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ABSTRACT  

Morocco provides a stark example of how a developing country in the African southern hemisphere is 

struggling with the diverse and devastating impacts of climate change, which are exacerbated by 

development issues and a lack of studies that allow for understanding the causal effects of environmental 

degradation, a crucial factor in informing adequate policy responses. An exhaustive STIRPAT analysis, 

conducted in Moroccan ground from 1970 to 2023, using four pieces of empirical evidence and four co-

integration methods: ARDL, FMOLS, DOLS, and CCR. The increase in ecological footprints of 

production, consumption, import, and export in Morocco, is due to urbanization, technical progress, 

trade openness, and economic growth, respectively. Anthropogenic processes, attributed to urbanization, 

economic growth, technological progress, as well as trade openness have positive contribution to 

environmental alteration, and have been found unsustainable in the Moroccan context. Thus, relevant 

policies are being proposed at the individual, organizational, and governmental levels to reduce their 

environmental burden, increase bio-capacity regeneration potential, and promote environmental 

sustainability both in Morocco and beyond. 
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INTRODUCTION   

Identifying exhaustive target variables that consider all aspects of environmental degradation 

is a challenging task, it is even more challenging when it comes to an African emergent country 

in the southern hemisphere struggling with the devastating impacts of climate change, which 

are worsened by development issues and a lack of studies that enable understand the causal 

effects of environmental degradation, a crucial factor in informing adequate policy responses. 

From this perspective, the ecological footprint (EF) is a synthetic concept that quantify the 

anthropogenic impact on the biosphere, resulting in environmental stress (Wackernagel & Rees, 

1996; Galli, 2015; Nautiyal & Goel, 2021; Global Footprint Network, 2024).  

EF helps u understand how humans, driven by economic affluence, energy consumption, and 

land use for living space and agriculture, affect the environment (Dietz et al., 2007; Rafindadi 

& Usman, 2020). It characterizes the cadence and the intensity of resources consumption and 

waste generation, compared to the local ecosystem's ability to absorb waste and replenish 

resources, represented by the area needed to support the population's needs and offset the 

equivalent consumption and CO2 emissions (Global Footprint Network, 2024). 

 When attributed to the production of harvest, crops, grazing land, vegetatives, fibers, farming 

and fisheries, woods, medicinal plants etc., as well as space for urban infrastructure within a 

country's borders, it is referred to as the EF of production (EFP) (Global Footprint Network, 

2024); it specifically tracks the use of productive surface areas including cropland, grazing land, 

fishing grounds, built-up land, forest area, pasture land, roads, factories, cities etc.,  and CO2 

demand on land. (Global Footprint Network, 2024). 

When materialized within imports, it is referred to as the EF of imports (EFI); within exports, 

it is called the EF of exports (EFE). This, and the EF often refers to the apparent EF of 

consumption consumption's (EFC). It is calculated by summing EFP and EFI and subtracting 

EFE. Sometimes EF is designed briefly as footprint.  

In summary, a country’s EF represents the total pressure that the Population’s needs put on 

ecosystems, including the atmosphere, soil, sub-soil, and by extension the demand on bio-

diversity (Global Footprint Network, 2024). It is measured in global-hectares (gha), which 

represent a biologically productive hectare with average bio-productivity, adjusted for the 

demand on a specific geographical zone in a given year (Global Footprint Network, 2024).  
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Like many emergent countries, Morocco's EF has impressively grown in the last 50 years as a 

result of increasing local demand on bio-capacity due to eco-demographic growth, and urban 

expansion, which is putting pressure on local biosphere by excessive water usage, intensive 

farming, overgrazing, and deforestation with overload of anthropogenic CO2 emissions. 

Actually the country’s EFC rose of more than an entire point from 0.91 in 1961 to 1.94 gha per 

inhabitant in 2023, while BC per capita, fall from 1.08 to 0.81 gha per capita for the same period 

(Dworatzek et al., 2024; Data | Ecological Footprint Initiative, n.d.).  

Morocco’s economy relied for decades on primary sector where agriculture,  mining, fishing 

and forestry sectors account for 15% of national GDP, and  employs about 45% of Morocco’s 

active Population (Morocco - Agricultural Sector, 2024), with time, the modernization and 

intensification of agricultural practices have caused soil erosion, salinization and resource 

attrition, affecting about 5.5 million hectares of land, leading in fine in up and down wards in 

EF and bio-capacity, respectively (Bouhia, 2020).   

Morocco is rich in biodiversity, hosting the second-highest concentration of terrestrial 

biodiversity in the Mare Nostrum (Bouhia, 2020). This biodiversity is being threatened by the 

sabotage of its own homeland, which is caused by the overexploitation of natural resources, 

deforestation, desertification, air pollution, stream pollution, and soil degradation (Bouhia, 

2020). As a result, local BC meets only half of Morocco’s total EFC, the country met its deficit 

by relying on 20% net BC imports (Galli, 2015). 

Although that Morocco places its greatest demands on its cropland ecosystem, which provides 

provisioning services, including agricultural products, crop-based feeds, and fibers, mostly used 

(45% of total EFC) to produce food, goods, and services (Galli, 2015), it remains far from 

achieving self-sufficiency and meeting local consumption levels which makes it increasingly 

turning to imports to meet its population's needs for nutrition and energy. Notably, Morocco is 

a net importer of all ecosystem services tracked by the EF (Galli et al., 2012, 2015). 

The key aspect of innovation and distinction of this study relies on three key aspects: 

One key aspect is the exhaustive analysis of the association between various anthropogenic 

stress factors and four interconnected environmental degradation indicators from the footprint 

family, imputed to production, consumption, import, and export, respectively, under spanning 

coverage that outpaces 50 years, from 1970 to 2023. 
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The second key aspect, it innovates in the choice of the environmental stress mainly with ICTs 

as a proxy of technological progress. Hence, it takes into account trade openness as control 

variable, due to Morocco’s increasing integration into the global supply chain, and the potential 

for environmental diffusion stress between countries due to commercial transactions.  

The third key aspect is related to the nature of the target key indicators, which reveal 

complementarities, dualities, and asymmetries between consumption and production, and 

import and export.  

