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ABSTRACT

Flood forecasting is considered critical in the world, where communities, infrastructure, and the environment are
placed at significant risk by floods. In this study, a comprehensive analysis is provided of traditional and sophisti-
cated flood forecasting methods with an emphasis on their strengths, limitations, and applicability in different sce-
narios. Traditional methods, including empirical rainfall-runoff relationships and historical flood data analysis, have
been relied upon as foundational approaches to predicting flood events based on historical patterns and local
knowledge. However, these methods are often lacking in precision and responsiveness to real-time changes in cli-
mate and land use. In contrast, the accuracy and lead time of flood forecasts have been improved through the lev-
eraging of advanced computational models, remote sensing, and machine learning algorithms, deep learning algo-
rithms in modern techniques. Technologies such as hydrodynamic modelling, satellite-based monitoring, machine
learning, deep learning and hybrid models have been demonstrated to offer higher predictive capabilities by inte-
grating real-time data and spatial analysis. Case studies from recent flood events are analyzed in this study, with
comparisons drawn between the accuracy, efficiency, and adaptability of both approaches. The findings suggest
that while traditional methods are valued for their simplicity and low cost, modern forecasting methods provide
greater precision and adaptability, which are essential for proactive disaster management in a changing climate.
This study recommends a hybrid approach that integrates traditional knowledge with modern technology to enhance

the accuracy and dependability of flood forecasting systems.
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INTRODUCTION

Flood forecasting plays an essential role in mitigating the impacts of floods by providing early warnings, enabling timely
evacuations, and guiding flood management efforts. Over the years, flood forecasting methods have evolved from tra-
ditional, physically-based models to modern, data-driven techniques, reflecting advancements in computational power,
data availability, and technology. This literature review explores both traditional and modern methods of flood forecast-
ing, examining their applications, strengths, and limitations. Concerns around the world have undeniably been escalated
by the increasing frequency, intensity, and geographical reach of natural disasters, driven in part by factors such as
climate change, population growth, and urbanization [Tin et al., 2024]. The reliability of forecasts has drastically in-
creased due to advances in meteorological and hydrological models, richer data from satellites, and improved analytical
techniques [Jain et al., 2017]. Integrating machine learning into physical models enhances the data collection and pro-
cessing of remotely sensed data, with cloud computing enabling faster processing and greater computational efficiency
for heavy data and model integrations [Byaruhanga et al., 2024].

Traditional flood forecasting methods, such as hydrological and hydrodynamic models, have been the cornerstone of
flood management for decades. Practical implementation of sustainable integrated watershed management practices
should be carried out throughout the landscape of the catchment, from upstream to downstream areas [Arnold et al.,
1998]. The effect of hydraulic parameters on the river’s flow characteristics is also predicted using one-dimensional
hydrodynamic modeling [AlMansori & Sanker, 2020]. A stepwise cluster analysis hydrological approach can be used
to characterize hydrological processes complicated by nonlinear and dynamic relationships, and satisfactory predictions
can be provided. [ Feng et al., 2021]

In contrast, Al driven flood forecasting techniques, including machine learning and deep learning are data-driven and
can analyze vast amounts of information from multiple sources, such as satellite imagery, sensor networks, and historical
flood records. The data assimilation method proves highly effective in reducing errors in flood forecasting. [ Sandilya,
2020]. Numerical Weather Prediction models have significantly enhanced the capability to predict precipitation.
[ Shrestha et al., 2012].

This paper presents a comprehensive review of existing flood forecasting models, encompassing traditional,
modern, and hybrid approaches. It emphasizes the unique strengths of each method—for instance, the clear physical
basis of traditional hydrological models and the predictive accuracy offered by data-driven techniques such as machine
learning—while also examining their respective limitations, including issues like high data requirements, model com-
plexity, and limited adaptability. Through this analysis, the study identifies potential for integration, proposing that the
fusion of conventional reliability with modern technological flexibility can significantly enhance the accuracy, respon-
siveness, and overall effectiveness of flood forecasting systems. The low-lying regions in areas are vulnerable to flood-
ing as well as periodic marine transgressions, posing significant environmental and socio-economic challenges
[Chothodi & Kuniyil, 2024]. The primary objective is to explore ways to enhance these models to deliver timely and
reliable flood forecasts, ultimately minimizing the adverse impacts of floods on vulnerable communities and infrastruc-

ture models. Fig 1 illustrates various types of flood forecasting models.
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Fig 1: Different types of flood forecasting models

2. Traditional methods and Sophisticated Models in Flood Forecasting

Traditional flood forecasting models are grounded in physically based hydrological and hydrodynamic concepts, em-
ploying mathematical equations to replicate processes like rainfall-runoff, river discharge, and water level variations.
Models such as Hydrologic Engineering Center — Hydrologic Modeling System (HEC-HMS) and Soil and Water As-
sessment Tool (SWAT) are appreciated for their ability to realistically represent natural systems and provide physically
interpretable outputs. However, they typically demand extensive calibration, high-resolution input data, and significant
computational resources. In contrast, sophisticated models encompass data-driven and hybrid techniques, often lever-
aging machine learning, deep learning, and remote sensing. These modern approaches can process vast datasets, capture
complex nonlinear patterns, and enhance forecasting precision and lead time. Despite their advantages, they can be less
transparent and require substantial training data. Integrating the strengths of both traditional and sophisticated models
holds great potential for developing more reliable, accurate, and efficient flood forecasting solutions.
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2.1 Traditional methods

Traditional methods of flood forecasting have long relied on deterministic approaches that utilize historical
hydrological data, meteorological observations, and empirical models to predict flood events. These methods
use river gauge measurements, rainfall records, and physical models to predict flood likelihood and severity in
specific areas. Traditional forecasting methods help assess flood risks but have limitations due to their reliance
on historical data, fixed thresholds, and linear assumptions in hydrological processes. Fig2 illustrates various

types of traditional flood forecasting models.
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Fig 2: Different types of traditional flood forecasting models
2.1.1 Rainfall-Runoff Models

Rainfall-runoff models are essential tools in hydrology, designed to predict the conversion of rainfall into runoff. This
runoff represents water flow generated when stormwater, meltwater, or other sources exceed the soil's infiltration ca-
pacity. The Soil and Water Assessment Tool model can be effectively applied to rainfall-runoff analysis through thor-
ough calibration and validation processes. [ Reddy & Lingaraju, 2024]. In addition to climate change, the expansion of
impervious surfaces due to urban development can significantly disrupt the microclimate and hydrological processes in
small catchments. This intensified urbanization exacerbates the impacts on local environmental conditions and water
systems. [ Muhammad & Muhammad, 2024] A multi-task Decomposition-Integration-Prediction approach has been
employed across various regions worldwide for medium- to long-term runoff prediction [Zuo & Yan, 2024]. Applying
the Soil Conservation Service Curve Number method, we evaluated the effect of land use and land cover on runoff
estimation in the watershed. [Ajith & Barik, 2024]. Flood forecasting is essential for managing floods, especially in
Kerala, India, where monsoon floods cause major social, economic, and environmental damage. Kerala's rivers, wet-
lands, and tropical climate make it highly prone to flooding during the southwest monsoon season [ Tripathy et al., 2020].
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2.1.2. Hydrodynamic Models

Hydrodynamic models are mathematical models used to simulate the movement of water and other fluids in various
environments, such as rivers, lakes, oceans, estuaries, and urban drainage systems. A one-dimensional (1D) hydrody-
namic model was developed in HEC-RAS, utilizing a combination of surveyed data, spatially extracted cross-sections,
and recorded streamflow data. The model demonstrated improved performance, providing more accurate runoff predic-
tions and better representation of river dynamics when these data were integrated effectively. [ Kashfy & Ab Ghani,
2020]. The limitations of 1D-1D models in accurately simulating flood extent and inundation can be addressed through
the use of 1D-2D coupled models. [ Kourtis & Tsihrintzis, 2017] Numerical modeling using Delft3D software can
significantly enhance dredging operations by simulating the transport of sediment deposits during flood events [Pinho
& Coelho, 2018]. The HEC-RAS 2D model, after calibration and validation, shows satisfactory performance in simu-
lating flood water levels, with a reasonable correlation coefficient and close alignment between observed and simulated
values, indicating its potential for future flood peak prediction. [ Garg and Babu, 2023]

2.1.3 Statistical methods

Statistical methods in hydrology and environmental modelling are essential tools for analyzing, interpreting, and pre-
dicting natural phenomena based on historical and observed data. The flood prediction error was virtually identical for
the direct interpolation method and the flood index procedure [Baidya & Singh, 2024]. Regression analysis as an effec-
tive tool for water supply forecasting [Radkov & Yordanova, 2008]. In Regional Flood Frequency Analysis, growth
curves that provide flood magnitudes for various return periods are used to estimate flood magnitude and frequency at
ungauged sites in various regions of Kerala [Thottumkal & Jothiprakash, 2019]. The flood frequency analysis using the
Gumbel Distribution and Weibull plot position method effectively estimates flood magnitudes and recurrence intervals,
though its robustness is limited by data availability, highlighting the need for improved data collection and consideration

of climate change impacts in future studies. [ Sharir et al., 2025]
2.1.4. Meteorological forecasting

Meteorological forecasting involves several cutting-edge methods and technologies. The combination of Numerical
Weather Prediction and Hydrological Model is used in the hydrological forecasting system, improving the predictability
of flood forecasts [Teja et al., 2023]. The potential for successful hydrological modelling and prediction is demonstrated
by the incorporation of the radar-based rainfall forecast [Berenguer & Sempere-Torres, 2013]. Automated time-series
flood monitoring can be achieved through the use of multi-source remote sensing imagery [Zhao et al., 2024]. A com-
parison of Synthetic Aperture Radar-based flood maps with optical data and flood maps generated by the Moderate
Resolution Imaging Spectroradiometer underscores the advantages of our data and approach for rapid response and
future flood forecasting [Sherpa et al., 2020].

