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ABSTRACT 

Flood forecasting is considered critical in the world, where communities, infrastructure, and the environment are 

placed at significant risk by floods. In this study, a comprehensive analysis is provided of traditional and sophisti-

cated flood forecasting methods with an emphasis on their strengths, limitations, and applicability in different sce-

narios. Traditional methods, including empirical rainfall-runoff relationships and historical flood data analysis, have 

been relied upon as foundational approaches to predicting flood events based on historical patterns and local 

knowledge. However, these methods are often lacking in precision and responsiveness to real-time changes in cli-

mate and land use. In contrast, the accuracy and lead time of flood forecasts have been improved through the lev-

eraging of advanced computational models, remote sensing, and machine learning algorithms, deep learning algo-

rithms in modern techniques. Technologies such as hydrodynamic modelling, satellite-based monitoring, machine 

learning, deep learning and hybrid models have been demonstrated to offer higher predictive capabilities by inte-

grating real-time data and spatial analysis. Case studies from recent flood events are analyzed in this study, with 

comparisons drawn between the accuracy, efficiency, and adaptability of both approaches. The findings suggest 

that while traditional methods are valued for their simplicity and low cost, modern forecasting methods provide 

greater precision and adaptability, which are essential for proactive disaster management in a changing climate. 

This study recommends a hybrid approach that integrates traditional knowledge with modern technology to enhance 

the accuracy and dependability of flood forecasting systems. 
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INTRODUCTION 

Flood forecasting plays an essential role in mitigating the impacts of floods by providing early warnings, enabling timely 

evacuations, and guiding flood management efforts. Over the years, flood forecasting methods have evolved from tra-

ditional, physically-based models to modern, data-driven techniques, reflecting advancements in computational power, 

data availability, and technology. This literature review explores both traditional and modern methods of flood forecast-

ing, examining their applications, strengths, and limitations. Concerns around the world have undeniably been escalated 

by the increasing frequency, intensity, and geographical reach of natural disasters, driven in part by factors such as 

climate change, population growth, and urbanization [Tin et al., 2024]. The reliability of forecasts has drastically in-

creased due to advances in meteorological and hydrological models, richer data from satellites, and improved analytical 

techniques [Jain et al., 2017]. Integrating machine learning into physical models enhances the data collection and pro-

cessing of remotely sensed data, with cloud computing enabling faster processing and greater computational efficiency 

for heavy data and model integrations [Byaruhanga et al., 2024]. 

Traditional flood forecasting methods, such as hydrological and hydrodynamic models, have been the cornerstone of 

flood management for decades. Practical implementation of sustainable integrated watershed management practices 

should be carried out throughout the landscape of the catchment, from upstream to downstream areas [Arnold et al., 

1998]. The effect of hydraulic parameters on the river’s flow characteristics is also predicted using one-dimensional 

hydrodynamic modeling [AlMansori & Sanker, 2020]. A stepwise cluster analysis hydrological approach can be used 

to characterize hydrological processes complicated by nonlinear and dynamic relationships, and satisfactory predictions 

can be provided. [ Feng et al., 2021] 

In contrast, AI driven flood forecasting techniques, including machine learning and deep learning are data-driven and 

can analyze vast amounts of information from multiple sources, such as satellite imagery, sensor networks, and historical 

flood records. The data assimilation method proves highly effective in reducing errors in flood forecasting. [ Sandilya, 

2020]. Numerical Weather Prediction models have significantly enhanced the capability to predict precipitation. 

[ Shrestha et al., 2012]. 

               This paper presents a comprehensive review of existing flood forecasting models, encompassing traditional, 

modern, and hybrid approaches. It emphasizes the unique strengths of each method—for instance, the clear physical 

basis of traditional hydrological models and the predictive accuracy offered by data-driven techniques such as machine 

learning—while also examining their respective limitations, including issues like high data requirements, model com-

plexity, and limited adaptability. Through this analysis, the study identifies potential for integration, proposing that the 

fusion of conventional reliability with modern technological flexibility can significantly enhance the accuracy, respon-

siveness, and overall effectiveness of flood forecasting systems. The low-lying regions in areas are vulnerable to flood-

ing as well as periodic marine transgressions, posing significant environmental and socio-economic challenges 

[Chothodi & Kuniyil, 2024]. The primary objective is to explore ways to enhance these models to deliver timely and 

reliable flood forecasts, ultimately minimizing the adverse impacts of floods on vulnerable communities and infrastruc-

ture models. Fig 1 illustrates various types of flood forecasting models. 
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Fig 1: Different types of flood forecasting models 

 

 

2. Traditional methods and Sophisticated Models in Flood Forecasting 

Traditional flood forecasting models are grounded in physically based hydrological and hydrodynamic concepts, em-

ploying mathematical equations to replicate processes like rainfall-runoff, river discharge, and water level variations. 

Models such as Hydrologic Engineering Center – Hydrologic Modeling System (HEC-HMS) and Soil and Water As-

sessment Tool (SWAT) are appreciated for their ability to realistically represent natural systems and provide physically 

interpretable outputs. However, they typically demand extensive calibration, high-resolution input data, and significant 

computational resources. In contrast, sophisticated models encompass data-driven and hybrid techniques, often lever-

aging machine learning, deep learning, and remote sensing. These modern approaches can process vast datasets, capture 

complex nonlinear patterns, and enhance forecasting precision and lead time. Despite their advantages, they can be less 

transparent and require substantial training data. Integrating the strengths of both traditional and sophisticated models 

holds great potential for developing more reliable, accurate, and efficient flood forecasting solutions. 
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    2.1 Traditional methods 

 

Traditional methods of flood forecasting have long relied on deterministic approaches that utilize historical 

hydrological data, meteorological observations, and empirical models to predict flood events. These methods 

use river gauge measurements, rainfall records, and physical models to predict flood likelihood and severity in 

specific areas. Traditional forecasting methods help assess flood risks but have limitations due to their reliance 

on historical data, fixed thresholds, and linear assumptions in hydrological processes. Fig2 illustrates various 

types of traditional flood forecasting models. 

 

Fig 2: Different types of traditional flood forecasting models 

2.1.1 Rainfall-Runoff Models 

Rainfall-runoff models are essential tools in hydrology, designed to predict the conversion of rainfall into runoff. This 

runoff represents water flow generated when stormwater, meltwater, or other sources exceed the soil's infiltration ca-

pacity. The Soil and Water Assessment Tool model can be effectively applied to rainfall-runoff analysis through thor-

ough calibration and validation processes. [ Reddy & Lingaraju, 2024]. In addition to climate change, the expansion of 

impervious surfaces due to urban development can significantly disrupt the microclimate and hydrological processes in 

small catchments. This intensified urbanization exacerbates the impacts on local environmental conditions and water 

systems. [ Muhammad & Muhammad, 2024] A multi-task Decomposition-Integration-Prediction approach has been 

employed across various regions worldwide for medium- to long-term runoff prediction [Zuo & Yan, 2024]. Applying 

the Soil Conservation Service Curve Number method, we evaluated the effect of land use and land cover on runoff 

estimation in the watershed. [Ajith & Barik, 2024]. Flood forecasting is essential for managing floods, especially in 

Kerala, India, where monsoon floods cause major social, economic, and environmental damage. Kerala's rivers, wet-

lands, and tropical climate make it highly prone to flooding during the southwest monsoon season [Tripathy et al., 2020]. 
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2.1.2. Hydrodynamic Models 

Hydrodynamic models are mathematical models used to simulate the movement of water and other fluids in various 

environments, such as rivers, lakes, oceans, estuaries, and urban drainage systems. A one-dimensional (1D) hydrody-

namic model was developed in HEC-RAS, utilizing a combination of surveyed data, spatially extracted cross-sections, 

and recorded streamflow data. The model demonstrated improved performance, providing more accurate runoff predic-

tions and better representation of river dynamics when these data were integrated effectively. [ Kashfy & Ab Ghani, 

2020]. The limitations of 1D-1D models in accurately simulating flood extent and inundation can be addressed through 

the use of 1D-2D coupled models. [ Kourtis & Tsihrintzis, 2017] Numerical modeling using Delft3D software can 

significantly enhance dredging operations by simulating the transport of sediment deposits during flood events [Pinho 

& Coelho, 2018]. The HEC-RAS 2D model, after calibration and validation, shows satisfactory performance in simu-

lating flood water levels, with a reasonable correlation coefficient and close alignment between observed and simulated 

values, indicating its potential for future flood peak prediction. [ Garg and Babu, 2023] 

2.1.3 Statistical methods 

Statistical methods in hydrology and environmental modelling are essential tools for analyzing, interpreting, and pre-

dicting natural phenomena based on historical and observed data. The flood prediction error was virtually identical for 

the direct interpolation method and the flood index procedure [Baidya & Singh, 2024]. Regression analysis as an effec-

tive tool for water supply forecasting [Radkov & Yordanova, 2008]. In Regional Flood Frequency Analysis, growth 

curves that provide flood magnitudes for various return periods are used to estimate flood magnitude and frequency at 

ungauged sites in various regions of Kerala [Thottumkal & Jothiprakash, 2019]. The flood frequency analysis using the 

Gumbel Distribution and Weibull plot position method effectively estimates flood magnitudes and recurrence intervals, 

though its robustness is limited by data availability, highlighting the need for improved data collection and consideration 

of climate change impacts in future studies. [ Sharir et al., 2025] 

2.1.4. Meteorological forecasting 

Meteorological forecasting involves several cutting-edge methods and technologies. The combination of Numerical 

Weather Prediction and Hydrological Model is used in the hydrological forecasting system, improving the predictability 

of flood forecasts [Teja et al., 2023]. The potential for successful hydrological modelling and prediction is demonstrated 

by the incorporation of the radar-based rainfall forecast [Berenguer & Sempere-Torres, 2013]. Automated time-series 

flood monitoring can be achieved through the use of multi-source remote sensing imagery [Zhao et al., 2024]. A com-

parison of Synthetic Aperture Radar-based flood maps with optical data and flood maps generated by the Moderate 

Resolution Imaging Spectroradiometer underscores the advantages of our data and approach for rapid response and 

future flood forecasting [Sherpa et al., 2020]. 

