https://doi.org/10.3390/w16071057
- Mendez, luis C. (2021). Efecto de uso del agua destilada de mar con energia solar y compost de residuos organicos sobre el cultivo de espinaca (Spinacia oleraceaL.) en condiciones de invernadero [Universidad nacional Jorge Basadre Grohmann].

 http://repositorio.unjbg.edu.pe/bitstream/handle/UNJBG/4360/99_2021_mendez_avalos_lc_espg_doctorado_en_cie
 - http://repositorio.unjbg.edu.pe/bitstream/handle/UNJBG/4360/99_2021_mendez_avalos_lc_espg_doctorado_en_ciencias ambientales.pdf?sequence=1
- Meng, X., Lu, J., Wu, J., Zhang, Z., & Chen, L. (2022). Quantification and Evaluation of Grey Water Footprint in Yantai. *Water*, 14(12), 1893. https://doi.org/10.3390/w14121893
- Ministerio del Ambiente [MINAM]. (2017). Aprueban estandares de calidad ambiental (ECA) para agua y establecen disposiciones complementarias. El Peruano. https://busquedas.elperuano.pe/normaslegales/aprueban-estandares-decalidad-ambiental-eca-para-agua-y-e-decreto-supremo-n-004-2017-minam-1529835-2/
- Monsalves, N., Leiva, A. M., Gómez, G., & Vidal, G. (2023). Organic Compounds and Antibiotic-Resistant Bacteria Behavior in Greywater Treated by a Constructed Wetland. *International Journal of Environmental Research and Public Health*, 20(3), 2305. https://doi.org/10.3390/ijerph20032305
- Montalván-Estrada, A., Aguilera-Corrales, Y., Brígido-Flores, O., Veitia-Rodríguez, E., & Rodríguez-LaO, L. (2019). Procesos de contaminación-purificación en aguas superficiales afectadas por el vertimiento de efluentes de una tenería. *Revista Cubana de Química*, 31(1), 65–80. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212019000100065&lang=es
- Murcia-Sarmiento, M. L., Calderón-Montoya, O. G., & Díaz-Ortiz, J. E. (2014). Impacto de aguas grises en propiedades

NEPT 20 of 21

- físicas del suelo. TecnoLógicas, 17(32), 57. https://doi.org/10.22430/22565337.204
- Nuñez, L., Molinari, C., Paz, M., Tornello, C., Mantovano, J., & Moretton, J. (2014). Análisis de riesgo sanitario en aguas grises de la Provincia de Buenos Aires, Argentina. *Revista Internacional de Contaminacion Ambiental*, 30(4), 341–350. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992014000400003
- Osman, A., Eltayeb, M., & Rajab, F. (2019). Utility paths combination in HEN for energy saving and CO2 emission reduction. *Processes*, 7(7), 1–22. https://doi.org/10.3390/pr7070425
- Otiniano, M., Romero, P., Vicuña, E., Robles, R., Garrido, A., & Linares, T. (2013). Obtención de Pisco en una columna de destilación discontinua empacada. *Rev. Per. Quím. Ing. Quím*, *16*(1), 85–95. https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/6563
- Paz-Y-Miño, M., Barzola, C., Lazcano, C., Ponce, M., & León, J. (2003). Colifagos como indicadores de contaminación fecal y de remoción bacteriana en la potabilización del agua. *Revista Peruana de Biologia*, 10(2), 133–144. https://doi.org/10.15381/rpb.v10i2.2495
- Pérez-López, E. (2016). Control de calidad en aguas para consumo humano en la región occidental de Costa Rica. *Revista Tecnología En Marcha*, 29(3), 3. https://doi.org/10.18845/tm.v29i3.2884
- Petrescu, I. E., Lombardi, M., Lădaru, G. R., Munteanu, R. A., Istudor, M., & Tărășilă, G. A. (2022). Influence of the Total Consumption of Households on Municipal Waste Quantity in Romania. *Sustainability (Switzerland)*, *14*(14), 1–16. https://doi.org/10.3390/su14148828
- Ramaprasad, A., & Syn, T. (2024). A Framework for Developing a National Research Strategy for Water Reuse. 9(2), 24. https://doi.org/10.3390/recycling9020024
- Rekeraho, A., Cotfas, D. T., Cotfas, P. A., Tuyishime, E., Balan, T. C., & Acheampong, R. (2024). *Enhancing Security for IoT-based Smart Renewable Energy Remote Monitoring Systems*. 13(4), 756. https://doi.org/doi.org/10.3390/electronics13040756
- Rodríguez-Mambuca, R. J., Rodríguez-lópez, J., & Perdomo-morales, A. (2013). La calidad del agua destilada en la determinación de cenizas conductimétricas en azúcares crudos. *Icidca*, 47(2), 31–34. https://www.redalyc.org/pdf/2231/223128548005.pdf
- Rodriguez, E. (2021). Comparación de tres destiladores solares para la obtención de agua destilada de mar en Tacna, 2019
 [Universidad Nacional Jorge Basadre Grohmann].
 http://repositorio.unjbg.edu.pe/bitstream/handle/UNJBG/4359/98_2021_rodriguez_delgado_e_espg_doctorado_en_ciencias ambientales.pdf?sequence=1&isAllowed=y
- Rojas, K. (2018). Diseño y aplicación de un sistema hidráulico de reutilización de las aguas grises, para disminuir el consumo de agua potable en vivienda familiar en el distrito de Jepelacio 2017 [Universidad Nacional San Martín]. http://repositorio.unsm.edu.pe/handle/11458/3098
- Rougier, M., Bellettre, J., & Luo, L. (2021). An experimental study of a wine batch distillation in a copper pot still heated by gas. *Energies*, 14(11), 3352. https://doi.org/10.3390/en14113352
- Salinas-Freire, H. A., Pérez-Ones, O., & Rodríguez-Muñoz, S. (2019). Límites termodinámicos a la productividad de los destiladores solares pasivos. *Revista ION*, 32(1), 7–20. https://doi.org/10.18273/revion.v32n1-2019001
- Sanchez, M., & Yagkug, K. (2020). Eficiencia de un destilador solar en el tratamiento de aguas residuales de la provincia