2.1.5. Coupled Hydrological-Hydraulic Models

Hydrological and hydraulic models are essential tools for simulating the movement, distribution, and quality of water
across natural and built environments. The MIKE model provides an accurate simulation of the flow, as indicated by
the comparison between the estimated and observed stage hydrographs [Kamel, 2008]. Sobek-Rural/Urban offers a
complete solution for modelling water systems, including irrigation, drainage, rivers, and sewers, as well as assessing
flood risk and planning infrastructure [Dhondia & Stelling, 2004]. Coupled model offers a balance between
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computational efficiency and accuracy compared to the full hydrodynamic model [Liu et al., 2018].
2.16. Groundwater-Based Models

Groundwater-based models are essential for understanding and simulating the behaviour of groundwater systems, in-
cluding the flow of water through aquifers, the interaction between groundwater and surface water, and the effects of
human activities on groundwater resources. Mod flow model reflects temporal variations in groundwater depletion,
which might result from factors like seasonal demand, recharge rates, and aquifer characteristics [ Abbood & Mustafa,
2021]. Aquifer water levels are dropping significantly, probably due to over-pumping or lack of recharge [Lamsoge &
Katpatal, 2009]. Groundwater and surface water flow calculations quantify hydrologic system inflows, outflows, and
storage changes [Markstrom & Niswonger, 2008].

2.1.7. River Gauge Data Models

A River Gauge Data Model for flood forecasting is a crucial component in monitoring river stages (water levels), pre-
dicting floods, and issuing early warnings. The statistical hydrological model, employing stepwise cluster analysis, de-
livers reliable and accurate predictions of complex, nonlinear hydrological processes [Wang & Huang, 2019]. Integrat-
ing diverse real-time data sources, including rainfall measurements, soil moisture, wind flow patterns, evaporation, flu-
vial flow, and infiltration, warrants further exploration to enhance the accuracy and reliability of real-time flood fore-
casting models [Piadeh & Behzadian, 2022].

Table 1 summarizes information about different traditional modelling studies, focusing on the type of modelling used,

the datasets employed, accuracy, study type and the region of study.
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Table 1: Studies based on traditional models.
References Model type Input Accuracy Region Study Type
climate change,
Tin, D et al,, Hydrological, Geophysical, population . . .
2024. biological growth, High Africa Regional
urbanization,
. Stram flow,
Jain et al., . . . . . .
Hydrological, Metrological Rainfall-runoff, High India National
2017 ;
Satellite data
Byaruhanga Hydrological, Geophysical Stram flow, . Various o
biolc; ical ’ Rainfall-runoff, High countries Multinational
etal., 2024 & Satellite data
Fenzgoztl al, Hydrological Model Streamflow Medium China Regional
Ch(,)t},mdl & Landslide model rainfall-runoff Medium India Regional
Kuniyil, 2024
Muhammad
& Landslide model, hydrological . Very .
Muhammad, model and ML rainfall-runoff High Bangladesh Regional
2024
Zuoziczzan, Hydrological Model rainfall-runoff Medium China Regional
Hydrologic Engineering
Iéils:rfi iCO2A(§) Centeér}]ssgziz(ezﬁg gz_llyms rainfall-runoff High Philippines Regional
RAS )hydrodynamic model
Liu, Z.,
Zhang, H,& Coupled Hydrologlcal rainfall-runoff Low UK Regional
Liang, Hydrodynamic model
Q,2018
Mazzoleni,
M., & . . .
Hydrological Model Sensor data high Netherland Regional
Alfonso, L,
2019
Osman, S., &
Abdul Aziz, Stochastic Method Streamflow Low Malaysia Regional
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2.1.8 Advantages of Traditional Models

Traditional flood forecasting models such as rainfall-runoff, hydrodynamic, statistical, and meteorological approaches
provide several notable benefits. Their simplicity and transparency make them straightforward to implement, interpret,
and communicate, especially for practitioners and decision-makers. These models typically demand low computational
power, making them suitable for use in areas with limited access to advanced technology. Being well-established and
historically validated, they deliver consistent results in known hydrological conditions. Moreover, their ability to utilize
historical and readily available data like rainfall and river gauge record makes them particularly valuable in data-scarce
regions. Due to their robustness and reliance on conventional inputs, traditional models are also ideal for long-term
flood forecasting and risk assessment applications.

2.1.9 Limitations of Traditional Models

Traditional methods for flood forecasting, while foundational to hydrology and flood risk management, have several
limitations that can impact their accuracy, reliability, and timeliness. They depend on fixed equations and assumptions
that often fail to reflect the complex, nonlinear behavior of flood events, particularly in the context of shifting climate
patterns and land-use changes. These models typically demand extensive calibration and are highly sensitive to the
accuracy and availability of input data, making them less effective in regions with limited or unreliable datasets. More-
over, their capacity for real-time forecasting is constrained, and they often struggle to incorporate modern data sources
such as remote sensing or high-resolution meteorological inputs. Consequently, traditional methods may lack the flexi-
bility and precision required for forecasting in diverse and rapidly changing hydrological settings. Real time models can
produce accurate hindcasts when rainfall is uniformly distributed across the drainage basin. [ Perumal & Sahoo, 2007].
Flash flood forecasts account for the inherent limitations and uncertainties in both meteorological and hydrological

aspects of forecasting systems. [ Collier, 2007].

2.2. Sophisticated Methods

Sophisticated flood forecasting methods have evolved to address the limitations of traditional approaches by integrating
advanced technologies, real-time data, and sophisticated models that can simulate complex hydrological processes. So-
phisticated flood forecasting methods integrate advanced technologies and multidisciplinary approaches to enhance pre-
diction accuracy and timeliness. These methods leverage innovations such as numerical weather predictions, remote
sensing, machine learning, and real-time monitoring to improve accuracy, extend forecasting horizons, and provide

early warnings for extreme flood events. Fig 3 illustrates various types of Sophisticated flood forecasting models.
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Fig 3: Different types of Sophisticated flood forecasting models
2.2.1 Data Assimilation Methods

Data assimilation techniques play a crucial role in improving the accuracy of flood forecasting by integrating real-time
observational data like river levels, precipitation, and other meteorological variables with model predictions. The wave-
let-based multi-model Kalman filter is highly effective due to the decomposition capabilities of the wavelet transform,
the adaptability of the time-varying Kalman filter, and the strengths of the multi-model approach [Chou & Wang, 2004].
The cost-effective transition of hydrologic data assimilation from research to operations can be facilitated by developing
community-based, generic modelling and DA tools or frameworks [Liu & Weerts, 2012]. Data assimilation with the
Best Linear Unbiased Estimator (BLUE) method improves peak discharge predictions from the Soil Conservation Ser-

vice lag and route model [Coustau & Ricci, 2013].
2.2.2 Satellite Remote Sensing

Satellite Remote Sensing has become an indispensable tool for flood forecasting, monitoring, and management. The
Global Precipitation Measurement Image Final Run products, available daily and monthly, can detect precipitation well
and support long-term analysis [Sun & Sun, 2018]. The use of synthetic aperture radar data helps to understand the
extent of flooding and aids in developing more effective planning strategies for risk reduction and management during
flood events [Sp & Rahaman, 2021]. The utilization of satellite gravity observations is highly beneficial for studying
variations in water storage across regions with areal extents comparable to individual states or river basins [Tiwari et
al., 2011].
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2.2.3 Numerical Weather Prediction (NWP) Models

Numerical Weather Prediction (NWP) Models coupled with hydrological models provide a powerful framework for
improving flood forecasting by integrating atmospheric forecasts with hydrological simulations. Using the WRF-Hydro
model, soil moisture, runoff, and precipitation in the fully coupled system exhibited similar spatial trends, whereas
evapotranspiration often showed differing patterns. [ Wang & Liu, 2020]. Accurate simulation in the Global Flood
Awareness System model and better hydrological parameterization is essential for reliably capturing streamflow
changes across different runoff regimes [Alfieri & Burek, 2013] . Rainfall forecast biases, particularly in low-resolution
models, must be removed before using them for streamflow prediction [Shrestha & Robertson, 2012 ]. Predictions from
the National Centre for Medium Range Weather Forecasting models are evaluated over Kerala to showcase the capa-
bilities of high-resolution models [Ashrit et al., 2020].