2.1.5. Coupled Hydrological-Hydraulic Models 

Hydrological and hydraulic models are essential tools for simulating the movement, distribution, and quality of water 

across natural and built environments. The MIKE model provides an accurate simulation of the flow, as indicated by 

the comparison between the estimated and observed stage hydrographs [Kamel, 2008]. Sobek-Rural/Urban offers a 

complete solution for modelling water systems, including irrigation, drainage, rivers, and sewers, as well as assessing 

flood risk and planning infrastructure [Dhondia & Stelling, 2004]. Coupled model offers a balance between 
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computational efficiency and accuracy compared to the full hydrodynamic model [Liu et al., 2018]. 

2.16. Groundwater-Based Models 

Groundwater-based models are essential for understanding and simulating the behaviour of groundwater systems, in-

cluding the flow of water through aquifers, the interaction between groundwater and surface water, and the effects of 

human activities on groundwater resources. Mod flow model reflects temporal variations in groundwater depletion, 

which might result from factors like seasonal demand, recharge rates, and aquifer characteristics [Abbood & Mustafa, 

2021]. Aquifer water levels are dropping significantly, probably due to over-pumping or lack of recharge [Lamsoge & 

Katpatal, 2009]. Groundwater and surface water flow calculations quantify hydrologic system inflows, outflows, and 

storage changes [Markstrom & Niswonger, 2008]. 

2.1.7. River Gauge Data Models 

A River Gauge Data Model for flood forecasting is a crucial component in monitoring river stages (water levels), pre-

dicting floods, and issuing early warnings. The statistical hydrological model, employing stepwise cluster analysis, de-

livers reliable and accurate predictions of complex, nonlinear hydrological processes [Wang & Huang, 2019]. Integrat-

ing diverse real-time data sources, including rainfall measurements, soil moisture, wind flow patterns, evaporation, flu-

vial flow, and infiltration, warrants further exploration to enhance the accuracy and reliability of real-time flood fore-

casting models [Piadeh & Behzadian, 2022]. 

Table 1 summarizes information about different traditional modelling studies, focusing on the type of modelling used, 

the datasets employed, accuracy, study type and the region of study.  
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Table 1: Studies based on traditional models. 

 

 

References Model type Input  Accuracy Region Study Type 

Tin, D et al., 

2024. 

Hydrological, Geophysical, 

 biological 

 climate change, 

 population 

growth,  

 urbanization, 

High Africa Regional 

Jain et al.,  

2017 
Hydrological, Metrological 

Stram flow, 

Rainfall-runoff, 

Satellite data 

High India National 

Byaruhanga 

et al., 2024  

Hydrological, Geophysical, 

biological 

Stram flow, 

Rainfall-runoff, 

Satellite data 

High 
Various 

countries 
Multinational 

Feng et al., 

2021 
Hydrological Model Streamflow Medium China Regional 

Chothodi & 

Kuniyil, 2024 
Landslide model rainfall-runoff Medium India Regional 

Muhammad 

& 

Muhammad, 

2024 

Landslide model, hydrological 

model and ML 
rainfall-runoff 

Very 

High 
Bangladesh Regional 

Zuo & Yan, 

2024 
Hydrological Model rainfall-runoff Medium China Regional 

Kashfy & Ab 

Ghani, 2020 

Hydrologic Engineering 

Center's River Analysis 

System(HEC-

RAS )hydrodynamic model 

rainfall-runoff High Philippines Regional 

Liu, Z., 

Zhang, H., & 

Liang, 

Q,2018 

Coupled Hydrological 

Hydrodynamic model 
rainfall-runoff Low UK Regional 

Mazzoleni, 

M., & 

Alfonso, L, 

2019 

Hydrological Model Sensor data high Netherland Regional 

Osman, S., & 

Abdul Aziz, 

N, 2018 

Stochastic Method Streamflow Low Malaysia Regional 
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2.1.8 Advantages of Traditional Models 

Traditional flood forecasting models such as rainfall-runoff, hydrodynamic, statistical, and meteorological approaches 

provide several notable benefits. Their simplicity and transparency make them straightforward to implement, interpret, 

and communicate, especially for practitioners and decision-makers. These models typically demand low computational 

power, making them suitable for use in areas with limited access to advanced technology. Being well-established and 

historically validated, they deliver consistent results in known hydrological conditions. Moreover, their ability to utilize 

historical and readily available data like rainfall and river gauge record makes them particularly valuable in data-scarce 

regions. Due to their robustness and reliance on conventional inputs, traditional models are also ideal for long-term 

flood forecasting and risk assessment applications. 

2.1.9 Limitations of Traditional Models 

Traditional methods for flood forecasting, while foundational to hydrology and flood risk management, have several 

limitations that can impact their accuracy, reliability, and timeliness. They depend on fixed equations and assumptions 

that often fail to reflect the complex, nonlinear behavior of flood events, particularly in the context of shifting climate 

patterns and land-use changes. These models typically demand extensive calibration and are highly sensitive to the 

accuracy and availability of input data, making them less effective in regions with limited or unreliable datasets. More-

over, their capacity for real-time forecasting is constrained, and they often struggle to incorporate modern data sources 

such as remote sensing or high-resolution meteorological inputs. Consequently, traditional methods may lack the flexi-

bility and precision required for forecasting in diverse and rapidly changing hydrological settings. Real time models can 

produce accurate hindcasts when rainfall is uniformly distributed across the drainage basin. [ Perumal & Sahoo, 2007]. 

Flash flood forecasts account for the inherent limitations and uncertainties in both meteorological and hydrological 

aspects of forecasting systems. [ Collier, 2007]. 

2.2. Sophisticated Methods 

 

Sophisticated flood forecasting methods have evolved to address the limitations of traditional approaches by integrating 

advanced technologies, real-time data, and sophisticated models that can simulate complex hydrological processes. So-

phisticated flood forecasting methods integrate advanced technologies and multidisciplinary approaches to enhance pre-

diction accuracy and timeliness. These methods leverage innovations such as numerical weather predictions, remote 

sensing, machine learning, and real-time monitoring to improve accuracy, extend forecasting horizons, and provide 

early warnings for extreme flood events. Fig 3 illustrates various types of Sophisticated flood forecasting models. 
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Fig 3: Different types of Sophisticated flood forecasting models 

 

2.2.1 Data Assimilation Methods 

 

Data assimilation techniques play a crucial role in improving the accuracy of flood forecasting by integrating real-time 

observational data like river levels, precipitation, and other meteorological variables with model predictions. The wave-

let-based multi-model Kalman filter is highly effective due to the decomposition capabilities of the wavelet transform, 

the adaptability of the time-varying Kalman filter, and the strengths of the multi-model approach [Chou & Wang, 2004]. 

The cost-effective transition of hydrologic data assimilation from research to operations can be facilitated by developing 

community-based, generic modelling and DA tools or frameworks [Liu & Weerts, 2012]. Data assimilation with the 

Best Linear Unbiased Estimator (BLUE) method improves peak discharge predictions from the Soil Conservation Ser-

vice lag and route model [Coustau & Ricci, 2013]. 

 

2.2.2 Satellite Remote Sensing 

 

Satellite Remote Sensing has become an indispensable tool for flood forecasting, monitoring, and management. The 

Global Precipitation Measurement Image Final Run products, available daily and monthly, can detect precipitation well 

and support long-term analysis [Sun & Sun, 2018]. The use of synthetic aperture radar data helps to understand the 

extent of flooding and aids in developing more effective planning strategies for risk reduction and management during 

flood events [Sp & Rahaman, 2021]. The utilization of satellite gravity observations is highly beneficial for studying 

variations in water storage across regions with areal extents comparable to individual states or river basins [Tiwari et 

al., 2011]. 