The last one involves the use of four well-known and widely validated co-integration 

approaches for statistical analysis worldwide. 

The rest of the paper is organized as follows: the 1st chapter provides a literature review, the 

2nd presents the models construction and formulation besides the methods of conducting 

empirical evidence. The results are highlighted in the 3rd chapter, that are discussed in the 4th 

one, whereas the 5th chapter addresses some policy implication, it presents as well the potential 

limitations of this study, as well as possible research prospects, and a final conclusion. 

1. LITERATURE REVIEW  

In the realm of environmental sustainability, STIRPAT (as Stochastic Incidences by Regression 

on Population, Affluence and Technology) (Aguir et al., 2014) serves as a framework for 

analysing the interplay between environmental quality, economic affluence, Population 

dynamics, industrialization, and technological advancements (York et al., 2003). This model 

allows researchers to quantify how these factors contribute to environmental degradation and 

sustainability outcomes. The STIRPAT model builds upon the earlier IPAT model by 

introducing a stochastic element that accounts for uncertainties in data and relationships, 

pioneered by Ehrlich & Holdren (1971). Then duplicated to a variety of versions, such as the 

“I(m)PACT(s)” identities (Vélez-Henao et al., 2019; Waggoner & Ausubel, 2002; Lin et al., 

2009; Vélez-Henao et al., 2019; Hamdi & Mohamed, 2024), or the “IP(B)AT” identity (Vélez-

Henao et al., 2019; Schulze, 2002; Hamdi & Mohamed).  

Under the STIRPAT framework, a range of environmental barometers has been examined in 

numerous studies, in relation to a variety of explanatory variables, including economic growth, 

human capital, bio-availability, energy use, renewable energy, urbanization, financial inclusion 

trade openness, demographics, natural resource attrition, governance and institutional quality . 
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For example, CO₂ emissions have been used by Bélaïd and Youssef (2016), Bekun et al. (2018), 

Abbasi et al. (2021), Mirziyoyeva et al. (2022), Raihan and Almagul (2022), Zhao et al. (2023), 

Ullah et al. (2023), Asli et al. (2024), Naz et al. (2024), and S. Ullah and Lin (2024) to examine 

factors influencing CO₂ levels, often in relation to economic growth and energy patterns. 

Sulfur dioxide (SO₂) emissions have been explored in more recent analyses, notably by Wong 

et al. (2024) and Xu et al. (2024), while nitrous oxide (N₂O) has been investigated by 

Seangkiatiyuth et al. (2011), Tian et al. (2018), and Casquero-Vera et al. (2018), focusing on 

emissions related to agriculture and industrial activity. 

Similarly, nitrogen oxides (NOₓ) emissions have been examined by Tørseth et al. (2012) and 

Shaw and Van Heyst (2022), addressing concerns over transportation and industrial emissions. 

When it comes to greenhouse gases (GHGs) more broadly, studies by Sarkodie and Strezov 

(2018), Chen et al. (2021), Tsur (2024), and Ochi and Saidi (2024) provide comprehensive 

assessments of how black emissions drivers across different national and sectoral contexts. 

Lastly, particulate matter (PM) has drawn attention in the works of Griffin (2013) and Yun et 

al. (2022), often highlighting health implications and links to urbanization and fossil fuel use. 

These studies collectively underscore the multifaceted nature of environmental degradation and 

the broad array of variables influencing ecological and atmospheric quality. However, these 

barometers have been criticized for lacking thoroughness and inclusiveness (Destek et al., 2018; 

Altıntaş et al., 2020; Usman et al., 2020; Nathaniel et al., 2020; Ramezani et al., 2022; Sun et 

al., 2023; Aziz et al., 2022; Ullah et al., 2023; Hamdi & Mohamed, 2024) and for being 

insufficient in measuring decarbonization (Shaw & Van Heyst, 2022). 

Recently, EF has increasingly been employed as a reliable and multifaceted environmental 

barometer (Galli et al., 2014) for environmental assessment, monitoring, and policy evaluation 

(Rafindadi & Usman, 2020). Numerous studies have utilized EF as a barometer, such as Hamdi 

and Mohamed (2024), Padhan and Bhat (2024), Zhou et al. (2024), Farouki and Aissaoui 

(2024), Mehmood et al. (2023), Li et al. (2023), Xu et al. (2022), Yasmeen et al. (2022), Rafique 

et al. (2021), Ali et al. (2021), Chen et al. (2021), Okelele et al. (2021), Nathaniel et al. (2020), 

and Ahmed and Wang (2019), who commonly employed economic growth, demographic 

tendencies, natural resource rents, and energy patterns such as composition and consumption 

as central variables that tend to increase environmental pressure.  
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In national contexts, such as Turkey, Ullah et al. (2023) utilized an ARDL model covering 

1970–2018 to prove that economic growth, bio-capacity, urbanization, and natural resources all 

have a positive impact on EF, implying a linear environmental cost to development.  

Similarly, in Pakistan, Ullah and Lin (2024) used a NARDL method analysis from 1990 to 

2018, revealing that natural resource rents and economic growth significantly contributed to 

increase EF, meantime renewable energy consumption had a mitigating effect. 

Interestingly, financial inclusion appears as a recurring variable in more recent literature. In 

Algeria, for example, Bergougui and Aldawsari (2024) identified inclusive finance as a positive 

force in managing ecological risks, potentially by enabling green investments and reducing 

dependency on resource-intensive activities.  

In china, Xu et al. (2022) applied FMOLS, DOLS, CCR and spectral causality techniques over 

the period of 1990–2017 to conclude that technological advancement and renewable energy use 

impede EF level in the long run, whereas FDI expedite it.  

Back to Morocco, by using ARDL and VAR/VECM cointegration models, it was previously 

proven that between 1980 and 2022, economic growth, urbanization, and energy use led to an 

increase in EF, alongside with the confirmation of the EKC hypothesis, whereas ensuring 

advanced education reduced it (Hamdi & Mohamed, 2024; Farouki & Aissaoui, 2024). 

In subnational contexts, for example, financial inclusion, economic growth, urbanization, and 

natural resource rents were found to significantly increase EF in the ECOWAS, according to 

estimations using different panel regression methods over 1990–2016 (Ali et al., 2022).  