2.2.4 Cloud Computing and Big Data Analytics

Cloud Computing and Big Data Analytics have transformed data storage, processing, and analysis, especially in envi-

ronmental monitoring, flood forecasting, and climate research. Google Earth Engine is a cloud-based platform designed
for large-scale geospatial analysis, leveraging Google's vast computational power to address a wide range of critical
societal challenges, including deforestation, drought, disasters, disease, food security, water management, climate mon-
itoring, and environmental conservation [Gorelick & Hancher, 2017]. Organizing data and geoprocesses in the Cloud
allows integration of services to create customized solutions [ Evangelidis & Ntouros, 2014]. Statistical inferences and
big data analytics on state-provided ordinal data were used to develop an early warning system [ Yusoff & Md Din,
2015].

2.2.5 Geographical Information Systems (GIS) and Digital Elevation Models (DEM)

Geographical Information Systems (GIS) and Digital Elevation Models (DEMs) are vital tools in flood forecasting, risk
assessment, and management. This method improves flood extent mapping accuracy, especially for large floods, and
provides a practical solution for developing countries with limited resources for traditional flood modelling [Jung et al.,
2014]. The cartographic representation supports decision-making processes related to development planning, emergency
preparedness, and disaster mitigation through the identification of high-hazard zones. It provides a flexible framework
for flood forecasting that requires accurate local data for better flood information management [ El Morjan & Ennasr,
2016]. Combining Geographic Information System (GIS) and remote sensing allowed for quick flood-prone area map-
ping, supporting decision-making for flood mitigation and agricultural water use [Nasr & Akawy, 2023]. The combina-
tion of remote sensing data, Geographic Information System (GIS), and Analytical Hierarchy Process (AHP), enhanced
with fuzzy-AHP, is an effective way to create accurate predictive maps. [Vilasan & Kapse, 2021]. Sentinel-1 Synthetic
Aperture Radar (SAR) data, processed using the Otsu algorithm in Google Earth Engine (GEE) helps map flood areas
during disasters, aiding in the protection of lives, infrastructure, and businesses [ Tiwari et al., 2020]. Flood vulnerability
mapping was validated using 2018 and 2019 flood data, while the weighted overlay method identified suitable areas for
flood shelters in moderately vulnerable and vulnerable sub-basins, categorizing them as highly suitable, suitable, mod-
erately suitable, or not suitable [Aju et al., 2024]. The Weighted Overlay Analysis method is used to create a flood
hazard map and suggest measures to reduce flood risks in the River Basin [Vinod, 2013].
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2.2.6 Coupled Approach to Physical and Data-Driven Modelling

Hybrid Models that couple physics-based models with data-driven approaches represent a significant advancement in
hydrological modelling and flood forecasting. combining a machine-learning approach with the Hydrologic Engineering
Center - River Analysis System (HEC-RAS) model has enhanced the handling of spatiotemporal uncertainties in con-
ventional flood forecasting methods [ Tamiru & Wagari, 2022]. A hybrid hydrological model that integrates the Hydro-
logic Engineering Center-Hydrologic Modelling System significantly enhances forecast accuracy, particularly for pre-
dictions over extended forecasting periods. [ Sinh & Nguyen, 2024]. Integrating the Particle Swarm Optimization (PSO)
algorithm, Temporal Convolutional Neural Network (TCN) algorithm, and Bootstrap Probability Sampling model
demonstrates enhanced applicability and robustness in flood prediction [ Yu & Liu, 2024]. Using Hydrologic Engineer-
ing Center - River Analysis System (HEC-RAS) software, the findings offer useful tools for future forecasting of natural
and human-induced interactions [Aneesh & Thomas, 2024].

2.2.7 Ensemble Flood Forecasting

Ensemble Flood Forecasting is a sophisticated method that uses multiple models to improve flood prediction and handle
uncertainties in hydrological forecasts. The Hydrologic Ensemble Prediction Experiment (HEPEX) aims to advance
ensemble forecasting capabilities and promote its adoption, highlighting the need to assess the current state of ensemble
flood forecasting [Wu & Emerton, 2020]. Deterministic forecasting proved to be accurate, while probabilistic forecast-
ing showed promise with respect to the predicted hydrograph and a quantitative evaluation of confidence levels [Nguyen
& Chen, 2020]. The meteo-hydro-Al approach demonstrated slight improvement, highlighting the need for further eval-
uation with larger samples of extreme flood events, while showcasing its potential for ensemble forecasting of such
events [Liu & Yuan, 2024].

2.2.8 Internet of Things (IoT) and Sensor Networks

The Internet of Things (IoT) and Sensor Networks play a pivotal role in modern flood forecasting systems. A scour
monitoring system, developed and implemented using a vibration-based array of sensors combined with Internet of
Things (IoT) and artificial intelligence (Al), provides real-time scour depth measurements [Lin & Lee, 2021]. An Inter-
net of Things (IoT)-based flood prediction and forecasting model focused on optimizing energy efficiency. [ Wajid &
Abid, 2024]. Various environmental conditions were monitored using different sensors and transferred to a Google
Sheet via IoT technology, allowing the client to remotely analyse the dataset and predict flood risks [Suresh, 2020].

2.2.9 Social Media and Crowdsourcing

Social media and Crowdsourcing have emerged as valuable tools for flood forecasting and management. The flood
forecasting system combines weather, water flow, geospatial, and crowdsourced data with machine learning. It uses
advanced learning methods and has been tested to accurately predict floods in specific locations and times [Puttinaov-
arat & Horkaew, 2020]. Low-cost static and dynamic social sensors can improve traditional sensor networks, making
flood forecasting more accurate. They also support citizen observatories, where people help collect, evaluate, and
share data to improve models and flood resilience [Mazzoleni & Alfonso, 2019]. Crowdsourcing is useful for better
coordination, accuracy, and security in relief efforts [Gao & Barbier, 2011].
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Table 2 summarizes information about different sophisticated modelling studies, focusing on the type of modelling
used, the datasets employed, accuracy, study type and the region of study. India is the region most frequently repre-
sented in the studies shown, with rainfall-runoff data being a common dataset used.

Table 2: Studies based on Sophisticated models.
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References Model type Input Accuracy Region Study Type
Arnold et al The Soil and Water
1998 N Assessment Tool (SWAT) moisture High US Regional
model
AlMansori & . .
Sanker, 2020 NWP model Streamflow High turkey Regional
Murariu et sedimentation rate,
afrzr(l;ig Digital Elevation Models deposition of hich Ukraine Regional
’ (DEM) pollutants, & &
erosion rate
Garg, C. & Indi
Babu, A., HEC-RAS 2D Model Water level high hdia Regional
2023
Coustau, M.,
& Ricci, Data assimilation model rainfall-runoff medium France Regional
S,2013
Sun, W., & Global precipitation method rainfall-runoff high China Regional
Sun, Y. ,2018
Sp, D., &
Rahaman, S. SAR model rainfall-runoff high India Regional
A.,2021
Tiwari, V.,
Wabhr, J. M.,
Swenson, S., Satellite model Satellite data high India National
& Singh,
B,2011
Weather Research and soil moisture,
Wang, W, & . .. . . .
] Forecasting (WRF-hydro) evapotranspiration, high China Regional
Liu, J. 2020 model generated runoff,
Alfieri, L., &
Burek, P. A. GLOFAS model Streamflow high Pakistan Regional