 

 

 



NEPT 10 of 42 
 

2.2.3 Numerical Weather Prediction (NWP) Models 

Numerical Weather Prediction (NWP) Models coupled with hydrological models provide a powerful framework for 

improving flood forecasting by integrating atmospheric forecasts with hydrological simulations. Using the WRF-Hydro 

model, soil moisture, runoff, and precipitation in the fully coupled system exhibited similar spatial trends, whereas 

evapotranspiration often showed differing patterns. [ Wang & Liu, 2020]. Accurate simulation in the Global Flood 

Awareness System model and better hydrological parameterization is essential for reliably capturing streamflow 

changes across different runoff regimes [Alfieri & Burek, 2013] . Rainfall forecast biases, particularly in low-resolution 

models, must be removed before using them for streamflow prediction [Shrestha & Robertson, 2012 ]. Predictions from 

the National Centre for Medium Range Weather Forecasting models are evaluated over Kerala to showcase the capa-

bilities of high-resolution models [Ashrit et al., 2020].  

2.2.4 Cloud Computing and Big Data Analytics 

 

 Cloud Computing and Big Data Analytics have transformed data storage, processing, and analysis, especially in envi-

ronmental monitoring, flood forecasting, and climate research. Google Earth Engine is a cloud-based platform designed 

for large-scale geospatial analysis, leveraging Google's vast computational power to address a wide range of critical 

societal challenges, including deforestation, drought, disasters, disease, food security, water management, climate mon-

itoring, and environmental conservation [Gorelick & Hancher, 2017]. Organizing data and geoprocesses in the Cloud 

allows integration of services to create customized solutions [Evangelidis & Ntouros, 2014]. Statistical inferences and 

big data analytics on state-provided ordinal data were used to develop an early warning system [Yusoff & Md Din, 

2015]. 

 

2.2.5 Geographical Information Systems (GIS) and Digital Elevation Models (DEM) 

 

Geographical Information Systems (GIS) and Digital Elevation Models (DEMs) are vital tools in flood forecasting, risk 

assessment, and management. This method improves flood extent mapping accuracy, especially for large floods, and 

provides a practical solution for developing countries with limited resources for traditional flood modelling [Jung et al., 

2014]. The cartographic representation supports decision-making processes related to development planning, emergency 

preparedness, and disaster mitigation through the identification of high-hazard zones. It provides a flexible framework 

for flood forecasting that requires accurate local data for better flood information management [El Morjan & Ennasr, 

2016]. Combining Geographic Information System (GIS) and remote sensing allowed for quick flood-prone area map-

ping, supporting decision-making for flood mitigation and agricultural water use [Nasr & Akawy, 2023]. The combina-

tion of remote sensing data, Geographic Information System (GIS), and Analytical Hierarchy Process (AHP), enhanced 

with fuzzy-AHP, is an effective way to create accurate predictive maps. [Vilasan & Kapse, 2021]. Sentinel-1 Synthetic 

Aperture Radar (SAR) data, processed using the Otsu algorithm in Google Earth Engine (GEE) helps map flood areas 

during disasters, aiding in the protection of lives, infrastructure, and businesses [Tiwari et al., 2020]. Flood vulnerability 

mapping was validated using 2018 and 2019 flood data, while the weighted overlay method identified suitable areas for 

flood shelters in moderately vulnerable and vulnerable sub-basins, categorizing them as highly suitable, suitable, mod-

erately suitable, or not suitable [Aju et al., 2024]. The Weighted Overlay Analysis method is used to create a flood 

hazard map and suggest measures to reduce flood risks in the River Basin [Vinod, 2013]. 
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2.2.6 Coupled Approach to Physical and Data-Driven Modelling 

Hybrid Models that couple physics-based models with data-driven approaches represent a significant advancement in 

hydrological modelling and flood forecasting. combining a machine-learning approach with the Hydrologic Engineering 

Center - River Analysis System (HEC-RAS) model has enhanced the handling of spatiotemporal uncertainties in con-

ventional flood forecasting methods [Tamiru & Wagari, 2022]. A hybrid hydrological model that integrates the Hydro-

logic Engineering Center-Hydrologic Modelling System significantly enhances forecast accuracy, particularly for pre-

dictions over extended forecasting periods. [ Sinh & Nguyen, 2024]. Integrating the Particle Swarm Optimization (PSO) 

algorithm, Temporal Convolutional Neural Network (TCN) algorithm, and Bootstrap Probability Sampling model 

demonstrates enhanced applicability and robustness in flood prediction [Yu & Liu, 2024]. Using Hydrologic Engineer-

ing Center - River Analysis System (HEC-RAS) software, the findings offer useful tools for future forecasting of natural 

and human-induced interactions [Aneesh & Thomas, 2024]. 

2.2.7 Ensemble Flood Forecasting 

 

Ensemble Flood Forecasting is a sophisticated method that uses multiple models to improve flood prediction and handle 

uncertainties in hydrological forecasts. The Hydrologic Ensemble Prediction Experiment (HEPEX) aims to advance 

ensemble forecasting capabilities and promote its adoption, highlighting the need to assess the current state of ensemble 

flood forecasting [Wu & Emerton, 2020]. Deterministic forecasting proved to be accurate, while probabilistic forecast-

ing showed promise with respect to the predicted hydrograph and a quantitative evaluation of confidence levels [Nguyen 

& Chen, 2020]. The meteo-hydro-AI approach demonstrated slight improvement, highlighting the need for further eval-

uation with larger samples of extreme flood events, while showcasing its potential for ensemble forecasting of such 

events [Liu & Yuan, 2024]. 

 

2.2.8 Internet of Things (IoT) and Sensor Networks 

 

The Internet of Things (IoT) and Sensor Networks play a pivotal role in modern flood forecasting systems. A scour 

monitoring system, developed and implemented using a vibration-based array of sensors combined with Internet of 

Things (IoT) and artificial intelligence (AI), provides real-time scour depth measurements [Lin & Lee, 2021]. An Inter-

net of Things (IoT)-based flood prediction and forecasting model focused on optimizing energy efficiency. [ Wajid & 

Abid, 2024]. Various environmental conditions were monitored using different sensors and transferred to a Google 

Sheet via IoT technology, allowing the client to remotely analyse the dataset and predict flood risks [Suresh, 2020]. 

 

2.2.9 Social Media and Crowdsourcing 

 

Social media and Crowdsourcing have emerged as valuable tools for flood forecasting and management.  The flood 

forecasting system combines weather, water flow, geospatial, and crowdsourced data with machine learning. It uses 

advanced learning methods and has been tested to accurately predict floods in specific locations and times [Puttinaov-

arat & Horkaew, 2020]. Low-cost static and dynamic social sensors can improve traditional sensor networks, making 

flood forecasting more accurate. They also support citizen observatories, where people help collect, evaluate, and 

share data to improve models and flood resilience [Mazzoleni & Alfonso, 2019]. Crowdsourcing is useful for better 

coordination, accuracy, and security in relief efforts [Gao & Barbier, 2011]. 
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Table 2 summarizes information about different sophisticated modelling studies, focusing on the type of modelling 

used, the datasets employed, accuracy, study type and the region of study. India is the region most frequently repre-

sented in the studies shown, with rainfall-runoff data being a common dataset used. 

 

 

Table 2: Studies based on Sophisticated models. 
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References Model type Input  Accuracy Region Study Type 

Arnold et al., 

1998 

The Soil and Water 

Assessment Tool (SWAT) 

model 

moisture High US Regional 

AlMansori & 

Sanker, 2020 
NWP model Streamflow High turkey Regional 

Murariu et 

al., 2010 

 

Digital Elevation Models 

(DEM) 

 sedimentation rate, 

 deposition of 

pollutants,  

erosion rate 

high 
Ukraine 

 
Regional 

Garg, C. & 

Babu, A., 

2023 

HEC-RAS 2D Model Water level high 
India 

 
Regional 

Coustau, M., 

& Ricci, 

S,2013 

Data assimilation model rainfall-runoff medium France Regional 

Sun, W., & 

Sun, Y. ,2018 
Global precipitation method rainfall-runoff high China Regional 

Sp, D., & 

Rahaman, S. 

A.,2021 

SAR model rainfall-runoff high India Regional 

Tiwari, V., 

Wahr, J. M., 

Swenson, S., 

& Singh, 

B,2011 

Satellite model Satellite data high India National 

Wang, W., & 

Liu, J. 2020 

Weather Research and 

Forecasting (WRF-hydro) 

model 

soil moisture,  

evapotranspiration, 

 generated runoff, 

high China Regional 

Alfieri, L., & 

Burek, P. A. 

2013 

GLOFAS model Streamflow high Pakistan Regional 
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Shrestha, D., 

& Robertson, 

D. 2012 

NWP model Precipitation  Australia Regional 

Gorelick, N., 

& Hancher, 

M,2017 

Google Earth Engine Satellite data Very high 
Various 

countries 

Multi 

national 

Evangelidis, 

K., & 

Ntouros, 

K,2014 

Geospatial model Satellite data high 
Various 

countries 

Multi 

national 

Yusoff, A., & 

Md Din, 

N,2015 

Bigdata model hydrological data high Malaysia Regional 

Jung, Y., 

Kim, D., & 

Kim, D,2014 

River gauge model Satellite data high Korea Regional 

 El Morjan, 

Z. E. A., & 

Ennasr, M. 