Moreover, in the South Asian context, Mehmood et al. (2023) confirmed this causality-effect 

link, finding that, from 1990 to 2022, urban and economic growth, as well as human capital and 

bio-capacity, positively contribute to EF using panel co-integration approaches. Furthermore, 

it was captured the negative impact of FDI and the mitigating role of green innovation on EF 

in the context of the BRICS and Next-11, from 1992 to 2018 by Padhan and Bhat (2024). 

Nevertheless, the contribution of FDI and trade to EF remains controversial, with conflicting 

findings: while a 1991-2012 DOLS panel data analysis of the 27 highest emitting countries 

revealed a negative impact (Uddin et al., 2017), a robust 53-panel regression investigation from 

1990 to 2021 in the Belt and Road Initiative regional context found a positive relationship 

between trade and EF for both imports and exports (Zhou et al., 2024). Which is confirmed in 
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the Sub Saharan context, where Okelele et al. (2021) found that EFC per capita decreases with 

an increase in trade openness and increases with an increase in FDI inflows from 1990 to 2015.  

Furthermore, Ahmad et al. (2020) employed the second generation panel co-integration 

approach from 1984 to 2016, to find that natural resources and economic growth expand the 

EF, while technological innovations reduce it, all within the presence of the EKC hypothesis. 

In summary, these studies converge on the conclusion that economic growth, urbanization, and 

natural resource exploitation significantly amplify environmental degradation in developing 

regions. However, the integration of renewable energy, improvement in institutional quality, 

and expansion of financial inclusion offer promising pathways toward sustainability. This 

narrative underscores the urgency of adopting holistic, context-sensitive policies that align 

economic ambitions with environmental stewardship. 

As a continuation, this study aims to provide a plausible clarification of the following problem: 

 What are the long-term anthropogenic processes’ effects, associated to urbanization, economic 

growth, technological progress, and trade openness on Morocco's EFs of consumption, 

production, import, and export from 1970 to 2023?”  

In order to bring response to this problematic, the following hypothesis is going to be verified:  

-H: Anthropogenic processes’ imputed to urbanization, technological progress, economic 

growth, and trade openness, have a positive effect on the EF’ four economic varieties.  

This hypothesis is split into four sub-hypotheses, following our four econometric models 

- Ha:  Anthropogenic processes have a positive incidence on EFP 

- Hb: Anthropogenic processes have a positive impact EFC 

- Hc: Anthropogenic processes have a positive effect on EFE 

- Hd: Anthropogenic processes have a positive influence on EFI.  

2. Methods  

2.1.Model construction  

This study relies on STIRPAT, in line with our previous papers (Hamdi el al., 2024; Asli et 

al., 2024; Hamdi & Mohamed, 2024; Hamdi & Mohamed, 2025), with this specification:  

I=a⋅Pb⋅Ac⋅Td⋅e  
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Where, I is incidence on environment, P is Population dynamics, A denotes affluence, T stands 

for technology, a, b, c, and d, are coefficients that represent the elasticity of each factor, and 

e is an error term accounting for unobserved factors.  

Accordingly, the following functional form is estimated: (EF) = f (URB, GDP, ICT, TRD)    

From which, are derived the following four specific functional models:  

The EFP model: incidence on (EFP) = f (URB, GDP, ICT, TRD)    

The EFC model: incidence on (EFC) = f (URB, GDP, ICT, TRD)    

The EFI model: incidence on (EFI) = f (URB, GDP, ICT, TRD)    

The EFE model: incidence on (EFE) = f (URB, GDP, ICT, TRD)    

Where EF represents ecological footprint, EFC is Ecological footprint of consumption, EFP of 

production, EFI of import, EFE of export, URB is urbanization, GDP is Gross Domestic 

Product, ICT stands for the information and communication technologies, and TRD is trade.  

Table 3 represent a description of the chosen variables and their correspondent determinants: 

Table 1: Variables and data presentation 

STIRPAT  Variables Acronym Unit  Data source 

I 

 

Ecological footprint of 

production  
EFP 

Gha/ 

midyear 

population   

Global Footprint Network  
of consumption  EFC 

of import  EFI 

of export EFE 

P Urbanization   URB Ratio 
Urban population (% of total 

population) - Morocco | Data 

A Gross Domestic Product   GDP 
Constant 

2015 $ 
World Bank Open Data 

T 

 

Information and 

Communication 

Technologies 

ICT Integer   

Adoption of communication 

technologies per 100 people, 

Morocco 

Control variable  Trade openness  TRD % GDP World Bank Open Data 

 

N.B: ICTs are closely linked to technological progress, acting as a driver and facilitator of 

innovation across sectors. ICTs enhance productivity, enable knowledge diffusion, and support 

the development of new products and services, thus accelerating economic and technological 

advancement (Vu, 2011; Niebel, 2017). They drive innovation and efficiency gains in 

industries, particularly through automation, digitization, and improved communication 

networks (OECD, 2020). Hence, ICT infrastructure is foundational for emerging technologies 

https://data.footprintnetwork.org/
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=MA
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=MA
https://ourworldindata.org/grapher/ict-adoption-per-100-people?country=~MAR
https://ourworldindata.org/grapher/ict-adoption-per-100-people?country=~MAR
https://ourworldindata.org/grapher/ict-adoption-per-100-people?country=~MAR
https://data.worldbank.org/indicator/NE.TRD.GNFS.ZS?locations=MA
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such as artificial intelligence, the Internet of Things, and big data analytics, which are key 

components of modern technological progress (Castells, 2010; Brynjolfsson & McAfee, 2014). 

The choice of trade as a control variable is justified by the fact that the EFI and EFE models, 

take into account the exports and imports of goods and services, summed by Trade as %GDP. 