2013
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Shrestha, D.,
& Robertson, NWP model Precipitation Australia Regional
D. 2012
Gorelick, N., Vari Mult
& Hancher, Google Earth Engine Satellite data Very high arious U u
countries national
M,2017
Evangelidis,
» & Geospatial model Satellite data high Varlops Multl
Ntouros, countries national
K,2014
Yusoff, A., &
Md Din, Bigdata model hydrological data high Malaysia Regional
N,2015
Jung, Y.,
Kim, D., & River gauge model Satellite data high Korea Regional
Kim, D,2014
El Morjan,
Z.E.A,& Geographic Information - - i
Satellite dat high M R 1
Ennasr, M. Systems (GIS) model ateliite data '8 oroeeo cetond
S,2016
Nasr, A., &
Akawy, GIS model Sensor data high Egypt Regional
A,2023
Tamiru, H., Hybrid Artificial Neural Rainfall
& Wagari, Network(ANN) and HEC- ’ high Ethiopia Regional
temperature
M, 2022 RAS model
Hybrid Long short term
Sinh, N. P., memory(LSTM)
& Nguyen, T. and Hydrologic Engineering  hydrological data high Vietnam Regional
H. (F.),2024  Center - Hydrologic Modeling
System (HEC-HMS) model
Hybrid Temporal
Yu, Q., & Convolutional Network . . . )
Liu, C.2024, (TCN)and Particle Swarm hydrological data medium Thailand Regional
Optimization (PSO)
Wu, W., & Vari Mult
Emerton, Ensemble model hydrological data high arious ultl
countries national
R,2020
Abbood, R.
T,& MODular Finite-difference . .
Mustafa, FLOW (MODFLOW) model Streamflow high Iraq Regional
A,2021
Lamsoge, B.,
& Katpatal, MODFLOW model Streamflow high India Regional

Y,2009
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Markstrom, Counled G q q

oupled Ground-water an
.S' L. & Surface-water FLOW Streamflow, high uUsS Regional

Niswonger, (GSFLOW) model Precipitation

R. G.,2008

Wang, F., & Suitability of the Height

Huang, G. Above Nearest Drainage rainfall-runoff high China Regional

2019 (SCAH )model
Piadeh. F.. & soil moisture,

Beh ’ di ’ Real-Time Flood Forecasting ~ wind flow patterns, hich Various Multi
ehzadian, (RTFF) model evaporation, & countries national
K. 2022 fluvial flow

Perumal, M.,
& Sahoo, B. Rain gauge model rainfall-runoff high India Regional
2007
Collier. C rainfall-runoff,
C Data assimilation model metrological medium UK Regional
G,2007 factors
Chou, C.-M.,
& Wang, Kalman filter model rainfall-runoff high Taiwan Regional
R.Y,2004
Liu, Y., &
Weerts, Data assimilation model hydrological data medium China Regional
A,2012
Tej;oezt;l., NWP modelriggelliydrologlcal rainfall-runoff High India Regional
Berenguer &
Sempere- Radar based model rainfall-runoff High Spain Regional
Torres, 2013
Zhao, B., Sui, Svnthetic Aperture Rad

H., & Liu, yn ?SIZRi)fn(;g:l adar rainfall-runoff High Indonesia Regional
J.2024

Ka;r(l)zlé A MIKE model Streamflow High Iraq Regional

‘ Simulations of Overbank

Dhondia, J.,  flow, Bed level changes, and

& Stelling, Erosion/deposition Streamflow High US Regional

G. S,2004 processes(SOBEK )Hydraulic

model
Hydrologic Engineering
Iéa;hfy iLO2A(§) Centgr}lssgzir\;(leflg galySlS rainfall-runoff High Philippines Regional
ani, -

RAS )hydrodynamic model
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Kourtis &
Tsihrintzis, MIKE model rainfall-runoff High Greece Regional
2017
Pinho & Delft3D model sediment data High Portugal Regional
Coelho, 2018
Baldya & Interpolation method Flood frequency High India National
Singh, 2024 data
Radkov &
Yordanova, Regression method Streamflow High Bulgaria Regional
2008
Thottumbkal
. & L-moment model Flood frequency High India National
Jothiprakash, data
2019
Arnold et al The Soil and Water
N Assessment Tool (SWAT) moisture High UsS Regional
1998 model
AlMansori & NWP model Streamflow High turkey Regional
Sanker, 2020
Fenz%;tl al, Hydrological Model Streamflow Medium China Regional
Sandilya, . . .
2020 MIKE model Streamflow High India Regional
Shrestha et NWP model Precipitation High Australia Regional
al., 2012
Reddy &
Lingaraju, SWAT model rainfall-runoff High India Regional
2024

2.2.10 Advantages of Sophisticated System

Flood forecasting has significantly evolved over the years, integrating a diverse range of models and technologies to

enhance prediction accuracy, lead time, and spatial resolution. Early systems were built on foundational approaches

such as Rainfall-Runoff, Hydrodynamic, and Statistical models, which relied on empirical formulas and physical prin-

ciples to simulate flood behavior. Accuracy improved with the development of Meteorological and Coupled Hydrolog-

ical-Hydraulic models, which connect atmospheric inputs with watershed and riverine processes. Groundwater-based

models and River Gauge data models offer valuable localized insights but are often limited by sparse spatial coverage
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and data availability. To strengthen traditional methods, Data Assimilation techniques have been introduced to contin-
uously refine model outputs using real-time observations, while [oT and sensor-based systems provide rapid, field-level
data collection for more responsive forecasting. Recent advances in remote sensing and computational technologies
have further expanded capabilities—satellite remote sensing enables broad monitoring of key hydrological variables
such as precipitation, soil moisture, and water levels, particularly in data-scarce regions. Ensemble forecasting enhances
reliability by accounting for uncertainty through multiple scenario simulations, and the use of cloud computing and big
data analytics allows for real-time processing of massive datasets, accelerating decision-making. Tools like Geographic
Information Systems (GIS), Digital Elevation Models (DEMs), and Numerical Weather Prediction (NWP) models con-
tribute to improved spatial analysis and rainfall forecasting. Moreover, hybrid approaches that combine physically based
models with machine learning techniques offer greater adaptability and predictive accuracy. Social media and
crowdsourced data have also emerged as valuable resources for real-time, community-driven flood reporting. This evo-
lution underscores the growing need to integrate traditional approaches with cutting-edge technologies to build compre-
hensive, efficient, and resilient flood forecasting systems.

2.2.11 Limitations of Sophisticated System

Sophisticated flood forecasting models offer high accuracy and timely predictions, but they come with several signifi-
cant limitations. These models are highly data-intensive, often requiring extensive real-time, high-resolution datasets
that may not be readily available in all regions. The integration of multiple advanced technologies—such as machine
learning, IoT, satellite remote sensing, and numerical weather prediction—adds layers of complexity, making the sys-
tems challenging to calibrate, interpret, and manage. Moreover, the high computational demands and the need for spe-
cialized technical expertise can limit their application in resource-constrained settings. Other concerns include the
opaque nature of Al-based models, uncertainties in meteorological forecasts, potential sensor malfunctions, and the
questionable reliability of crowdsourced data. Therefore, despite their enhanced predictive capabilities, the deployment
of these models must be approached with careful consideration of the existing technical, infrastructural, and financial

limitations.

3. Artificial Intelligence (AI) driven Models

Al-driven models for flood forecasting leverage sophisticated computational methods such as machine learning, deep
learning, and neural networks to process and analyze large volumes of hydrological, meteorological, and spatial data.
Unlike conventional models that depend on established physical equations, Al models learn directly from historical
datasets, enabling fast and accurate prediction of flood events. These approaches are especially adept at modeling com-
plex, nonlinear relationships between variables and can be applied across diverse regions with minimal calibration. They
also excel in incorporating real-time data from technologies like remote sensing and IoT devices. Despite their ad-
vantages, Al models typically demand high-quality, extensive datasets and often operate as "black boxes," offering
limited insight into the physical processes behind their predictions. Nevertheless, Al represents a transformative ad-

vancement in flood forecasting, enhancing accuracy, responsiveness, and adaptability.

3.1 Machine Learning Models
Flood forecasting uses different machine learning models, each designed to handle specific challenges based on data
availability, flood complexity, and forecasting needs. Machine learning-based methods have the potential to enhance
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accuracy while reducing both computation time and the costs associated with model development [ Kumar & Biradar,
2023]. Machine Learning models can predict flood stages at a key gauge station using upstream water levels and, if
needed, downstream levels to consider backwater effects [Dazzi & Vacondio, 2021]. Heavy Rain Damage Prediction
Model, among the selected supervised learning techniques, Random Forest and KNN demonstrated the best performance.
[ Snehil & Goel, 2020]. The increase or decrease in precipitation convective rates, along with elevated low cloud cover
and insufficient vertically integrated moisture divergence, may have influenced the changes in rainfall patterns in India
[Praveen & Talukdar, 2020]. The integration of IoT data with machine learning techniques demonstrates improved
performance in flood forecasting [Wang, 2022]. Machine learning model for SIFT extraction have the potential to im-
prove accuracy while reducing both computation time and the cost of model development [Suresh Kumar & Alemran,
2022]. Fig 4 illustrates various types of Machine learning models.