S,2016 

 Geographic Information 

Systems (GIS) model 
Satellite data high Morocco Regional 

Nasr, A., & 

Akawy, 

A,2023 

GIS model Sensor data high Egypt Regional 

Tamiru, H., 

& Wagari, 

M, 2022 

Hybrid Artificial Neural 

Network(ANN) and HEC-

RAS model 

Rainfall, 

temperature 
high Ethiopia Regional 

Sinh, N. P., 

& Nguyen, T. 

H. (F.),2024 

Hybrid Long short term 

memory(LSTM) 

and  Hydrologic Engineering 

Center - Hydrologic Modeling 

System  (HEC-HMS) model 

hydrological data high Vietnam Regional 

Yu, Q., & 

Liu, C,2024, 

Hybrid  Temporal 

Convolutional Network 

(TCN) and  Particle Swarm 

Optimization (PSO) 

hydrological data medium Thailand Regional 

Wu, W., & 

Emerton, 

R,2020 

Ensemble model hydrological data high 
Various 

countries 

Multi 

national 

 Abbood, R. 

T., & 

Mustafa, 

A,2021 

MODular Finite-difference 

FLOW (MODFLOW) model 
Streamflow high Iraq Regional 

Lamsoge, B., 

& Katpatal, 

Y,2009 

MODFLOW model Streamflow high India Regional 
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Markstrom, 

S. L., & 

Niswonger, 

R. G. ,2008 

Coupled Ground-water and 

Surface-water FLOW 

(GSFLOW) model 

Streamflow, 

Precipitation 
high US Regional 

Wang, F., & 

Huang, G. 

,2019 

Suitability of the Height 

Above Nearest Drainage 

(SCAH )model 

rainfall-runoff high China Regional 

Piadeh, F., & 

Behzadian, 

K. 2022 

Real-Time Flood Forecasting 

(RTFF) model 

soil moisture,  

wind flow patterns,  

evaporation, 

 fluvial flow 

high 
Various 

countries 

Multi 

national 

Perumal, M., 

& Sahoo, B. 

2007 

Rain gauge model rainfall-runoff high India Regional 

Collier, C. 

G,2007 
Data assimilation model 

rainfall-runoff, 

metrological 

factors 

medium UK Regional 

Chou, C.-M., 

& Wang, 

R.Y,2004 

Kalman filter model rainfall-runoff high Taiwan Regional 

Liu, Y., & 

Weerts, 

A,2012 

Data assimilation model hydrological data medium China Regional 

Teja et al., 

2023 

NWP model and Hydrological 

model 
rainfall-runoff High India Regional 

Berenguer & 

Sempere-

Torres, 2013 

Radar based model rainfall-runoff High Spain Regional 

Zhao, B., Sui, 

H., & Liu, 

J.2024 

Synthetic Aperture Radar 

(SAR) model 
rainfall-runoff High Indonesia Regional 

Kamel, A 

,2008 
MIKE model Streamflow High Iraq Regional 

Dhondia, J., 

& Stelling, 

G. S,2004 

Simulations of Overbank 

flow, Bed level changes, and 

Erosion/deposition 

processes(SOBEK )Hydraulic 

model 

Streamflow High US Regional 

Kashfy & Ab 

Ghani, 2020 

Hydrologic Engineering 

Center's River Analysis 

System(HEC-

RAS )hydrodynamic model 

rainfall-runoff High Philippines Regional 
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2.2.10 Advantages of Sophisticated System 

Flood forecasting has significantly evolved over the years, integrating a diverse range of models and technologies to 

enhance prediction accuracy, lead time, and spatial resolution. Early systems were built on foundational approaches 

such as Rainfall-Runoff, Hydrodynamic, and Statistical models, which relied on empirical formulas and physical prin-

ciples to simulate flood behavior. Accuracy improved with the development of Meteorological and Coupled Hydrolog-

ical-Hydraulic models, which connect atmospheric inputs with watershed and riverine processes. Groundwater-based 

models and River Gauge data models offer valuable localized insights but are often limited by sparse spatial coverage 

Kourtis & 

Tsihrintzis, 

2017 

MIKE model rainfall-runoff High Greece Regional 

Pinho & 

Coelho, 2018 
Delft3D model sediment data High Portugal Regional 

Baidya & 

Singh, 2024 
Interpolation method 

Flood frequency 

data 
High India National 

Radkov & 

Yordanova, 

2008 

Regression method Streamflow High Bulgaria Regional 

Thottumkal 

& 

Jothiprakash, 

2019 

L-moment model 
Flood frequency 

data 
High India National 

Arnold et al., 

1998 

The Soil and Water 

Assessment Tool (SWAT) 

model 

moisture High US Regional 

AlMansori & 

Sanker, 2020 
NWP model Streamflow High turkey Regional 

Feng et al., 

2021 
Hydrological Model Streamflow Medium China Regional 

Sandilya, 

2020 
MIKE model Streamflow High India Regional 

Shrestha et 

al., 2012 
NWP model Precipitation High Australia Regional 

Reddy & 

Lingaraju, 

2024 

SWAT model rainfall-runoff High India Regional 
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and data availability. To strengthen traditional methods, Data Assimilation techniques have been introduced to contin-

uously refine model outputs using real-time observations, while IoT and sensor-based systems provide rapid, field-level 

data collection for more responsive forecasting. Recent advances in remote sensing and computational technologies 

have further expanded capabilities—satellite remote sensing enables broad monitoring of key hydrological variables 

such as precipitation, soil moisture, and water levels, particularly in data-scarce regions. Ensemble forecasting enhances 

reliability by accounting for uncertainty through multiple scenario simulations, and the use of cloud computing and big 

data analytics allows for real-time processing of massive datasets, accelerating decision-making. Tools like Geographic 

Information Systems (GIS), Digital Elevation Models (DEMs), and Numerical Weather Prediction (NWP) models con-

tribute to improved spatial analysis and rainfall forecasting. Moreover, hybrid approaches that combine physically based 

models with machine learning techniques offer greater adaptability and predictive accuracy. Social media and 

crowdsourced data have also emerged as valuable resources for real-time, community-driven flood reporting. This evo-

lution underscores the growing need to integrate traditional approaches with cutting-edge technologies to build compre-

hensive, efficient, and resilient flood forecasting systems. 

 

2.2.11 Limitations of Sophisticated System 

 

Sophisticated flood forecasting models offer high accuracy and timely predictions, but they come with several signifi-

cant limitations. These models are highly data-intensive, often requiring extensive real-time, high-resolution datasets 

that may not be readily available in all regions. The integration of multiple advanced technologies—such as machine 

learning, IoT, satellite remote sensing, and numerical weather prediction—adds layers of complexity, making the sys-

tems challenging to calibrate, interpret, and manage. Moreover, the high computational demands and the need for spe-

cialized technical expertise can limit their application in resource-constrained settings. Other concerns include the 

opaque nature of AI-based models, uncertainties in meteorological forecasts, potential sensor malfunctions, and the 

questionable reliability of crowdsourced data. Therefore, despite their enhanced predictive capabilities, the deployment 

of these models must be approached with careful consideration of the existing technical, infrastructural, and financial 

limitations. 

 

3. Artificial Intelligence (AI) driven Models 

 

AI-driven models for flood forecasting leverage sophisticated computational methods such as machine learning, deep 

learning, and neural networks to process and analyze large volumes of hydrological, meteorological, and spatial data. 

Unlike conventional models that depend on established physical equations, AI models learn directly from historical 

datasets, enabling fast and accurate prediction of flood events. These approaches are especially adept at modeling com-

plex, nonlinear relationships between variables and can be applied across diverse regions with minimal calibration. They 

also excel in incorporating real-time data from technologies like remote sensing and IoT devices. Despite their ad-

vantages, AI models typically demand high-quality, extensive datasets and often operate as "black boxes," offering 

limited insight into the physical processes behind their predictions. Nevertheless, AI represents a transformative ad-

vancement in flood forecasting, enhancing accuracy, responsiveness, and adaptability. 

 

3.1 Machine Learning Models 

Flood forecasting uses different machine learning models, each designed to handle specific challenges based on data 

availability, flood complexity, and forecasting needs. Machine learning-based methods have the potential to enhance 
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accuracy while reducing both computation time and the costs associated with model development [Kumar & Biradar, 

2023]. Machine Learning models can predict flood stages at a key gauge station using upstream water levels and, if 

needed, downstream levels to consider backwater effects [Dazzi & Vacondio, 2021]. Heavy Rain Damage Prediction 

Model, among the selected supervised learning techniques, Random Forest and KNN demonstrated the best performance. 