2.2.Model demonstration 

By taking the functional form of the EFP model as an example, rising it to the natural log, 

neglecting the error term, we get the following specifications:  

 

LnEFPt=β0+β1LnURBt+β2LnGDPt+β3LnICTt+β4 LnTRDt+µt                                            (eq1) 

 

The ARDL/BTA specification is expressed as:  

 

LnEFPt=∑ β
p
i=1 0iLnEFPt−i+∑ β

q
i=0 1iLnURBt−i∑ β

q
i=0 2iLnGDPt−i∑ β

q
i=0 3iLnICTt−i + 

∑ β
q
i=0 4iLnTRDt−i +δ0LnEFPt−i +δ1LnURBt−i+δ2LGDPt−i +δ3LnICTt−i+ δ4LnTRDt−i +εt     (eq2)            

 

And at the fist difference as:                                  

 

∆LnEFPt=∑ β
p
i=1 0i∆LnEFPt−i+∑ β

q
i=0 1i∆LnURBt−i∑ β

q
i=0 2i∆LnGDPt−i∑ β

q
i=0 3i∆LnICTt−i + 

∑ β
q
i=0 4i∆LnTRDt−i +δ0LnEFPt−i +δ1LnURBt−i+δ2LGDPt−i +δ3LnICTt−i+ δ4LnTRDt−i +εt  (eq3)                                                                                   

 

Where t represents the current  period, t − i represents the previous period, ∆ is the first 

difference operator, p and q are respectively the lags length for both dependent and 

independents variables, , coefficients of short and long run are shown through β and δ 

respectively, while εt represents the error term. 

Two hypotheses are to be confronted: if there is no co-integration, as stipulates the null 

hypothesis (H0: δ1= δ2= δ3= δ4=0 ) vs the alternative one (Ha: δ1 ≠ δ2 ≠ δ3 ≠ δ4 ≠ 0).  

If there is co-integration, the error correction model (ECM) representation is specified as:  

 

∆LnEFPt= ∑ β
p
i=1 0i∆LnEFPt−i+ ∑ β

q
i=0 1i∆LnURBt−i+ ∑ β

q
i=0 2i∆LnGDPt−i+ ∑ β

q
i=0 3i∆LnFCEt−i+ 

∑ β
q
i=0 4i∆LnICTt−i + η ECTt-1 + µt                                                                                       (eq4) 

 

Where, ECT represents the error correction term, η is its stochastic coefficient. 

The three remaining models are constructed just the same way. 
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2.3.METHODS  

2.3.1. Methodology  

This study employs the ARDL approach, supplemented by three other co-integration tools – 

FMOLS, DOLS, and CCR – to consolidate the reliability of the primary ARDL results. 

ARDL/ECM is well known for conducting long-run analyses of dynamic relationships between 

series with different orders of integration (Pesaran & Shin, 1998; Pesaran et al., 2001), where 

the current value of the dependent variable depends on its own past realisations through the 

distributed lag part (Kripfganz & Schneider, 2023). The advantage of this approach lies in 

identifying co-integrating vectors when there are multiple ones (Nkoro and Uko, 2016).  

The methodological approach followed in this study is schematized step-by-step in scheme 1: 

                            Scheme 1: The study’s methodological approach 

 

                    

 

 

 

 

 

 

 

  

   

 

                            

  

 

                                    Source: Authors own elaboration 

2.3.2. Descriptive analysis  

Descriptive analysis is conducted by four techniques: Descriptive statistics, Multiple 

Correlation Analysis (MCA), Variance inflation factors (VIF), and Pairwise Component 

Analysis (PCA) (Pearson, 1901; Bonett and Wright, 2000; Hamdi el al., 2024; Asli et al., 2024; 

Hamdi & Mohamed, 2024; Hamdi & Mohamed, 2025).  

Data description and Sampling 

Modelling  

Unit root test  

                    Lag Order selection 

 

  ARDL Bound test 

ARDL Error correction model 

 
 FMOLS, DOLS, CCR tests 

 Residual diagnostic and stability tests  

Descriptive analysis  
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2.3.3. Unit root test 

It is essential to verify data stationarity, ensuring statistical properties remain constant over time 

(Kwiatkowski et al., 1992). The ARDL method depends on the cointegration order of variables 

(Pesaran et al., 2001). This study employs ADF test for that purpose (Dickey & Fuller, 1979).  

2.3.4. Lag order selection  

When the auto-regressive model is subject to restrictions of co-integration, there are multiple 

information criteria for selecting the appropriate lag order (Lütkepohl, 1993). They all rely on 

selectin the lag length with the lowest value (Mallik, 2008; Hamdi & Mohamed, 2024). 

2.3.5. ARDL bounds tests  

An ARDL bounds test involves performing an F-test on the lagged levels of the independent 

variable (Nkoro and Uko, 2016; Asli et al., 2024), compared with critical values at a 5% level 

of significance (Narayan, 2005; Asli et al., 2024). 

2.3.6. Error correction model  

It can be derived from ARDL model through a simple linear transformation, which integrates 

short run adjustments with long run equilibrium (Nkoro & Uko, 2016; Hamdi & Mohamed, 

2024). Then it exhibits an associated error correction term (ECT) which measures how quickly 

the equilibrium is reached in the long run (Engle & Granger, 1987; Asli et al., 2024). 

2.3.7. FMOLS, DOLS, and CCR tests  

The FMOLS method, developed by Phillips and Perron (1988), is valued for handling 

endogeneity and serial correlation, especially in small samples (Hamit-Haggar, 2012; Asli et 

al., 2024). DOLS, introduced by Stock and Watson (2003), often yields superior estimates by 

addressing regressor correlations (Kao, 1999; Asli et al., 2024). As a robustness check, the CCR 

approach (Pesaran et al., 2001) is also applied, modifying the model to improve chi-square test 

accuracy (Park, 1992; Pattak et al., 2023; Asli et al., 2024). 

2.3.8. Residual Diagnostic and stability tests  

Residual diagnostics is essential for assessing a model's capability and providing directions for 

potential modifications (Mauricio, 2008). The normal distribution of residuals was tested using 

Bera and Jarque's (1981) method, while heteroscedasticity was checked with Breusch and 

Pagan's (1979) test, and serial correlation was evaluated using Godfrey's (1978) test. 

Additionally, the Ramsey (1969) test was used to verify the existence of misspecifications in 

residuals. The quality of the regression is represented by the CUSUM and CUSUMSQ tests 

(Brown et al., 1975), and its stability is checked (Doan et al., 1994). 
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3 RESULTS  

The results from the empirical evidence on the footprint models are presented jointly in a single 

table, divided into four cases, with each case representing a singular model's results, and each 

result commented on underneath its corresponding table.  