NEPT 21 of 21

- de Trujillo [Universidad Privada del Norte]. https://repositorio.upn.edu.pe/bitstream/handle/11537/24119/Sanchez Asiclo Merenciana Yagkug Contreras Kassandra.pdf?sequence=9&isAllowed=y
- Severiche, C., Castillo, M., & Acevedo, R. (2013). *Manual de métodos analíticos para la determinación de parámetros fisicoquímicos básicos en aguas*. https://doi.org/Biblioteca Virtual EUMED.NET
- Shen, R., & Yao, L. (2022). Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region. *International Journal of Environmental Research and Public Health*, 19(11), 6793. https://doi.org/10.3390/ijerph19116793
- Silva, J., Ramírez, L., Alfieri, E., Rivas, G., & Sánchez, M. (2004). Determinación de microorganismos indicadores de calidad sanitaria. Coliformes totales, coliformes fecales y aerobios mesófilos en agua potable envasada y distribuida en San Diego, estado Carabobo, Venezuela. In *Revista de la Sociedad Venezolana de Microbiología* (Vol. 24, Issues 1–2). https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562004000100008
- Soltanian, M., Hoseinzadeh, S., & Astiaso Garcia, D. (2024). Proposal of a Reflector-Enhanced Solar Still Concept and Its Comparison with Conventional Solar Stills. *Water (Switzerland)*, 16(2), 355. https://doi.org/10.3390/w16020355
- Tleimat, B., Tleimat, M., Friedman, M. A., Styczynski, T. E., & Schwartzkopf, S. (1992). El uso de la destilación por compresión de vapor para reciclar aguas grises como una aplicación temprana en el análogo planetario antártico. 87(1 a 3), 97–100. https://www.sciencedirect.com/science/article/abs/pii/001191649280136W
- Torchia-Nuñez, J. C., Porta-Gándara, M. A., & Cervantes-de Gortari, J. C. (2010). *Análisis de exergía en estado permanente de un destilador solar simple*. 11(1), 25–34. https://www.scielo.org.mx/pdf/iit/v11n1/v11n1a4.pdf
- Wei, D., Li, G., Kong, L., & Tan, X. (2021). Energy-saving investigation and techno-economic analysis of separation of ibuprofen sodium mother liquor using thermally coupled distillation. *Journal of Environmental Chemical Engineering*, 9(4), 105442. https://doi.org/10.1016/j.jece.2021.105442
- Wong-González, E. (2010). ¿Después de análisis de varianza... qué? Ejemplos en ciencias de alimentos. *Agronomía Mesoamericana*, 21(2), 349–356. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1659-13212010000200016
- Xu, X., Wu, F., Yu, Q., Chen, X., & Zhao, Y. (2022). Invisible Effect of Virtual Water Transfer on Water Quantity Conflict in Transboundary Rivers Taking Ili River as a Case. 19(15), 8917. https://doi.org/10.3390/ijerph19158917
- Yabroudi, S. C., Cárdenas, C., Aldana, L., Núñez, J., & Herrera, L. (2011). Desalinización de agua empleando un destilador solar tubular. *Interciencia*, 36(10), 731–737. https://dialnet.unirioja.es/servlet/articulo?codigo=3743708
- Yusof, M. F., Zainol, M. R. R. M. A., Riahi, A., Zakaria, N. A., Shaharuddin, S., Juiani, S. F., Noor, N. M., Zawawi, M. H., & Ikhsan, J. (2022). Investigation on the Urban Grey Water Treatment Using a Cost-Effective Solar Distillation Still. Sustainability, 14(15), 9452. https://doi.org/10.3390/su14159452