[ Snehil & Goel, 2020]. The increase or decrease in precipitation convective rates, along with elevated low cloud cover 

and insufficient vertically integrated moisture divergence, may have influenced the changes in rainfall patterns in India 

[Praveen & Talukdar, 2020]. The integration of IoT data with machine learning techniques demonstrates improved 

performance in flood forecasting [Wang, 2022]. Machine learning model for SIFT extraction have the potential to im-

prove accuracy while reducing both computation time and the cost of model development [Suresh Kumar & Alemran, 

2022]. Fig 4 illustrates various types of Machine learning models. 

 

 

Fig 4: Different types of Machine Learning Models 

 

3.1.1. Linear regression 

 

This model predicts a continuous output like flood discharge level by modelling the relationship between input variables 

and the output. A regression analysis linked weighted maximum rainfall and maximum streamflow in the River Basin, 

creating equations using annual maximum daily rainfall, streamflow, and catchment area to rank flood risk for each 

catchment [Supriya & Krishnaveni, 2015]. An SMS-based warning system sends early alerts with predictions of rising 

water levels and flow speed [de Castro & Salistre, 2013]. A stochastic flood forecasting model using the stage regression 

method was applied to the River Basin, with regression coefficients and equations derived based on the least squares 

principle [Osman & Abdul Aziz, 2018]. 

 

3.1.2 Support Vector Machine 

Support Vector Machine (SVM) are used for classification or regression by finding a hyperplane that best separates the 

data into classes. SVM exhibited varying responses to different rainfall inputs, with lighter rainfall producing distinctly 

different outcomes compared to heavier rainfall [Han & Chan, 2007]. A flood forecasting model usi Supriya & 
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Krishnaveni, 2015ng SVM, combined with kernel principal component analysis (KPCA) and a boosting algorithm, can 

significantly enhance forecasting accuracy [Li et al., 2016]. The SVM model offers an operational advantage by extend-

ing the forecast lead time during typhoon events [Lin et al., 2013]. A comparative analysis of SVM, Quadratic SVM 

(Q-SVM), K-NN and Linear discriminant analysis (LDA) algorithms revealed that the Support Vector Machine (SVM) 

achieved the highest accuracy based on parametric evaluation and training-testing results [Khan et al., 2019]. The Sup-

port Vector Machine – Grasshopper Optimization Algorithm (SVM-GOA) model, integrating Support Vector Machine 

with the Grasshopper Optimization Algorithm, has been developed and evaluated using meteorological data, demon-

strating its superiority over SVM alone for accurate flood prediction. [ Sahoo & Ghose, 2022]. 

 

3.1.3 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is used in flood forecasting to classify or predict flood events based on historical data. It 

works by comparing new observations with the K most similar past events in the dataset, using distance metrics like 

Euclidean distance. KNN is beneficial for flood forecasting because it is simple, non-parametric, and can adapt to com-

plex patterns in hydrological and meteorological data. Various correlation coefficients are utilized for feature selection, 

combined with the k-nearest neighbors (k-NN) algorithm, to enhance flood prediction accuracy [Gauhar et al., 2021]. 

The k-nearest neighbor (KNN) method, coupled with the Kalman Filter (KF), serves as an effective tool for real-time 

flood forecasting. [ Liu et al., 2016]. A hydrodynamic model integrated with the K-nearest neighbors (KNN) algorithm 

providing critical lead time for emergency decision-making and demonstrating significant potential in flash flood man-

agement. [ Zhou et al., 2024]. The spatially enhanced KNN-based framework offers an innovative, efficient, and user-

friendly approach for assessing risks to the tourism industry amid climate change. [ Liu, S. et al., 2021]. The Ensemble-

KNN forecasting method, utilizing historical samples, helps mitigate uncertainties arising from modelling inaccuracies. 

[ Yang et al., 2020]. 

 

3.1.4 Decision Tree 

Decision tree breaks down data by decision rules to model complex relationships between variables and flood events. 

The IoT-based Decision Tree Algorithm achieves superior classification accuracy. [ Vinothini & Jayanthy, 2019]. The 

integration of decision trees with ensemble models offers reliable estimates of flood susceptibilities, producing trust-

worthy susceptibility maps for flood early warning systems and mitigation planning [Pham et al., 2021]. Three machine 

learning algorithms were tested for flood prediction using a historical rainfall dataset. Decision Tree, Logistic Regres-

sion, and Support Vector Classification were evaluated, and Decision Tree showed reasonable performance [Khosh-

konesh et al., 2024]. Background features affecting predictions are learned, and the model's inner workings are explored 

using explainable AI modules, with results validated using historical monthly rainfall data from Kerala, India [Kadiyala 

& Woo, 2022]. 

 

3.1.5 Random Forest 

Random Forest is a powerful and widely-used machine learning algorithm that belongs to the ensemble learning family. 

It is an extension of decision trees, combining multiple decision trees to improve model accuracy and reduce overfitting. 

The performance of the random forest models highlights their effectiveness in accurately filling the gaps in unmapped 

floodplains [Woznicki et al., 2019]. Various methods, including SVM, Regression, Random Forest, Neural Networks, 

and Bayesian Networks, are available, with Random Forest and Neural Networks demonstrating superior performance 

compared to the others. [Sharma et al., 2022]. Using Assam's historical rainfall and geospatial data, machine learning-

based flood prediction identified the Random Forest algorithm as the top-performing model [Myrchiang et al., 2023]. 
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The table 3 provides a comparative summary of various machine learning-based flood forecasting models, 

evaluating them based on modelling type, input datasets, accuracy, computational requirements, lead time, 

and regional applicability to identify the best-performing model in each case. 

 

Table 3: Studies Based on Machine learning Methods 

 

References Modellin

g type 

Input 

Dataset 

used 

Accur

acy 

Computa

tional 

Needs 

Lead 

Time 

Region Best 

Performed 

Model 

Nguyen D. T, & 

Chen,S.T. ,2020 

KNN, 

SVM, 

Fuzzy 

inference 

model 

Rainfall -

Runoff 

Moder

ate 

Low  Fast Taiwan KNN 

Liu Y., & Yuan 

X. ,2024 

Meteo-

hydro-AI, 

Meteo-

hydro 

Rainfall -

Runoff 

High high moderate China meteo-

hydro-AI 

Suresh, S,2020 DT Sensor data Moder

ate 

low Fast India DT 

Kumar, K. S. R, & 

Biradar R. V,2023 

ANN, 

KNN, 

LR, 

SVC, 

DT, 

RF 

 air 

pressure,  

humidity,  

 

temperature 

Moder

ate 

medium fast India LR 

Snehil & Goel R,2020 GNBT, 

KNN 

Flood 

damage 

data 

moder

ate 

Low   Fast India KNN 

Wang Q,2022 SVR, 

DT, 

KNN 

IoT data moder

ate 

medium Fast Sweden KNN 

Suresh Kumar V, & 

Alemran A,2022 

SVM, 

DT, 

RF 

Spatial 

Data 

moder

ate 

medium moderate India SVM, DT 

Supriya, P, & 

Krishnaveni M,2015 

LR Rainfall -

Runoff, 

Stream 

flow 

moder

ate 

low Fast India LR 

Han, D, & Chan 

L,2007 

Naïve 

bayes, 

SVM 

Streamflow moder

ate 

medium Fast China SVM 

Li S., Ma K., Jin Z., & 

Zhu Y ,2016 

SVM Historical 

Flood data 

moder

ate 

medium fast China SVM 

Lin G.-F., Chou Y.-C, 

& Wu M.-C. ,2013 

SVM Rainfall -

Runoff 

Moder

ate 

Medium  fast Taiwan SVM 
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Khan. T, Shahid Z, 

Alam M, Su'ud, M. M, 

& Kadir. K,2019 

SVM,  

Q-SVM, 

 K-NN, 

 LDA 

Rainfall -

Runoff 

Moder

ate 

medium fast Malaysia, 

Indonesia, 

Bangladesh  

France 

SVM 

Sahoo A, & Ghose. 

D,2022 

SVM-

GOA, 

SVM 

meteorolog

ical 

high high moderate India SVM-

GOA, 

Gauhar, N, Das S., & 

Moury K. ,2021 

KNN Rainfall -

Runoff 

moder

ate 

low fast Bangladesh KNN 

Liu. K, Li. Z, Yao C, 

Chen. J, Zhang, K., & 

Saifullah,M. , 

2016 

KNN Rainfall -

Runoff 

moder

ate 

Low  fast China KNN 

Zhou.N., Hou. J, 

Chen.H.,et al. ,2024 

KNN Streamflow moder

ate 

Low  fast China KNN 

Liu, S., Liu, R., & Tan, 

N, 2021 

KNN Temporal, 

spatial data 

moder

ate 

Low  fast China KNN 

Yang, M, Wang, H, 

Jiang, Y, & et al. ,2020 

E KNN Rainfall -

Runoff 

moder

ate 

medium fast China E KNN 

Vinothini, K, & 

Jayanthy S ,2019 

DT Streamflow moder

ate 

Low  fast India DT 

Pham, B. T et al, 2021 DT Streamflow moder

ate 

Low  fast China DT 

Khoshkonesh.A,Nazar

i.R,Nikoo, M. R.& 

Karimi M ,2024 

Hydrodyn

amic 

Model, 

ML 

Streamflow high high moderate London ML 

Woznicki et al., 2019 RF flood-

related soil 

characterist

ics,  

land cover 

high medium moderate United 

States 

RF 

Myrchiang et al., 2023 RF historical 

rainfall, 

 geospatial 

data 

high medium moderate India RF 

Wu et al., 2020 GBDT Rainfall -

Runoff 

high medium moderate China GBDT 

Kadiyala & Woo, 2022 LR, 

DT, 

RF, 

KNN, 

SVM 

Rainfall 

data 

moder

ate 

low medium India LR 

3.1.6 Advantages of Machine learning model 

Machine learning (ML) techniques have revolutionized flood forecasting by enabling the modeling of com-

plex, nonlinear relationships among hydrological variables without relying on predefined physical equations. 