• Descriptive Statistics 

Table 2 below provides a statistical description summary of the four model variables data. 

 

Table 2: Data Descriptive Statistics 

 

 LNEFC LNEFE LNEFI LNEFP LNURB LNGDP LNICT LNTRD 

 Mean  17.37984  16.09276 -0.777442  17.30571  3.911890  26.98903  2.256376  4.052313 

 Median  17.41169  15.97666 -0.834063  17.30516  3.954809  24.64714  1.562475  4.000685 

 Max  18.10904  16.79392 -0.083382  17.91692  4.172152  37.10619  5.463832  4.616267 
 Min  16.44590  15.65578 -1.660731  16.70099  3.540292  23.48349 -0.564610  3.602211 

 Std. Dev.  0.482438  0.320997  0.435008  0.348433  0.183145  5.130629  2.367897  0.220808 

 Skewness -0.171867  0.730638  0.031031 -0.054216 -0.456566  1.439369  0.201829  0.380473 
 Kurtosis  1.922932  2.410983  1.895937  1.884086  2.085151  3.124651  1.341788  2.820291 

 Jarque-Bera  2.876015  5.585102  2.751314  2.828297  3.759207  18.68102  6.553365  1.375505 

 Prob  0.237400  0.061265  0.252674  0.243133  0.152651  0.000088  0.037753  0.502705 

 Sum  938.5112  869.0090 -41.98185  934.5086  211.2420  1457.407  121.8443  218.8249 
 Sum Sq. Dev.  12.33558  5.461076  10.02931  6.434478  1.777728  1395.138  297.1676  2.584075 

 

Results from Table 2 show that the EFC and EFP show symmetrical distributions with moderate 

variation and pass normality tests, indicating stable and consistent patterns. 

In contrast, the EFE is right-skewed and nearly non-normal, suggesting uneven environmental 

impacts across observations. The EFI, while more symmetric, shows considerable flatness and 

variability, though it still meets the normality threshold. 

Among the explanatory variables, urbanization and trade openness display low variability and 

approximately normal distributions. GDP and ICT development, however, are highly skewed 

and non-normal, reflecting structural disparities in economic and digital development. 

Overall, most EFs indicators are well-behaved statistically, but special attention is needed when 

modelling variables like GDP, ICT, and EFE due to their distributional characteristics. 

• Pair-wise Correlation Analysis 

Table 3 below illustrates the pair-wise correlation matrices of the four models:  
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Table 3: The EFs models’ pair–wise correlations matrices 

The EFP model 

 

 LNEFP LNURB LNGDP LNICT LNTRD 

LNEFP 1.000000     
LNURB 0.966667 1.000000    

LNGDP 0.740718 0.687033 1.000000   

LNICT 0.939598 0.926602 0.728291 1.000000  
LNTRD 0.797232 0.770152 0.715163 0.819587 1.000000 

 

The EFC model 

 

 LNEFC LNGDP LNICT LNURB LNTRD 

LNEFC 1.000000     
LNGDP 0.735419 1.000000    

LNICT 0.951953 0.728291 1.000000   

LNURB 0.983926 0.687033 0.926602 1.000000  
LNTRD 0.811182 0.715163 0.819587 0.770152 1.000000 

 

The EFI model 

 

 LNEFI LNGDP LNICT LNURB LNTRD 

LNEFI 1.000000     

LNGDP 0.767349 1.000000    

LNICT 0.958367 0.728291 1.000000   
LNURB 0.935901 0.687033 0.926602 1.000000  

LNTRD 0.847025 0.715163 0.819587 0.770152 1.000000 
 

The EFE model 

 

 LNEFE LNGDP LNICT LNURB LNTRD 

LNEFE 1.000000     
LNGDP 0.789943 1.000000    

LNICT 0.855346 0.728291 1.000000   

LNURB 0.803808 0.687033 0.926602 1.000000  
LNTRD 0.752038 0.715163 0.819587 0.770152 1.000000 

 

 

Results from Table 3 suggest consistent correlation patterns. In all cases, environmental impact, 

whether from production, consumption, imports, or exports, is strongly associated with higher 

levels of urbanization and ICT development. These two factors exhibit the closest relationships, 

suggesting they are key structural drivers of ecological pressure. GDP and trade openness also 

show positive correlations across all models, though slightly weaker. Notably, EFC and EFI 

demonstrate the strongest overall associations with the explanatory variables, implying that 

lifestyle and external demand significantly contribute to environmental strain. 
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In sum, the results point to a shared dynamic: as economies urbanize, digitize, grow, and 

integrate into global trade, their EFs intensify, especially through consumption and imports. 

However, these strong correlations require variance inflation factors (VIF) analysis, to check 

any potential mulicollinearity concerns. Following Table 4 represents the VIF test outputs 

Table 4: Variance Inflation Factors 

Variable  Coefficient Variance Uncentered VIF Centered VIF 

LNGDP  1.88E-05  70.57333  2.377818 

LNURB  0.030778  2359.634  6.481630 

LNICT  0.000269  13.55806  5.700806 

LNTRD  0.013504  1111.770  3.797823 

C  0.465502  2359.712  NA 

The centered VIF results from Table 4 indicate mild to moderate multicollinearity among 

explanatory variables. LNGDP and LNTRD show low to acceptable levels (lower than 5), 

posing no concern. LNURB and especially LNICT exceed the common threshold of 5, signaling 

moderate multicollinearity. These values suggest, generally, the absence of extreme 

multicollinearity concerns (since lower than 10) that might compromise the precision of 

coefficient estimates or warrants closer scrutiny. 

• Unit root test 

Table 5 below summarizes the ADF unit root test results.  