Machine Learning Models

Support
Linear K-Nearest Decision

Vector
Regression Neighbour Tree

Machine

Random

Forest

Fig 4: Different types of Machine Learning Models

3.1.1. Linear regression

This model predicts a continuous output like flood discharge level by modelling the relationship between input variables
and the output. A regression analysis linked weighted maximum rainfall and maximum streamflow in the River Basin,
creating equations using annual maximum daily rainfall, streamflow, and catchment area to rank flood risk for each
catchment [Supriya & Krishnaveni, 2015]. An SMS-based warning system sends early alerts with predictions of rising
water levels and flow speed [de Castro & Salistre, 2013]. A stochastic flood forecasting model using the stage regression
method was applied to the River Basin, with regression coefficients and equations derived based on the least squares
principle [Osman & Abdul Aziz, 2018].

3.1.2 Support Vector Machine

Support Vector Machine (SVM) are used for classification or regression by finding a hyperplane that best separates the
data into classes. SVM exhibited varying responses to different rainfall inputs, with lighter rainfall producing distinctly
different outcomes compared to heavier rainfall [Han & Chan, 2007]. A flood forecasting model usi Supriya &
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Krishnaveni, 2015ng SVM, combined with kernel principal component analysis (KPCA) and a boosting algorithm, can
significantly enhance forecasting accuracy [Li et al., 2016]. The SVM model offers an operational advantage by extend-
ing the forecast lead time during typhoon events [Lin et al., 2013]. A comparative analysis of SVM, Quadratic SVM
(Q-SVM), K-NN and Linear discriminant analysis (LDA) algorithms revealed that the Support Vector Machine (SVM)
achieved the highest accuracy based on parametric evaluation and training-testing results [Khan et al., 2019]. The Sup-
port Vector Machine — Grasshopper Optimization Algorithm (SVM-GOA) model, integrating Support Vector Machine
with the Grasshopper Optimization Algorithm, has been developed and evaluated using meteorological data, demon-
strating its superiority over SVM alone for accurate flood prediction. [ Sahoo & Ghose, 2022].

3.1.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is used in flood forecasting to classify or predict flood events based on historical data. It
works by comparing new observations with the K most similar past events in the dataset, using distance metrics like
Euclidean distance. KNN is beneficial for flood forecasting because it is simple, non-parametric, and can adapt to com-
plex patterns in hydrological and meteorological data. Various correlation coefficients are utilized for feature selection,
combined with the k-nearest neighbors (k-NN) algorithm, to enhance flood prediction accuracy [Gauhar et al., 2021].
The k-nearest neighbor (KNN) method, coupled with the Kalman Filter (KF), serves as an effective tool for real-time
flood forecasting. [ Liu et al., 2016]. A hydrodynamic model integrated with the K-nearest neighbors (KNN) algorithm
providing critical lead time for emergency decision-making and demonstrating significant potential in flash flood man-
agement. [ Zhou et al., 2024]. The spatially enhanced KNN-based framework offers an innovative, efficient, and user-
friendly approach for assessing risks to the tourism industry amid climate change. [ Liu, S. et al., 2021]. The Ensemble-
KNN forecasting method, utilizing historical samples, helps mitigate uncertainties arising from modelling inaccuracies.
[ Yang et al., 2020].

3.1.4 Decision Tree

Decision tree breaks down data by decision rules to model complex relationships between variables and flood events.
The IoT-based Decision Tree Algorithm achieves superior classification accuracy. [ Vinothini & Jayanthy, 2019]. The
integration of decision trees with ensemble models offers reliable estimates of flood susceptibilities, producing trust-
worthy susceptibility maps for flood early warning systems and mitigation planning [ Pham et al., 2021]. Three machine
learning algorithms were tested for flood prediction using a historical rainfall dataset. Decision Tree, Logistic Regres-
sion, and Support Vector Classification were evaluated, and Decision Tree showed reasonable performance [Khosh-
konesh et al., 2024]. Background features affecting predictions are learned, and the model's inner workings are explored
using explainable Al modules, with results validated using historical monthly rainfall data from Kerala, India [Kadiyala
& Woo, 2022].

3.1.5 Random Forest

Random Forest is a powerful and widely-used machine learning algorithm that belongs to the ensemble learning family.
It is an extension of decision trees, combining multiple decision trees to improve model accuracy and reduce overfitting.
The performance of the random forest models highlights their effectiveness in accurately filling the gaps in unmapped
floodplains [Woznicki et al., 2019]. Various methods, including SVM, Regression, Random Forest, Neural Networks,
and Bayesian Networks, are available, with Random Forest and Neural Networks demonstrating superior performance
compared to the others. [Sharma et al., 2022]. Using Assam's historical rainfall and geospatial data, machine learning-
based flood prediction identified the Random Forest algorithm as the top-performing model [Myrchiang et al., 2023].
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The table 3 provides a comparative summary of various machine learning-based flood forecasting models,

evaluating them based on modelling type, input datasets, accuracy, computational requirements, lead time,

and regional applicability to identify the best-performing model in each case.

Table 3: Studies Based on Machine learning Methods

References Modellin Input Accur Computa Lead Region Best
g type Dataset acy tional Time Performed
used Needs Model
Nguyen D. T, & KNN, Rainfall - Moder Low Fast Taiwan KNN
Chen,S.T. ,2020 SVM, Runoff ate
Fuzzy
inference
model
Liu Y., & Yuan Meteo- Rainfall - High high moderate  China meteo-
X.,2024 hydro-Al, Runoff hydro-Al
Meteo-
hydro
Suresh, S,2020 DT Sensor data Moder low Fast India DT
ate
Kumar, K. S. R, & ANN, air Moder medium fast India LR
Biradar R. V,2023 KNN, pressure, ate
LR, humidity,
SVC,
DT, temperature
RF
Snehil & Goel R,2020 GNBT, Flood moder Low Fast India KNN
KNN damage ate
data
Wang Q,2022 SVR, IoT data moder medium Fast Sweden KNN
DT, ate
KNN
Suresh Kumar V, & SVM, Spatial moder medium moderate  India SVM, DT
Alemran A,2022 DT, Data ate
RF
Supriya, P, LR Rainfall - moder low Fast India LR
Krishnaveni M,2015 Runoff, ate
Stream
flow
Han, D, & Chan Naive Streamflow moder medium Fast China SVM
L,2007 bayes, ate
SVM
LiS,MaK.,JinZ.,& SVM Historical moder medium fast China SVM
Zhu'Y ,2016 Flood data  ate
Lin G.-F., Chou Y.-C, SVM Rainfall - Moder Medium fast Taiwan SVM
& WuM.-C. ;2013 Runoff ate
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Khan. T, Shahid Z,
Alam M, Su'ud, M. M,
& Kadir. K,2019

Sahoo A, & Ghose.
D,2022

Gauhar, N, Das S., &
Moury K. ,2021

Liu. K, Li. Z, Yao C,
Chen. J, Zhang, K., &
Saifullah,M. ,

2016

ZhouN., Hou. ],
Chen.H..et al. ,2024
Liu, S., Liu, R., & Tan,
N, 2021

Yang, M, Wang, H,
Jiang, Y, & et al. ,2020
Vinothini, K, &
Jayanthy S ,2019
Pham, B. T et al, 2021

Khoshkonesh.A ,Nazar
i.R,Nikoo, M. R.&
Karimi M ,2024

Woznicki et al., 2019

Myrchiang et al., 2023

Wu et al., 2020

Kadiyala & Woo, 2022
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3.1.6 Advantages of Machine learning model

Machine learning (ML) techniques have revolutionized flood forecasting by enabling the modeling of com-
plex, nonlinear relationships among hydrological variables without relying on predefined physical equations.
Algorithms like Random Forest (RF) and Decision Tree (DT) are particularly effective at identifying varia-
ble interactions and managing incomplete or noisy datasets, making them well-suited for flood prediction
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and classification tasks. Support Vector Machines (SVM) deliver high accuracy in binary classification
problems such as flood versus no-flood scenarios, especially where data is limited. While Linear Regression
is a simpler method, it remains useful for short-term forecasting of water levels and discharge in data-rich
environments. The K-Nearest Neighbors (KNN) algorithm excels in recognizing patterns and categorizing
flood stages based on historical data similarity. These ML approaches are valued for their interpretability,
ease of use, and ability to integrate diverse data sources like rainfall, soil moisture, and streamflow measure-
ments.