Algorithms like Random Forest (RF) and Decision Tree (DT) are particularly effective at identifying varia-

ble interactions and managing incomplete or noisy datasets, making them well-suited for flood prediction 
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and classification tasks. Support Vector Machines (SVM) deliver high accuracy in binary classification 

problems such as flood versus no-flood scenarios, especially where data is limited. While Linear Regression 

is a simpler method, it remains useful for short-term forecasting of water levels and discharge in data-rich 

environments. The K-Nearest Neighbors (KNN) algorithm excels in recognizing patterns and categorizing 

flood stages based on historical data similarity. These ML approaches are valued for their interpretability, 

ease of use, and ability to integrate diverse data sources like rainfall, soil moisture, and streamflow measure-

ments. 

3.1.7 Limitations of Machine learning model 

Although machine learning models—such as linear regression, support vector machines, K-nearest neighbors, decision 

trees, and random forests—provide strong data-driven capabilities for flood forecasting, they also come with notable 

limitations. These models typically demand large, high-quality, and well-annotated datasets for effective training, which 

may not be readily available in many flood-affected areas. They often function as black-box systems, offering limited 

transparency into the underlying physical processes, which can hinder acceptance by domain experts and decision-

makers. Furthermore, ML models are prone to overfitting, particularly when handling complex inputs or insufficient 

training data. Their generalizability across different geographic regions or unobserved conditions is often weak, and 

they generally do not incorporate physical laws or hydrological principles unless deliberately combined with other 

methods. Consequently, purely ML-based models may face challenges in delivering accurate long-term predictions, 

ensuring physical consistency, or adapting in real-time without being integrated into hybrid or physically informed 

frameworks. 

 

3.2. Deep Learning Models 

 

Deep learning encompasses various types of models; each suited for specific tasks and data types. An urban flood data 

warehouse, comprising both structured and unstructured data, was developed, and a deep learning-based regression 

model was constructed to predict the depth of urban flooded areas [Wu et al., 2020]. DNN models offer a promising 

approach for creating accurate flood risk assessment maps, enhancing flood hazard management in the area [Pham et 

al., 2021]. The accuracy and efficiency of the spatial reduction and reconstruction approach and a deep learning frame-

work are evaluated through its application to a real-world river system. [Zhou et al., 2021]. Fig 5 illustrates various 

types of Deep learning models. 
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Fig 5: Different types of Deep Learning Models 

 

3.2.1 Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are a class of machine learning models inspired by the structure and functioning of 

the human brain. They consist of layers of interconnected nodes (neurons) that can learn complex patterns from data. 

Artificial Neural Networks (ANNs) serve as effective predictors of flood occurrences, even in regions characterized by 

predominantly microclimatic conditions [Dhunny et al., 2020]. ANN offers a dependable approach for identifying flood 

hazards in the River Nile [Mitra et al., 2016]. An embedded system combining IoT and machine learning demonstrates 

significant enhancement in predicting the probability of floods in a river basin [Dtissibe et al., 2020]. The Ensemble 

Artificial Neural Network model effectively predicted flooding, showing comparable or superior performance with short 

training datasets at appropriate time intervals compared to models using long training datasets [Dai et al., 2024]. A 

multi-layered artificial neural network, utilizing real-time monitoring sensors and systems, accurately predicted flood 

levels with minimal overall difference from actual levels across the tested dataset [Cruz et al., 2018]. 

 

3.2.2 Multilayer Perceptron 

 

Multilayer perceptron is particularly useful for classification and regression tasks, including applications in areas like 

flood forecasting, where it can model the relationship between environmental variables and flood events. A Multilayer 

Perceptron (MLP) can serve as an effective algorithm for predicting flood events by utilizing rainfall time series data 

and water levels in a weir [Widiasari et al., 2017]. Feed-forward and recurrent multilayer perceptron have proven to be 

effective tools for flash flood forecasting [Darras et al., 2014]. An operational flood forecast model utilizing a Multilayer 

Perceptron Artificial Neural Network (MLP-ANN) is proposed for this catchment to provide short-term flood predic-

tions [Valles, 2023]. A hybrid system combining neural networks and fuzzy logic is utilized for data partitioning, inte-

grating specialist knowledge to develop intelligent solutions for river flow prediction [Fajardo-Toro et al., 2013]. The 

MLPNN algorithm, applied to monthly time series data of the Standardized Precipitation Evapotranspiration Index, can 

predict floods effectively [Ali & Hussain, 2017]. 
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3.2.3 Convolutional Neural Network 

They use convolutional layers to automatically extract features from input data. The CNN method demonstrates signif-

icant potential for real-time flood modelling and forecasting due to its simplicity, high performance, and computational 

efficiency [Kabir et al., 2020]. A flood susceptibility map can be developed using a deep CNN algorithm [Wang et al., 

2020]. A two-dimensional (2D) Convolutional Neural Network (CNN) demonstrated higher accuracy in predicting flood 

peaks and arrival times, with lead times of 24 hours and 36 hours, respectively [Chen et al., 2021]. The CNN flood 

forecasting model, which incorporates hydrodynamics, flow routing, rainfall-runoff, and snowmelt processes, demon-

strates higher accuracy in predicting past floods [Rao & Supraja, 2024]. 

 

3.2.4 Recurrent Neural Network 

 

Specialized for sequential data where current inputs depend on previous inputs. They maintain a hidden state to capture 

information from previous time steps. A recurrent neural network is utilized to develop a real-time flood forecasting 

model, enabling accurate prediction of flood trends and peak occurrences during the flood period [Cai & Yu, 2022]. 

Recurrent neural networks demonstrated superior performance in both single-step and multi-step forecasting, making 

them a recommended tool for river flow prediction [Kumar et al., 2004]. Internal recurrent neural networks (IRNN) are 

employed for nonlinear system identification and are particularly effective for water flood assessment [Murariu et al., 

2010]. 

 

3.2.5 Long Short-Term Memory Network 

 

It is designed to overcome the vanishing gradient problem in traditional RNNs, enabling better learning of long-term 

dependencies. A local spatial sequential long short-term memory (LSTM) neural network effectively captures the at-

tribution information of flood conditioning factors and the local spatial characteristics of flood data, while also pos-

sessing strong sequential modelling capabilities to address the spatial relationships of floods [Fang et al., 2021]. A hybrid 

approach integrates outputs from traditional physics-based models with historical data to train Long Short-Term 

Memory (LSTM) networks, enhancing flood forecasting by addressing computational efficiency and data scarcity chal-

lenges [Li et al., 2024]. LSTM processes river levels, rainfall data, and water discharge as inputs to predict flood or no-

flood scenarios, demonstrating high accuracy in results [Kewat et al., 2022]. The LSTM model predicts peak flood 

arrival time with an absolute error of under 3 hours [Liu et al., 2023]. The Spatio-Temporal Attention LSTM model 

outperforms support vector machines (SVM), fully connected networks (FCN), and traditional LSTM models, demon-

strating superior performance and high research value [Ding et al., 2019]. LSTM provided more accurate predictions of 

downstream water elevation levels compared to multiple linear regression models [Widiasari et al., 2018]. The Vector 

Direction -LSTM model integrates flood runoff vectorization with the LSTM neural network, enhancing the exploration 

of rising and receding water patterns, minimizing training gradient errors, and improving flood process simulation [Xie 

et al., 2024]. 

The table 4 provides a comparative summary of various deep learning-based flood forecasting models, evaluating 

them based on modelling type, input datasets, accuracy, computational requirements, lead time, and regional applica-

bility to identify the best-performing model in each case. 