Table 5: ADF Unit root test 

 

At Level  LNEFP LNEFC LNEFI LNEFE LNURB LNGDP LNICT LNTRD 

Constant t-Statistic -0.2537 -1.3934 -1.2652 -0.9783 -2.8235 -0.3346 -0.5549 -1.2416 

 Prob.  0.9242  0.5784  0.6391  0.7546  0.0619  0.9123  0.8713  0.6497 
  n0 n0 n0 n0 * n0 n0 n0 

Constant & Trend  t-Statistic -8.0492 -6.2846 -3.2571 -2.7545 -2.6791 -1.6683 -1.7760 -2.6892 

 Prob.  0.0000  0.0000  0.0848  0.2202  0.2492  0.7514  0.7020  0.2451 
  *** *** * n0 n0 n0 n0 n0 

Constant & Trend  t-Statistic  3.4863  4.7905 -2.3395  1.2006 -0.1897  1.1002  0.6494  1.2138 

 Prob.  0.9998  1.0000  0.0200  0.9393  0.6131  0.9276  0.8533  0.9407 

  n0 n0 ** n0 n0 n0 n0 n0 
At First Difference  d(LNEFP) d(LNEFC) d(LNEFI) d(LNEFE) d(LNURB) d(LNGDP) d(LNICT) d(LNTRD) 

Constant t-Statistic -8.6947 -8.4567 -9.5928 -9.8459 -0.4186 -7.2269 -3.1646 -6.2138 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.8980  0.0000  0.0279  0.0000 

  *** *** *** *** n0 *** ** *** 

Constant & Trend  t-Statistic -8.6084 -8.5439 -9.5449 -9.9406 -1.9414 -7.3032 -3.0899 -6.1510 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.6187  0.0000  0.1195  0.0000 

  *** *** *** *** n0 *** n0 *** 

Constant & Trend  t-Statistic -12.9487 -11.8715 -8.8480 -9.6986 -1.2867 -7.1039 -2.3060 -7.3382 

 Prob.  0.0000  0.0000  0.0000  0.0000  0.1804  0.0000  0.0217  0.0000 

  *** *** *** *** n0 *** ** *** 

 (*) p < 0.01; (**) p < 0.05; (***) p < 0.001.   
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As shown in Table 5, the variables are integrated, with some at level I(0), and some others at 

the first difference I(1), meeting at least one of the stationarity criteria, either with a constant, a 

constant and a trend, or without at the 5% level. Accordingly, it can be said that the series in 

question are co-integrated and therefore, their variables can be combined linearly in the long–

run, which paves the way for the application of a ARDL bounds, an ECM to define the long-

run elasticities, and the three co-integration approaches for results’ consolidation. 

• Lag order selection 

Table 6 below summarizes the optimal lag selection estimations for the four models:   

Table 6: Optimal Lag lenth order selection 

  

The EFP model 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -71.02967 NA   1.44e-05  3.041187  3.232389  3.113998 

1  309.9495  670.5234  9.48e-12 -11.19798  -10.05077* -10.76112 
2  357.7008   74.49197*   3.94e-12*  -12.10803* -10.00481  -11.30711* 

3  375.0008  23.52796  5.80e-12 -11.80003 -8.740794 -10.63506 

4  388.1802  15.28812  1.09e-11 -11.32721 -7.311959 -9.798178 

       
       

 

The EFC model 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -59.22253 NA   8.98e-06  2.568901  2.760103  2.641712 

1  322.3498  671.5673  5.77e-12 -11.69399  -10.54678* -11.25713 

2  371.0372   75.95233*   2.31e-12*  -12.64149* -10.53826  -11.84057* 

3  392.0068  28.51867  2.94e-12 -12.48027 -9.421036 -11.31530 
4  407.9500  18.49411  4.96e-12 -12.11800 -8.102752 -10.58897 

       
       

 



16 
 

The EFI model 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -73.02299 NA   1.56e-05  3.120919  3.312122  3.193730 
1  316.6852  685.8864  7.24e-12 -11.46741  -10.32020* -11.03054 

2  360.7260   68.70362*   3.49e-12*  -12.22904* -10.12581  -11.42812* 

3  378.1427  23.68678  5.12e-12 -11.92571 -8.866473 -10.76074 

4  396.4881  21.28060  7.84e-12 -11.65952 -7.644276 -10.13049 
       
       

 

The EFE model 

       
        Lag LogL LR FPE AIC SC HQ 

       
       0 -102.4926 NA   5.07e-05  4.299705  4.490907  4.372515 

1  300.2134  708.7625  1.40e-11 -10.80853 -9.661321 -10.37167 

2  352.6234   81.75962*   4.82e-12*  -11.90494*  -9.801710*  -11.10402* 
3  368.8528  22.07202  7.42e-12 -11.55411 -8.494875 -10.38914 

4  384.6882  18.36901  1.26e-11 -11.18753 -7.172278 -9.658497 

       
       

 

 * indicates lag order selected by the criterion 

According to Table 6, with the unanimity of criterions across the four models, the optimal lag 

with the lowest lag order) for ARDL modelling is 2. 

• ARDL bounds test 

Table 7 represents the ARDL bounds test results for the four models. 

Table 7: ARDL bounds tests 

The model F–statistic Value 

EFP  

 

      10.97171 
 

EFC  

 
17.17399 

EFI  

 
4.557081 

 

 
EFE  

 
5.046055 

at 5%, I0 Bound= 2,86, I1 Bound=4.01 

The ARDL bounds test results from Table 7 show that the F-statistics of the EFP, EFC, EFI, 

and EFE models are significantly higher than both the lower and upper critical value bounds at 

the 5% level, indicating that the null hypothesis of no co-integration is rejected in favour of a 

long-run co-integration relationship between the variables. 
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• The ARDL analysis  

Table 8 below show the ARDL and ECM long run estimations of the four footprint models:  

Table 8:  The footprint models ARDL long run estimates   

The EFP model’ ARDL estimates 
     
     Variable Coefficient Std. Error t-Statistic Prob.    

     
     LNURB*** 1.416673 0.170776 8.295503 0.0000 

LNGDP 0.002467 0.003451 0.714778 0.4786 

LNICT** 0.033497 0.013895 2.410765 0.0203 

LNTRD 0.010529 0.116341 0.090501 0.9283 

C 11.596762 0.738764 15.697522 0.0000 

     
     CointEq(-1) -1.089484 0.148246 -7.349146 0.0000 

 

The EFC model’ ARDL estimates 
     
     Variable Coefficient Std. Error t-Statistic Prob.    