3.1.7 Limitations of Machine learning model

Although machine learning models—such as linear regression, support vector machines, K-nearest neighbors, decision
trees, and random forests—provide strong data-driven capabilities for flood forecasting, they also come with notable
limitations. These models typically demand large, high-quality, and well-annotated datasets for effective training, which
may not be readily available in many flood-affected areas. They often function as black-box systems, offering limited
transparency into the underlying physical processes, which can hinder acceptance by domain experts and decision-
makers. Furthermore, ML models are prone to overfitting, particularly when handling complex inputs or insufficient
training data. Their generalizability across different geographic regions or unobserved conditions is often weak, and
they generally do not incorporate physical laws or hydrological principles unless deliberately combined with other
methods. Consequently, purely ML-based models may face challenges in delivering accurate long-term predictions,
ensuring physical consistency, or adapting in real-time without being integrated into hybrid or physically informed

frameworks.
3.2. Deep Learning Models

Deep learning encompasses various types of models; each suited for specific tasks and data types. An urban flood data
warehouse, comprising both structured and unstructured data, was developed, and a deep learning-based regression
model was constructed to predict the depth of urban flooded areas [Wu et al., 2020]. DNN models offer a promising
approach for creating accurate flood risk assessment maps, enhancing flood hazard management in the area [ Pham et
al., 2021]. The accuracy and efficiency of the spatial reduction and reconstruction approach and a deep learning frame-
work are evaluated through its application to a real-world river system. [Zhou et al., 2021]. Fig 5 illustrates various

types of Deep learning models.
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Fig 5: Different types of Deep Learning Models

3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNSs) are a class of machine learning models inspired by the structure and functioning of
the human brain. They consist of layers of interconnected nodes (neurons) that can learn complex patterns from data.
Artificial Neural Networks (ANNSs) serve as effective predictors of flood occurrences, even in regions characterized by
predominantly microclimatic conditions [ Dhunny et al., 2020]. ANN offers a dependable approach for identifying flood
hazards in the River Nile [Mitra et al., 2016]. An embedded system combining [oT and machine learning demonstrates
significant enhancement in predicting the probability of floods in a river basin [Dtissibe et al., 2020]. The Ensemble
Artificial Neural Network model effectively predicted flooding, showing comparable or superior performance with short
training datasets at appropriate time intervals compared to models using long training datasets [Dai et al., 2024]. A
multi-layered artificial neural network, utilizing real-time monitoring sensors and systems, accurately predicted flood
levels with minimal overall difference from actual levels across the tested dataset [Cruz et al., 2018].

3.2.2 Multilayer Perceptron

Multilayer perceptron is particularly useful for classification and regression tasks, including applications in areas like
flood forecasting, where it can model the relationship between environmental variables and flood events. A Multilayer
Perceptron (MLP) can serve as an effective algorithm for predicting flood events by utilizing rainfall time series data
and water levels in a weir [Widiasari et al., 2017]. Feed-forward and recurrent multilayer perceptron have proven to be
effective tools for flash flood forecasting [Darras et al., 2014]. An operational flood forecast model utilizing a Multilayer
Perceptron Artificial Neural Network (MLP-ANN) is proposed for this catchment to provide short-term flood predic-
tions [Valles, 2023]. A hybrid system combining neural networks and fuzzy logic is utilized for data partitioning, inte-
grating specialist knowledge to develop intelligent solutions for river flow prediction [Fajardo-Toro et al., 2013]. The
MLPNN algorithm, applied to monthly time series data of the Standardized Precipitation Evapotranspiration Index, can
predict floods effectively [Ali & Hussain, 2017].
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3.2.3 Convolutional Neural Network

They use convolutional layers to automatically extract features from input data. The CNN method demonstrates signif-
icant potential for real-time flood modelling and forecasting due to its simplicity, high performance, and computational
efficiency [Kabir et al., 2020]. A flood susceptibility map can be developed using a deep CNN algorithm [ Wang et al.,
2020]. A two-dimensional (2D) Convolutional Neural Network (CNN) demonstrated higher accuracy in predicting flood
peaks and arrival times, with lead times of 24 hours and 36 hours, respectively [Chen et al., 2021]. The CNN flood
forecasting model, which incorporates hydrodynamics, flow routing, rainfall-runoff, and snowmelt processes, demon-
strates higher accuracy in predicting past floods [Rao & Supraja, 2024].

3.2.4 Recurrent Neural Network

Specialized for sequential data where current inputs depend on previous inputs. They maintain a hidden state to capture
information from previous time steps. A recurrent neural network is utilized to develop a real-time flood forecasting
model, enabling accurate prediction of flood trends and peak occurrences during the flood period [Cai & Yu, 2022].
Recurrent neural networks demonstrated superior performance in both single-step and multi-step forecasting, making
them a recommended tool for river flow prediction [Kumar et al., 2004]. Internal recurrent neural networks (IRNN) are
employed for nonlinear system identification and are particularly effective for water flood assessment [Murariu et al.,
2010].

3.2.5 Long Short-Term Memory Network

It is designed to overcome the vanishing gradient problem in traditional RNNSs, enabling better learning of long-term
dependencies. A local spatial sequential long short-term memory (LSTM) neural network effectively captures the at-
tribution information of flood conditioning factors and the local spatial characteristics of flood data, while also pos-
sessing strong sequential modelling capabilities to address the spatial relationships of floods [Fang et al., 2021]. A hybrid
approach integrates outputs from traditional physics-based models with historical data to train Long Short-Term
Memory (LSTM) networks, enhancing flood forecasting by addressing computational efficiency and data scarcity chal-
lenges [Li et al., 2024]. LSTM processes river levels, rainfall data, and water discharge as inputs to predict flood or no-
flood scenarios, demonstrating high accuracy in results [Kewat et al., 2022]. The LSTM model predicts peak flood
arrival time with an absolute error of under 3 hours [Liu et al., 2023]. The Spatio-Temporal Attention LSTM model
outperforms support vector machines (SVM), fully connected networks (FCN), and traditional LSTM models, demon-
strating superior performance and high research value [Ding et al., 2019]. LSTM provided more accurate predictions of
downstream water elevation levels compared to multiple linear regression models [ Widiasari et al., 2018]. The Vector
Direction -LSTM model integrates flood runoff vectorization with the LSTM neural network, enhancing the exploration
of rising and receding water patterns, minimizing training gradient errors, and improving flood process simulation [ Xie
et al., 2024].

The table 4 provides a comparative summary of various deep learning-based flood forecasting models, evaluating
them based on modelling type, input datasets, accuracy, computational requirements, lead time, and regional applica-
bility to identify the best-performing model in each case.

Table 4: Studies based on deep learning
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References Modelling Input Dataset Accur Computati Lead Region Best
type used acy onal Needs Time Performed
Model
Lin Y.-B, & R-CNN Rainfall -Runoff  Very Very high  moderate  US R CNN
Lee, F.Z, 2021 high
Wajid M, & LR humidity, high medium fast China ANN
Abid M. K, ,DT, temperature,
2024 ANN rainfall,
waterflow
Puttinaovarat S, MLP meteorological,  high medium moderate  Thailand  MLP
& Horkaew, hydrological,
P,2020 geospatial,
crowdsource big
data,
Big
Crowdsourced
data
Dazzi, S, & SVR, Streamflow high high Moderate  Italy LSTM
Vacondio R, MLP,
2021 LSTM
Snehil & Goel, GNBT, Flood damage moder Low Fast India KNN
R,2020 KNN data ate
Praveen B, & Rainfall -Runoff high medium moderate  India ANN MLP
Talukdar ANN-MLP
S.,2020
de CastroJ. T, & ANN, Rainfall - high high moderate  United LSTM
Salistre, G,2013 LSTM, Runoff, States
SVM, Stream flow
DT
Sharma et al, ANN Rainfall -Runoff high high moderate  India ANN
2022 ,BN,
RF
Pham et al, 2021 DNN hazard, high high moderate  Vietnam  DNN
exposure,
vulnerability.
Zhouetal., 2021 LSTM Streamflow high high moderate  Australia LSTM
Dhunny et al, ANN Climatic Factors moder medium moderate  Mauritius ANN
2020 ate
Mitra et al, 2016 ANN Sensor data moder medium moderate  India ANN
ate
Dtissibe et al, MLP Streamflow moder medium moderate  France MLP
2020 ate
Daietal, 2024 EANN Streamflow high high moderate  China EANN
Cruzetal, 2018 MANN Rain Gauge, moder medium moderate  Philippine MANN
Water Level, ate S
Soil Moisture