Table 4: Studies based on deep learning 
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References Modelling 

type 

Input Dataset 

used 

Accur

acy 

Computati

onal Needs 

Lead 

Time 

Region Best 

Performed 

Model 

Lin Y.-B, & 

Lee, F.Z, 2021 

R-CNN Rainfall -Runoff Very 

high 

Very high moderate US R CNN 

Wajid M, & 

Abid M. K, 

2024 

LR 

,DT, 

ANN 

humidity, 

 temperature, 

 rainfall, 

waterflow 

high medium fast China ANN 

Puttinaovarat S, 

& Horkaew, 

P,2020 

MLP meteorological, 

hydrological, 

 geospatial,  

crowdsource big 

data, 

Big 

Crowdsourced 

data 

high medium moderate Thailand MLP 

Dazzi, S, & 

Vacondio R, 

2021 

SVR, 

MLP, 

LSTM 

Streamflow high high Moderate Italy LSTM 

Snehil & Goel, 

R,2020 

GNBT, 

KNN 

Flood damage 

data 

moder

ate 

Low   Fast India KNN 

Praveen B, & 

Talukdar 

S. ,2020 

 

 ANN-MLP 

Rainfall -Runoff high medium moderate India ANN MLP 

de Castro J. T, & 

Salistre, G,2013 

ANN, 

LSTM, 

SVM, 

DT 

Rainfall -

Runoff, 

Stream flow 

high high moderate United 

States 
LSTM 

Sharma et al, 

2022 

ANN 

,BN, 

RF 

   

Rainfall -Runoff high high moderate India ANN 

Pham et al, 2021 DNN hazard, 

 exposure,  

 vulnerability. 

high high moderate Vietnam DNN 

Zhou et al., 2021 LSTM Streamflow high high moderate Australia LSTM 

Dhunny et al, 

2020 

ANN Climatic Factors moder

ate 

medium moderate Mauritius ANN 

Mitra et al, 2016 ANN Sensor data moder

ate 

medium moderate India ANN 

Dtissibe et al, 

2020 

MLP Streamflow moder

ate 

medium moderate France MLP 

Dai et al, 2024 EANN Streamflow high high moderate China EANN 

Cruz et al, 2018 MANN Rain Gauge,  

Water Level, 

 Soil Moisture 

Sensors 

moder

ate 

medium moderate Philippine

s 
MANN 
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Widiasari et al, 

2017 

MR, 

MLP 

Hydrological 

Data 

moder

ate 

medium moderate Indonesia MLP 

Darras et al, 

2014 

MLP Streamflow moder

ate 

medium moderate France MLP 

Valles, 2023 MLP ANN Rainfall-runoff high high moderate El 

Salvador 
MLP ANN 

Fajardo-Toro et 

al, 2013 

Hybrid AI 

model 

Streamflow high high moderate Colombia Hybrid AI 

model 
Ali & Hussain, 

2017 

MLPNN Climatic Factors moder

ate 

medium moderate Pakistan MLPNN 

Kabir et al, 2020 SVR, 

CNN 

hydrodynamic 

factors 

high high moderate UK CNN 

Wang et al, 

2020 

SVM, 

CNN 

Historical Flood 

data 

high high moderate China CNN 

Chen et al, 2021 CNN Streamflow high high moderate China CNN 

Rao & Supraja, 

2024 

CNN hydrodynamics, 

 flow routing, 

 rainfall-runoff,  

 snow melting 

high high moderate India CNN 

Cai & Yu, 2022 Hybrid 

RNN 

Rainfall, 

Stream Flow 

high high short China Hybrid 

RNN 
Kumar et al, 

2004 

RNN Streamflow moder

ate 

medium short India RNN 

Murariu et al, 

2010 

LSTM Spatial Data high high medium China LSTM 

Li et al, 2024 LSTM Historical and 

Physical data 

high high medium China LSTM 

Kewat et al, 

2022 

LSTM  River level, 

 Rainfall data  

water discharge  

high high medium India LSTM 

Liu et al, 2023 RNN, 

GRU 

Hydrological 

Data 

high medium medium China RNN 

Ding et al, 2019 SVM, 

FCN, 

LSTM, 

STALSTM 

Precipitation, 

 soil moisture,  

evaporation 

Very 

high 

Very high short China STA LSTM 

Widiasari et al, 

2018 

LSTM Hydrological 

Data 

high high medium Indonesia LSTM 

Xie et al, 2024 VD LSTM Hydrological 

Data 

Very 

high 

Very high short China VD LSTM 

3.2.6 Advantages of Deep Learning Model 

In parallel, deep learning (DL) models have emerged as some of the most impactful advancements in flood forecast-

ing, due to their strength in capturing temporal, spatial, and sequential patterns in data. Recurrent Neural Networks 

(RNNs) and their more advanced variant, Long Short-Term Memory (LSTM) networks, are particularly effective at 

handling time-series data such as precipitation and river discharge, making them ideal for dynamic flood prediction. 

Convolutional Neural Networks (CNNs), when applied to spatial datasets like satellite imagery or gridded rainfall, 

enhance capabilities in flood detection and mapping. Artificial Neural Networks (ANNs) and Multi-Layer Perceptrons 

(MLPs) continue to be widely used for their adaptability in modeling nonlinear systems, especially when combined 
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with physical or statistical models. The emergence of hybrid frameworks—integrating ML/DL with traditional hydro-

logical models—offers promising improvements in accuracy, reliability, and resilience. These advancements are driv-

ing the development of next-generation flood forecasting systems that are not only accurate and adaptive but also ca-

pable of real-time deployment across diverse environments. 

3.2.7 Limitations of Deep Learning Model 

Deep learning models—such as Artificial Neural Networks (ANN), Multilayer Perceptrons (MLP), Convolutional 

Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) networks—

excel at modeling complex, nonlinear patterns in flood forecasting. However, they present several challenges. These 

models are highly data-dependent, requiring vast amounts of high-quality, high-resolution labeled data for effective 

training, which is often scarce, especially in under-monitored regions. Their black-box characteristics hinder interpret-

ability, making it difficult to trace how predictions are formed—this can limit transparency and stakeholder confi-

dence. Deep learning techniques are also computationally demanding, requiring substantial processing power and 

memory, particularly during the training phase. They are prone to overfitting, especially with limited or noisy datasets, 

and their ability to generalize to different locations or unseen flood scenarios is often limited. Furthermore, deep learn-

ing models do not inherently incorporate physical hydrological principles, necessitating hybrid approaches that com-

bine them with domain knowledge to ensure realistic, reliable flood forecasting outcomes. 

4. Analysis and Observation 

 

Flood forecasting plays a vital role in disaster management and risk mitigation by helping to reduce damage to life and 

property. Over time, researchers have introduced a range of predictive models, from conventional hydrological ap-

proaches to cutting-edge machine learning and deep learning techniques. This review examines both traditional and 

contemporary flood forecasting methods, emphasizing their advantages, limitations, and emerging trends. 

 

     Traditional methods such as hydrological and statistical models form the foundation, while advanced techniques like 

hydrodynamic and groundwater models enhance predictive capabilities. Meteorological forecasting and river gauge data 

integration play critical roles in improving model reliability and early warning systems. Tools such as MIKE 11, Sobek, 

MODFLOW, and GSFLOW demonstrate the diversity and specialization of modeling techniques. Overall, combining 

these approaches provides a comprehensive framework for flood prediction and water resource management.             

 

Modern flood forecasting methods have significantly advanced by integrating cutting-edge technologies, real-time data, 

and sophisticated modeling techniques. These innovations address the limitations of traditional approaches and enhance 

forecasting accuracy, extend prediction horizons, and provide timely early warnings for extreme flood events. The in-

tegration of modern technologies, such as IoT, cloud computing, and big data analytics, has transformed flood forecast-

ing systems. Hybrid models that combine data-driven and physics-based approaches provide greater accuracy and ro-

bustness. Real-time monitoring and satellite remote sensing facilitate data acquisition in remote areas, improving fore-

casting reliability. Ensemble approaches address uncertainties effectively, enabling probabilistic flood forecasting. So-

cial media and crowdsourcing are emerging as supplementary tools to enhance situational awareness and disaster re-

sponse. 

The referenced studies on flood forecasting predominantly utilize features such as rainfall-runoff data, hydrological data, 

stream flow, weather data, satellite data, sensor data, crowdsourced data, and crop damage. Among these, rainfall-runoff 
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data constitutes the largest category at 33%, highlighting its critical role in flood prediction. Stream flow data closely 

follows at 32%, emphasizing the importance of water flow measurements in forecasting models. Hydrological data, 

accounting for 10%, includes parameters like water levels and soil moisture, which are essential for understanding wa-

tershed dynamics. Satellite data contributes 9%, offering valuable spatial insights, while sensor data adds 5%, providing 

on-ground observations. Weather data, at 4%, incorporates factors like temperature and humidity, and crowdsourced 

data, also at 4%, reflects the utility of citizen science in enriching datasets. Finally, crop damage data, representing 3%, 

is included to evaluate the socio-economic impacts of floods. Figure 6 further illustrates these dataset statistics, under-

scoring the dominance of rainfall-runoff and stream flow data in flood forecasting research. 

 

 

 

Fig 6: dataset statistics in Flood forecasting studies 

 

 

Fig 7 presents the statistics of flood forecasting studies over various years, based on the referred studies. The graph titled 

"Flood Forecasting Studies" illustrates a significant increase in the number of studies conducted on flood forecasting 

over the period 1995 to 2024. Starting with a modest 3 studies in the 1995-2000 period, the number gradually increased 

to 4, 6, and 18 in the subsequent five-year intervals. However, a remarkable surge occurred between 2016 and 2020, 

with the number of studies reaching 45. This trend continued with another 48 studies conducted between 2021 and 2025, 

indicating a sustained high level of research activity in this field. 
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Fig 7: Statistics of Flood forecasting studies from 1995-2025 

 

The fig 8 illustrates the statistics of machine learning models based on the number of studies conducted for each model. 