     
     LNURB*** 1.924236 0.111154 17.311484 0.0000 

LNGDP 0.002582 0.002404 1.073967 0.2886 

LNICT*** 0.040997 0.009051 4.529376 0.0000 

LNTRD*** 0.168759 0.065963 2.558373 0.0140 

C 9.014011 0.453759 19.865186 0.0000 

     
     CointEq(-1) -1.041008 0.133040 -9.328106 0.0000 

 

The EFI model’ ARDL estimates 
     
     Variable Coefficient Std. Error t-Statistic Prob.    

     
     LNURB 0.618653 0.415879 1.487578 0.1437 

LNGDP 0.010629 0.008150 1.304239 0.1986 

LNICT*** 0.101632 0.035638 2.851763 0.0065 

LNTRD 0.099386 0.255452 0.389059 0.6990 
C -4.089530 1.817821 -2.249688 0.0293 

     
     CointEq(-1) -0.438531 0.121079 -3.621856 0.0007 

 

The EFE model’ ARDL estimates 
     
     Variable Coefficient Std. Error t-Statistic Prob.    

     
     LNURB*** 1.727166 0.536784 -3.217618 0.0025 

LNGDP*** 0.038539 0.009025 4.270240 0.0001 

LNICT 0.050198 0.039027 1.286234 0.2052 

LNTRD 0.104373 0.256254 0.407303 0.6858 
C 4.480434 2.188006 2.047725 0.0467 

     
     CointEq(-1) -0.537229 0.113798 -4.720912 0.0000 

 

(*) p < 0.01; (**) p < 0.05; (***) p < 0.001. 

Results from Table 8 show that the endogenous variables progress all together significantly and 

proportionally in the same positive direction across the four models. This and the ECT 

(CointEq(-1)) of each model has a negative and significant value, ranging from –1 to 0, 

indicating ideal annual adjustment speeds to the long-term equilibrium for the four models. 

• Residual diagnostic and stability tests  

The following Figure 1 represents the CUSUM and the CUSUMSQ plots of the four models: 

Figure 1: The EFs models’ CUSUM and the CUSUMSQ plots  
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EFC  
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As Figure 1 illustrates, the CUSUM and CUSUMSQ plots for all four models generally fall 

within the 5% level bounds, with only minor and brief exceptions, indicating their stability.  

• The EFs models normality tests 

 Figure 2 shows the four EFs models’ Jarque-Bera normality tests outputs.  

Figure 2: The Jarque-Bera normality test outputs 

Model  Jarque-Bera Normality test  Descriptive statistics  
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As shown in Figure 2, the EFs models residuals exhibit a normal distribution at the 5% level.  

• Residuals diagnostic and stability check summary  

The results of ARDL residual diagnostics and stability tests are regrouped in Table 9:  

Table 9: The ARDL residual diagnostics and stability tests of the EFs models 

Test & hypothesis Model F–Statistic P–value Interpretation Conclusion 

Breusch–Godfrey 

serial Correlation 

LM 

(H0: absence of 

serial correlation) 

EFP 0.437579 0.6482 

Fail to reject H0 

 

Absence of 

serial auto- 

correlation for 

the footprint 

models 

EFC 1.343979 0.2706 

EFI 11.07573 0.1024 

EFE 16.95542 0.0912 

Jarque–Bera 

Normality 

(H0: Residus are 

normally distributed) 

EFP 1.968082  0.373797 

Fail to reject H0 

 

The four 

footprints’ 

residuals are 

normally 

distributed  

EFC 1.731063 0.420828 

EFI 0.354747 0.837467 

EFE 3.682633 0.158609 

Breusch–Pagan–

Godfrey 

Heteroskedasticity 

(H0: Residus are 

homoscedastic) 

EFP 0.437579 0.6482 

Fail to reject H0 

Residus are 

homoscedastic 

for the footprint 

models 

EFC 1.343979 0.2706 

EFI 2.083177 0.0973 

EFE 3.656341 0.0910 

Ramsey RESET 

Functional form (test 

of specific error) 

EFP 1.717189 0.1963 

Fail to reject H0 

 

No residus 

misspecification 

in the models 

EFC 0.178952 0.6742 

EFI 11.07573 0.6001 
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(H0: No 

misspecification) 
EFE 8.979528 0.0430 Reject H0 

except for EFI’ 

model 

H0 is either accepted or rejected at the 5%. 

As shown in Table 9 above, the results indicate that, generally, the EFs models, exhibit no serial 

correlation or misspecification in their residuals (with the exception of the EFE), and instead, 

display normal distributions with homoscedastic data. This suggests that the footprint models 

are stable, and their residuals do not impact the co-integration modelling process. 

• The four cointegration methods result summary  

Following Figures 3,4,5 and 6 graphically represent the four co-integration methods results:  

Figure 3: the EFP model results 

 

Source: Office outputs based on authors own computations 

Figure 4: the EFC model results 
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Source: Office outputs based on authors own computations 

Figure 5: the EFI model results 

  

Source: Office outputs based on authors own computations 
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Figure 5: the EFE model results   

 

Source: Office outputs based on authors own computations 

Table 10 provides a final incidence appreciation based on the four EFs models results  

Table 10: Final incidence appreciation on environmental degradation 

MODEL LnURB LnGDP LnICT LnTRD 

EFP Very high  Very low Moderate Moderate 

EFC Very high Very low Moderate high 

EFI So high Very low Moderate Moderate 

EFE So high Low Moderate Moderate 

→ Environmental 

degradation 

Very high Very low Moderate Moderate 

NB. General appreciation on environmental appreciation is based on the EFs singular appreciations   

4 DISCUSSION 

From the final appreciation in Table 16 above, it can be said that anthropogenic processes’ 

associated to urbanization, economic growth, technological progress, and trade openness, had 

a positive impact on EFP, EFC, EFE and EFI in Morocco over five decades (1970–2023). 

Based on, the previously formulated hypotheses Ha, Hb, Hc and Hd, are strongly supported. 
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The findings affirm that urbanization, technological progress, economic growth, and trade 

openness have significantly contributed to the increase in Morocco’s divers EFs. These drivers, 

while traditionally linked to development and modernization, are shown here to exert 

unsustainable pressure on the environment—echoing concerns raised in broader literature 

(Dietz & Rosa, 1997; York et al., 2003). 