Sensors
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Widiasari et al, MR, Hydrological moder medium moderate  Indonesia MLP
2017 MLP Data ate
Darras et al, MLP Streamflow moder medium moderate  France MLP
2014 ate
Valles, 2023 MLP ANN  Rainfall-runoff  high high moderate  El MLP ANN
Salvador
Fajardo-Toro et Hybrid Al Streamflow high high moderate  Colombia Hybrid Al
al, 2013 model model
Ali & Hussain, MLPNN Climatic Factors moder medium moderate  Pakistan MLPNN
2017 ate
Kabiretal, 2020 SVR, hydrodynamic high high moderate UK CNN
CNN factors
Wang et al, SVM, Historical Flood high high moderate  China CNN
2020 CNN data
Chen et al, 2021 CNN Streamflow high high moderate  China CNN
Rao & Supraja, CNN hydrodynamics, high high moderate  India CNN
2024 flow  routing,
rainfall-runoft,
snow melting
Cai & Yu, 2022  Hybrid Rainfall, high high short China Hybrid
RNN Stream Flow RNN
Kumar et al, RNN Streamflow moder medium short India RNN
2004 ate
Murariu et al, LSTM Spatial Data high high medium China LSTM
2010
Lietal, 2024 LSTM Historical and high high medium China LSTM
Physical data
Kewat et al, LSTM River level, high high medium India LSTM
2022 Rainfall  data
water discharge
Liu et al, 2023 RNN, Hydrological high medium medium China RNN
GRU Data
Ding et al, 2019 SVM, Precipitation, Very Very high  short China STA LSTM
FCN, soil moisture, high
LSTM, evaporation
STALSTM
Widiasari et al, LSTM Hydrological high high medium Indonesia LSTM
2018 Data
Xieetal, 2024 VD LSTM  Hydrological Very Very high  short China VD LSTM
Data high

3.2.6 Advantages of Deep Learning Model

In parallel, deep learning (DL) models have emerged as some of the most impactful advancements in flood forecast-

ing, due to their strength in capturing temporal, spatial, and sequential patterns in data. Recurrent Neural Networks

(RNNs) and their more advanced variant, Long Short-Term Memory (LSTM) networks, are particularly effective at

handling time-series data such as precipitation and river discharge, making them ideal for dynamic flood prediction.

Convolutional Neural Networks (CNNs), when applied to spatial datasets like satellite imagery or gridded rainfall,

enhance capabilities in flood detection and mapping. Artificial Neural Networks (ANNs) and Multi-Layer Perceptrons

(MLPs) continue to be widely used for their adaptability in modeling nonlinear systems, especially when combined
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with physical or statistical models. The emergence of hybrid frameworks—integrating ML/DL with traditional hydro-
logical models—offers promising improvements in accuracy, reliability, and resilience. These advancements are driv-
ing the development of next-generation flood forecasting systems that are not only accurate and adaptive but also ca-
pable of real-time deployment across diverse environments.

3.2.7 Limitations of Deep Learning Model

Deep learning models—such as Artificial Neural Networks (ANN), Multilayer Perceptrons (MLP), Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) networks—
excel at modeling complex, nonlinear patterns in flood forecasting. However, they present several challenges. These
models are highly data-dependent, requiring vast amounts of high-quality, high-resolution labeled data for effective
training, which is often scarce, especially in under-monitored regions. Their black-box characteristics hinder interpret-
ability, making it difficult to trace how predictions are formed—this can limit transparency and stakeholder confi-
dence. Deep learning techniques are also computationally demanding, requiring substantial processing power and
memory, particularly during the training phase. They are prone to overfitting, especially with limited or noisy datasets,
and their ability to generalize to different locations or unseen flood scenarios is often limited. Furthermore, deep learn-
ing models do not inherently incorporate physical hydrological principles, necessitating hybrid approaches that com-
bine them with domain knowledge to ensure realistic, reliable flood forecasting outcomes.

4. Analysis and Observation

Flood forecasting plays a vital role in disaster management and risk mitigation by helping to reduce damage to life and
property. Over time, researchers have introduced a range of predictive models, from conventional hydrological ap-
proaches to cutting-edge machine learning and deep learning techniques. This review examines both traditional and

contemporary flood forecasting methods, emphasizing their advantages, limitations, and emerging trends.

Traditional methods such as hydrological and statistical models form the foundation, while advanced techniques like
hydrodynamic and groundwater models enhance predictive capabilities. Meteorological forecasting and river gauge data
integration play critical roles in improving model reliability and early warning systems. Tools such as MIKE 11, Sobek,
MODFLOW, and GSFLOW demonstrate the diversity and specialization of modeling techniques. Overall, combining
these approaches provides a comprehensive framework for flood prediction and water resource management.

Modern flood forecasting methods have significantly advanced by integrating cutting-edge technologies, real-time data,
and sophisticated modeling techniques. These innovations address the limitations of traditional approaches and enhance
forecasting accuracy, extend prediction horizons, and provide timely early warnings for extreme flood events. The in-
tegration of modern technologies, such as [oT, cloud computing, and big data analytics, has transformed flood forecast-
ing systems. Hybrid models that combine data-driven and physics-based approaches provide greater accuracy and ro-
bustness. Real-time monitoring and satellite remote sensing facilitate data acquisition in remote areas, improving fore-
casting reliability. Ensemble approaches address uncertainties effectively, enabling probabilistic flood forecasting. So-
cial media and crowdsourcing are emerging as supplementary tools to enhance situational awareness and disaster re-
sponse.

The referenced studies on flood forecasting predominantly utilize features such as rainfall-runoff data, hydrological data,
stream flow, weather data, satellite data, sensor data, crowdsourced data, and crop damage. Among these, rainfall-runoff
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data constitutes the largest category at 33%, highlighting its critical role in flood prediction. Stream flow data closely
follows at 32%, emphasizing the importance of water flow measurements in forecasting models. Hydrological data,
accounting for 10%, includes parameters like water levels and soil moisture, which are essential for understanding wa-
tershed dynamics. Satellite data contributes 9%, offering valuable spatial insights, while sensor data adds 5%, providing
on-ground observations. Weather data, at 4%, incorporates factors like temperature and humidity, and crowdsourced
data, also at 4%, reflects the utility of citizen science in enriching datasets. Finally, crop damage data, representing 3%,
is included to evaluate the socio-economic impacts of floods. Figure 6 further illustrates these dataset statistics, under-
scoring the dominance of rainfall-runoff and stream flow data in flood forecasting research.

Dataset Used

rainfall-runoff data

m m Hydrological Data
m Stream flow

Weather data

m Satellite data

M sensor data

B crowdsourced data

W Damage of crops

Fig 6: dataset statistics in Flood forecasting studies

Fig 7 presents the statistics of flood forecasting studies over various years, based on the referred studies. The graph titled
"Flood Forecasting Studies" illustrates a significant increase in the number of studies conducted on flood forecasting
over the period 1995 to 2024. Starting with a modest 3 studies in the 1995-2000 period, the number gradually increased
to 4, 6, and 18 in the subsequent five-year intervals. However, a remarkable surge occurred between 2016 and 2020,
with the number of studies reaching 45. This trend continued with another 48 studies conducted between 2021 and 2025,
indicating a sustained high level of research activity in this field.
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Trends in Flood Forecasting Studies(1995-2025)
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Fig 7: Statistics of Flood forecasting studies from 1995-2025

The fig 8 illustrates the statistics of machine learning models based on the number of studies conducted for each model.
K-Nearest Neighbors is the most studied method among those listed. Random Forest and Decision Trees are compara-
tively less studied. Logistic Regression has the least studies at the beginning of the trend, but Support Vector Machine
shows a rise before the peak.

Fig 8: Statistics of Machine learning Models in flood forecasting literature
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A Fig 9 presents the statistical distribution of deep learning models based on the number of studies conducted for each
model. Artificial Neural Networks (ANN) seem to dominate the study or application in this context, followed by Con-
volutional Neural Networks (CNN). Recurrent Neural Networks (RNN) and Multilayer Perceptron (MLP) have smaller
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shares, indicating fewer studies or applications. Long Short-Term Memory (LSTM) models have a moderate represen-

tation, likely due to their popularity in time-series or sequential data tasks.

Deep Learning Models in Literature

B ARTIFICIAL NEURAL NETWORK = MULTI LAYER PERCEPTRON
B CONVOLUTION NEURAL NETWORK RECURRENT NEURAL NETWORK
B LONG SHORT TERM MEMORY NETWORK

Fig 9: Statistics of Deep learning Models in flood forecasting literature

Fig 10 illustrates the prediction accuracy of various traditional flood forecasting models. Rainfall-Runoff Models and
Groundwater-Based Models exhibit High accuracy, reflecting their effectiveness in capturing critical hydrological pro-
cesses. River Gauge Data Models have medium accuracy, relying on real-time river level data. In contrast, Hydrody-
namic Models, Statistical Methods, and Hydrological and Hydraulic Models show Low accuracy, likely due to limita-
tions in data requirements, assumptions, or dynamic adaptability. This chart underscores the varying reliability of these

models and the potential need for integrating or advancing methodologies for better accuracy.