K-Nearest Neighbors is the most studied method among those listed. Random Forest and Decision Trees are compara-

tively less studied. Logistic Regression has the least studies at the beginning of the trend, but Support Vector Machine 

shows a rise before the peak. 

 

 

Fig 8: Statistics of Machine learning Models in flood forecasting literature 

 

A Fig 9 presents the statistical distribution of deep learning models based on the number of studies conducted for each 

model. Artificial Neural Networks (ANN) seem to dominate the study or application in this context, followed by Con-

volutional Neural Networks (CNN). Recurrent Neural Networks (RNN) and Multilayer Perceptron (MLP) have smaller 
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shares, indicating fewer studies or applications. Long Short-Term Memory (LSTM) models have a moderate represen-

tation, likely due to their popularity in time-series or sequential data tasks. 

 

 

 

Fig 9: Statistics of Deep learning Models in flood forecasting literature 

 

Fig 10 illustrates the prediction accuracy of various traditional flood forecasting models. Rainfall-Runoff Models and 

Groundwater-Based Models exhibit High accuracy, reflecting their effectiveness in capturing critical hydrological pro-

cesses. River Gauge Data Models have medium accuracy, relying on real-time river level data. In contrast, Hydrody-

namic Models, Statistical Methods, and Hydrological and Hydraulic Models show Low accuracy, likely due to limita-

tions in data requirements, assumptions, or dynamic adaptability. This chart underscores the varying reliability of these 

models and the potential need for integrating or advancing methodologies for better accuracy. 
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Fig 10: Prediction Accuracy of Traditional Flood Forecasting Models 

 

Fig 11 illustrates the prediction accuracy of various modern flood forecasting methods, categorized into Low, Medium, 

High, and Very High levels. Deep Learning Models and Machine Learning Models demonstrate the highest accuracy 

(Very High), highlighting their advanced capabilities in handling complex data patterns. Hybrid Models and Ensemble 

Flood Forecasting achieve High accuracy due to their integrated approach. Methods like GIS and DEM, IoT and Sensors, 

and social media and Crowdsourcing are rated Medium, reflecting moderate reliability. Cloud Computing and Big Data 

Analytics and Numerical Weather Prediction also achieve medium accuracy, while Data Assimilation Techniques and 

Satellite Remote Sensing are rated Low, likely due to limitations in data availability or processing. This chart under-

scores the effectiveness of advanced computational techniques for improving flood prediction. 

 

 

 

Fig 11: Prediction Accuracy of Sophisticated Flood Forecasting Models 

 

Fig12 illustrates the distribution of flood forecasting studies across various countries, revealing a strong concentration 

in India, which leads with approximately 11 studies. The US follows with around 4 studies, while China and "Various 

Countries" each have roughly 6 and 3 studies respectively. All other listed countries, including regions in Africa, Aus-

tralia, Greece, Bulgaria, Indonesia, the Philippines, Taiwan, Pakistan, Thailand, and Egypt, show significantly lower 

engagement in forecasting studies, with each registering 2 or fewer. This disparity highlights a potential focus on India, 

followed by the US and China, in this field of research. 
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Fig12: Statistics of Flood forecasting studies across countries 

The fig13 presents the number of research article publications focusing on flood forecasting with Machine Learning and 

Deep Learning across various nations. China leads with the highest number of publications, significantly surpassing all 

other countries. India holds the second-highest number, while the US, UK, France, Thailand, Indonesia, Taiwan, Neth-

erlands, Bangladesh, Pakistan, and Australia all exhibit considerably lower publication counts. This disparity highlights 

a strong concentration of research output in China and, to a lesser extent, India in this specialized area of flood forecast-

ing, suggesting a potential leadership role in advancing these techniques, while the remaining countries demonstrate 

comparatively less activity in terms of published research. 
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Fig 13: Flood forecasting with Machine and Deep Learning across nations 

The comparison between traditional, sophisticated, and hybrid flood forecasting methods reveals distinct differences in 

their performance and operational needs. Traditional methods provide moderate to high accuracy with medium data 

requirements and lower resource demands, making them more feasible for areas with limited infrastructure. However, 

their real-time effectiveness and adaptability to different regions are only moderate. Sophisticated methods, such as 

those using machine learning and deep learning, offer improved accuracy and real-time capabilities but require large 

datasets and significant computational power. Hybrid models, which combine traditional and modern techniques, deliver 

the highest levels of accuracy, real-time applicability, and adaptability across regions. Despite these advantages, they 

come with very high data demands, require advanced computational systems, and depend on specialized technical 

knowledge making them most suitable for regions with robust forecasting infrastructure. 

Traditional flood forecasting methods, including statistical and hydrological models, provide moderate to high accuracy, 

rely on medium levels of data, and are generally suitable for regions with limited technical resources. In contrast, so-

phisticated techniques deliver higher accuracy and better real-time performance but require large datasets and significant 

computational capabilities. Hybrid models, which combine physical and data driven approaches, achieve the highest 

accuracy and adaptability, though they demand extensive data and substantial resources. 

Criteria Traditional Methods Sophisticated Methods Hybrid Models 

Accuracy Moderate to high High Very High 

Data requirement Medium High Very High 

Real time applicability Moderate High Very High 

Resource need Low to Medium High Very High 

Regional Adaptability Moderate High Very High 

Fig 14: comparative matrix showing Traditional vs. Sophisticated vs. Hybrid methods 

5.Research Gaps and Future Directions 

Although hybrid models have gained prominence in flood forecasting, several critical gaps remain. A key challenge 

lies in the absence of standardized frameworks for integrating diverse modeling approaches such as combining data-

driven techniques with physics-based or statistical models which often leads to inconsistent performance and limited 

reproducibility. Most existing hybrid models are calibrated using region-specific datasets, reducing their applicability 

across varied hydrological and climatic zones. Moreover, determining the optimal trade-off between model complex-

ity and computational efficiency especially for real-time forecasting remains unresolved. Other issues include limited 

interoperability among datasets, the scarcity of high-resolution, multi-source data, and inadequate incorporation of 

dynamic uncertainties such as those arising from climate change, evolving land use, and socio-economic transfor-

mations. These limitations restrict the overall robustness, transferability, and adaptability of hybrid models. 

Advancing hybrid modeling in flood forecasting calls for the creation of integrated frameworks that support the seam-

less fusion of multiple modeling techniques, ideally built on interoperable data standards and opensource infrastruc-

ture. There is also a growing need to develop interpretable and explainable hybrid models by embedding transparent 

AI methods alongside established physical modeling approaches to build stakeholder confidence. To enhance real time 

forecasting potential, future models should leverage emerging technologies like edge computing, federated learning, 
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and lightweight architectures to reduce latency and computational demands. Modular model designs that allow adap-

tive updates in response to incoming data or environmental changes will be essential. Additionally, incorporating in-

novations such as synthetic data generation, transfer learning, and multi objective optimization will boost generaliza-

bility and resilience, making hybrid models more effective across diverse flood-prone regions facing uncertain future 

conditions. 

6. Conclusion 

This review illustrates the progression of flood forecasting methodologies from conventional hydrological and statisti-

cal models to advanced machine learning (ML) and deep learning (DL) techniques. While traditional approaches have 

laid the groundwork for flood prediction, they often fall short in capturing the complex, nonlinear, and spatiotemporal 

dynamics of flood events. In contrast, ML and DL models such as Random Forest, Support Vector Machines (SVM), 

Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN) offer improved accuracy by leverag-

ing large datasets and sophisticated algorithms. However, these models can be prone to overfitting and may lack trans-

parency. Hybrid models, which integrate physical knowledge with data-driven techniques, represent a highly promis-

ing direction. By combining strengths from both domains, they improve feature extraction, enhance generalizability, 

support real-time forecasting, and adapt effectively to varied hydrological settings. 

Despite these developments, important research gaps persist. Limited data availability, especially in low resource re-

gions, remains a major constraint. Furthermore, the absence of standardized evaluation frameworks across different 

geographic and climatic contexts hinders model comparison and validation. Real-time operational use and integration 

with early warning systems are still in early stages, and the black-box nature of many AI-driven models continues to 

present challenges for interpretability and stakeholder confidence. 

To bridge these gaps, policymakers should prioritize investment in open-access hydrometeorological data systems and 

promote the adoption of AI-enhanced models within official forecasting and disaster management frameworks. Re-

searchers should focus on developing robust, interpretable, and data-efficient hybrid models that leverage remote sens-

ing, IoT technologies, and real-time data assimilation. A collaborative, interdisciplinary effort encompassing hydrol-

ogy, data science, and environmental policy is essential to advance flood forecasting systems that are accurate, scala-

ble, and resilient in the face of evolving climate challenges. 
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