Urbanization, for instance, is typically associated with increased infrastructure demands, 

resource consumption, and pollution factors that amplify ecological degradation in the absence 

of green urban planning (Sharma, 2011). In Morocco's case, urban sprawl has likely led to 

habitat loss and increased energy use, worsening ecological impacts. 

Technological progress, though often positioned as a solution to environmental challenges, can 

paradoxically intensify them when it encourages higher consumption and resource exploitation, 

a phenomenon known as the rebound effect (Polimeni et al., 2008). In Morocco, technology 

has apparently contributed to increased EFs, suggesting a lack of alignment with sustainable 

development principles. 

Trade openness is another double-edged sword. While it can promote economic diversification 

and growth, it can also lead to environmental externalities, especially when trade involves 

ecologically harmful goods or when environmental regulations are weak (Antweiler et al., 

2001). The study attributes Morocco’s rising ecological impact from imports and exports to 

these dynamics. 

Finally, economic growth in Morocco, while vital for poverty reduction, appears 

environmentally taxing. This aligns with the (EKC) hypothesis, which posits that environmental 

degradation first increases with economic growth before eventually declining, though Morocco 

may still be in the upward phase of this curve (Grossman & Krueger, 1995). 

The use of four co-integration techniques strengthens the reliability of the results by confirming 

long-run equilibrium relationships between environmental degradation and its drivers. This 

methodological rigor allows for more confident policy implications. 

Importantly, the conclusion underscores the unsustainability of current trends and advocates for 

multi-level policy responses. These include individual behavioral changes, organizational 

reforms, and government-led interventions to boost bio-capacity and mitigate environmental 

stress. This multi-pronged approach is consistent with global sustainability frameworks, such 
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as the United Nations Sustainable Development Goals (SDGs), particularly Goals 11 

(Sustainable Cities), 12 (Responsible Consumption and Production), and 13 (Climate Action). 

In sum, the Moroccan context reflects broader trends in the Global South, where the pursuit of 

development, absent environmental safeguards, risks deepening ecological crises. This study 

contributes to the growing call for evidence-based, inclusive environmental governance that 

addresses the root causes of degradation while supporting equitable development. 

5. Policy implications 

The findings are underlining the urgent need for informed and context-specific policy 

interventions. Here are some concise and practical sustainable propositions to help undermine 

and reduce the EF rise and effects, applicable to three individual, organizational and 

governmental levels, which can be declined to materialized concrete actions. 

Table 18: Policy implications’ propositions 

Actions level  Policy implications’ propositions 

Individual 

• Biking, walking, or using public transport, for daily commutes and when 

possible, opting for electric or hybrid vehicles for personal use (Anbar, 

2022; Ontario Nature, 2024) 

• Unplugging electronics and appliances regularly when not in use, and 

switching to LED bulbs and energy star-rated electronics for energy 

efficiency (Anbar, 2022; Blog_Admin, 2024) 

• Incorporating more plant-based meals to reduce emissions from livestock 

(Ontario Nature, 2024; Sarah-Indra, 2024) 

• Practicing waste management by adopting the 3Rs: Reduce, Reuse, 

Recycle, to minimize waste (Ontario Nature, 2024; Blog_Admin, 2024) 

• Composting organic waste. such as agro-food waste (Ontario Nature, 

2024; Sarah-Indra, 2024) 
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Organizational  

• Creating thematic actions plans by identifying key areas for improvement 

(e.g., energy consumption, waste management) and set clear objectives 

with specific measures and timelines (Assuncao, 2024). 

• Identifying low-carbo trajectories in order to set science-based targets for 

reducing GHG and regularly monitor progress (Assuncao, 2024). 

• Assessing suppliers' carbon footprints and encouraging sustainable 

practices through incentives and partnerships (Assuncao, 2024). 

• Implementing a collective waste disposal (Hamilton et al, 2013).  

Governmental  

• Setting achievable energetic transition as national objective. 

• Enacting legislations that enforce sustainable practices across society and 

economy, such as renewable energy targets, green incitements, carbon 

taxation, waste management standards… 

• Promoting environmental public awareness via official media, school 

programs and public spending (Hamdi & Azeroual, 2023a, 2023b). 

• Fixing an ultimatum for economic carbon neutralization, with a focus on 

the intensive emitters sectors such as transports and industry  

 

• Study potential limitations  

This study has three main limitations. Statistically, co-integration models are effective for long-

term analysis but limited to co-integrated series, with challenges in lag selection and model 

complexity as more variables are added. Cognitively, the study lacks a predictive framework 

and focuses on traditional STIRPAT factors, omitting emerging variables like energy use, 

governance, and clean technologies. In terms of scope, the Morocco-specific focus limits the 

broader applicability and global relevance of the findings. 

• Plausible future prospects   

Future prospects should continue exploring this study’ interactions by extending the spectre of 

explaining environmental degradation factors as well as opting for other ecological barometers, 

and enlarging datasets to include geographical imbalances and panel differential properties.  

CONCLUSION 

This study explored the long-term effects of human-induced processes associated to 

urban expansion, economic affluence, technological progress and openness to international 

trade on Morocco’s EFs through its four economic varieties: of production (EFP), consumption 
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(EFC), imports (EFI), and exports (EFE) from 1970 to 2023, and how these fluctuations have 

shaped the trajectory of Morocco’s ecological sustainability more than six decades. 

To assess these interactions, the study employed four co-integration techniques, namely 

ARDL, FMOLS, DOLS, and CCR. Each of them was applied to each EF component, enabling 

a robust and multifaceted understanding of the resultant ecological outcomes. 

Findings indicate that urban expansion, along with economic growth, as well as 

technological progress, besides openness to international trade, have significantly contributed 

to the intensification of ecological stress in Morocco, that is, the degree of impact varied 

respectively from high, moderate, subtle, to low across the four EF considered models. 

Overall, the study underscores the complex and multifaceted nature of anthropogenic 

ecological stress in Morocco and highlights the implication of socioeconomic factors in shaping 

the country’s environmental future trajectory through adequate proposed policy implications. 
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