Prediction accuracy of Traditional Flood
forecasting Methods
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Groundwater-Based Models | NN -0
Hydrological and Hydraulic Models... [ N S0
statistical methods | NN o
Hydrodynamic Models | NGNGB -0
Rainfall-Runoff Models [ NI :0
0O 10 20 30 40 50 60 70 80 90
Prediction Accuracy(%)

Models



NEPT 31 of 42

Fig 10: Prediction Accuracy of Traditional Flood Forecasting Models

Fig 11 illustrates the prediction accuracy of various modern flood forecasting methods, categorized into Low, Medium,
High, and Very High levels. Deep Learning Models and Machine Learning Models demonstrate the highest accuracy
(Very High), highlighting their advanced capabilities in handling complex data patterns. Hybrid Models and Ensemble
Flood Forecasting achieve High accuracy due to their integrated approach. Methods like GIS and DEM, IoT and Sensors,
and social media and Crowdsourcing are rated Medium, reflecting moderate reliability. Cloud Computing and Big Data
Analytics and Numerical Weather Prediction also achieve medium accuracy, while Data Assimilation Techniques and
Satellite Remote Sensing are rated Low, likely due to limitations in data availability or processing. This chart under-
scores the effectiveness of advanced computational techniques for improving flood prediction.

Prediction accuracy of Sophisticated Flood
Forecasting Models

Internet of Things (1oT) and Sensors IS 80
Ensemble Flood Forecasting . 80

Models

Cloud Computing and Big Data Analytics . 80
Satellite Remote Sensing NN 80
Social Media and Crowdsourcing IS 60
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Fig 11: Prediction Accuracy of Sophisticated Flood Forecasting Models

Fig12 illustrates the distribution of flood forecasting studies across various countries, revealing a strong concentration
in India, which leads with approximately 11 studies. The US follows with around 4 studies, while China and "Various
Countries" each have roughly 6 and 3 studies respectively. All other listed countries, including regions in Africa, Aus-
tralia, Greece, Bulgaria, Indonesia, the Philippines, Taiwan, Pakistan, Thailand, and Egypt, show significantly lower
engagement in forecasting studies, with each registering 2 or fewer. This disparity highlights a potential focus on India,
followed by the US and China, in this field of research.
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Flood Forecasting studies across Countries

Various countries
Ethopia
Vietnam
Morocco

Korea
France

Philipenes

us

Indonesia

Countries

Bulgaria
Greece

Australiya

India
Africa

o

2 4 6 8 10 12
Number of Flood Forecasting Studies

Figl2: Statistics of Flood forecasting studies across countries

The figl3 presents the number of research article publications focusing on flood forecasting with Machine Learning and
Deep Learning across various nations. China leads with the highest number of publications, significantly surpassing all
other countries. India holds the second-highest number, while the US, UK, France, Thailand, Indonesia, Taiwan, Neth-
erlands, Bangladesh, Pakistan, and Australia all exhibit considerably lower publication counts. This disparity highlights
a strong concentration of research output in China and, to a lesser extent, India in this specialized area of flood forecast-
ing, suggesting a potential leadership role in advancing these techniques, while the remaining countries demonstrate

comparatively less activity in terms of published research.

Flood Forecasting studies with machine and Deep
learning across countries

25
o 20
.gzo 16
15
=
Q 10
- 3 4
S s 1 2 2 22 2 2 2 2 2
S o = u B m l o wwmmmon
S
Q IS N 2 > 2 Q O o X S W@
Qo C§9 <§9 NP & céé &2 Qéb <§> ¥ L Q§§
£ AN AR e P P IR
2 & %é} C)%,b(‘QV

Countries



NEPT 33 of 42

Fig 13: Flood forecasting with Machine and Deep Learning across nations

The comparison between traditional, sophisticated, and hybrid flood forecasting methods reveals distinct differences in
their performance and operational needs. Traditional methods provide moderate to high accuracy with medium data
requirements and lower resource demands, making them more feasible for areas with limited infrastructure. However,
their real-time effectiveness and adaptability to different regions are only moderate. Sophisticated methods, such as
those using machine learning and deep learning, offer improved accuracy and real-time capabilities but require large
datasets and significant computational power. Hybrid models, which combine traditional and modern techniques, deliver
the highest levels of accuracy, real-time applicability, and adaptability across regions. Despite these advantages, they
come with very high data demands, require advanced computational systems, and depend on specialized technical
knowledge making them most suitable for regions with robust forecasting infrastructure.

Traditional flood forecasting methods, including statistical and hydrological models, provide moderate to high accuracy,
rely on medium levels of data, and are generally suitable for regions with limited technical resources. In contrast, so-
phisticated techniques deliver higher accuracy and better real-time performance but require large datasets and significant
computational capabilities. Hybrid models, which combine physical and data driven approaches, achieve the highest
accuracy and adaptability, though they demand extensive data and substantial resources.

Criteria Traditional Methods Sophisticated Methods | Hybrid Models
Accuracy Moderate to high High Very High
Data requirement Medium High Very High
Real time applicability Moderate High Very High
Resource need Low to Medium High Very High
Regional Adaptability Moderate High Very High

Fig 14: comparative matrix showing Traditional vs. Sophisticated vs. Hybrid methods
5.Research Gaps and Future Directions

Although hybrid models have gained prominence in flood forecasting, several critical gaps remain. A key challenge
lies in the absence of standardized frameworks for integrating diverse modeling approaches such as combining data-
driven techniques with physics-based or statistical models which often leads to inconsistent performance and limited
reproducibility. Most existing hybrid models are calibrated using region-specific datasets, reducing their applicability
across varied hydrological and climatic zones. Moreover, determining the optimal trade-off between model complex-
ity and computational efficiency especially for real-time forecasting remains unresolved. Other issues include limited
interoperability among datasets, the scarcity of high-resolution, multi-source data, and inadequate incorporation of
dynamic uncertainties such as those arising from climate change, evolving land use, and socio-economic transfor-

mations. These limitations restrict the overall robustness, transferability, and adaptability of hybrid models.

Advancing hybrid modeling in flood forecasting calls for the creation of integrated frameworks that support the seam-
less fusion of multiple modeling techniques, ideally built on interoperable data standards and opensource infrastruc-
ture. There is also a growing need to develop interpretable and explainable hybrid models by embedding transparent
Al methods alongside established physical modeling approaches to build stakeholder confidence. To enhance real time

forecasting potential, future models should leverage emerging technologies like edge computing, federated learning,
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and lightweight architectures to reduce latency and computational demands. Modular model designs that allow adap-
tive updates in response to incoming data or environmental changes will be essential. Additionally, incorporating in-
novations such as synthetic data generation, transfer learning, and multi objective optimization will boost generaliza-
bility and resilience, making hybrid models more effective across diverse flood-prone regions facing uncertain future

conditions.
6. Conclusion

This review illustrates the progression of flood forecasting methodologies from conventional hydrological and statisti-
cal models to advanced machine learning (ML) and deep learning (DL) techniques. While traditional approaches have
laid the groundwork for flood prediction, they often fall short in capturing the complex, nonlinear, and spatiotemporal
dynamics of flood events. In contrast, ML and DL models such as Random Forest, Support Vector Machines (SVM),
Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN) offer improved accuracy by leverag-
ing large datasets and sophisticated algorithms. However, these models can be prone to overfitting and may lack trans-
parency. Hybrid models, which integrate physical knowledge with data-driven techniques, represent a highly promis-
ing direction. By combining strengths from both domains, they improve feature extraction, enhance generalizability,

support real-time forecasting, and adapt effectively to varied hydrological settings.

Despite these developments, important research gaps persist. Limited data availability, especially in low resource re-
gions, remains a major constraint. Furthermore, the absence of standardized evaluation frameworks across different
geographic and climatic contexts hinders model comparison and validation. Real-time operational use and integration
with early warning systems are still in early stages, and the black-box nature of many Al-driven models continues to

present challenges for interpretability and stakeholder confidence.

To bridge these gaps, policymakers should prioritize investment in open-access hydrometeorological data systems and
promote the adoption of Al-enhanced models within official forecasting and disaster management frameworks. Re-
searchers should focus on developing robust, interpretable, and data-efficient hybrid models that leverage remote sens-
ing, IoT technologies, and real-time data assimilation. A collaborative, interdisciplinary effort encompassing hydrol-
ogy, data science, and environmental policy is essential to advance flood forecasting systems that are accurate, scala-

ble, and resilient in the face of evolving climate challenges.
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