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ABSTRACT

Morocco provides a stark example of how a developing country in the African southern hemisphere is
struggling with the diverse and devastating impacts of climate change, which are exacerbated by
development issues and a lack of studies that allow for understanding the causal effects of environmental
degradation, a crucial factor in informing adequate policy responses. An exhaustive STIRPAT analysis,
conducted in Moroccan ground from 1970 to 2023, using four pieces of empirical evidence and four co-
integration methods: ARDL, FMOLS, DOLS, and CCR. The increase in ecological footprints of
production, consumption, import, and export in Morocco, is due to urbanization, technical progress,
trade openness, and economic growth, respectively. Anthropogenic processes, attributed to urbanization,
economic growth, technological progress, as well as trade openness have positive contribution to
environmental alteration, and have been found unsustainable in the Moroccan context. Thus, relevant
policies are being proposed at the individual, organizational, and governmental levels to reduce their
environmental burden, increase bio-capacity regeneration potential, and promote environmental

sustainability both in Morocco and beyond.


mailto:hamdielasli@gmail.com
https://orcid.org/0009-0008-8365-6238
https://orcid.org/0009-0007-2042-3421

INTRODUCTION

Identifying exhaustive target variables that consider all aspects of environmental degradation
is a challenging task, it is even more challenging when it comes to an African emergent country
in the southern hemisphere struggling with the devastating impacts of climate change, which
are worsened by development issues and a lack of studies that enable understand the causal
effects of environmental degradation, a crucial factor in informing adequate policy responses.
From this perspective, the ecological footprint (EF) is a synthetic concept that quantify the
anthropogenic impact on the biosphere, resulting in environmental stress (Wackernagel & Rees,

1996; Galli, 2015; Nautiyal & Goel, 2021; Global Footprint Network, 2024).

EF helps u understand how humans, driven by economic affluence, energy consumption, and
land use for living space and agriculture, affect the environment (Dietz et al., 2007; Rafindadi
& Usman, 2020). It characterizes the cadence and the intensity of resources consumption and
waste generation, compared to the local ecosystem's ability to absorb waste and replenish
resources, represented by the area needed to support the population's needs and offset the

equivalent consumption and CO; emissions (Global Footprint Network, 2024).

When attributed to the production of harvest, crops, grazing land, vegetatives, fibers, farming
and fisheries, woods, medicinal plants etc., as well as space for urban infrastructure within a
country's borders, it is referred to as the EF of production (EFP) (Global Footprint Network,
2024); it specifically tracks the use of productive surface areas including cropland, grazing land,
fishing grounds, built-up land, forest area, pasture land, roads, factories, cities etc., and CO»

demand on land. (Global Footprint Network, 2024).

When materialized within imports, it is referred to as the EF of imports (EFI); within exports,
it is called the EF of exports (EFE). This, and the EF often refers to the apparent EF of
consumption consumption's (EFC). It is calculated by summing EFP and EFI and subtracting

EFE. Sometimes EF is designed briefly as footprint.

In summary, a country’s EF represents the total pressure that the Population’s needs put on
ecosystems, including the atmosphere, soil, sub-soil, and by extension the demand on bio-
diversity (Global Footprint Network, 2024). It is measured in global-hectares (gha), which
represent a biologically productive hectare with average bio-productivity, adjusted for the

demand on a specific geographical zone in a given year (Global Footprint Network, 2024).



Like many emergent countries, Morocco's EF has impressively grown in the last 50 years as a
result of increasing local demand on bio-capacity due to eco-demographic growth, and urban
expansion, which is putting pressure on local biosphere by excessive water usage, intensive
farming, overgrazing, and deforestation with overload of anthropogenic CO2 emissions.
Actually the country’s EFC rose of more than an entire point from 0.91 in 1961 to 1.94 gha per
inhabitant in 2023, while BC per capita, fall from 1.08 to 0.81 gha per capita for the same period
(Dworatzek et al., 2024; Data | Ecological Footprint Initiative, n.d.).

Morocco’s economy relied for decades on primary sector where agriculture, mining, fishing
and forestry sectors account for 15% of national GDP, and employs about 45% of Morocco’s
active Population (Morocco - Agricultural Sector, 2024), with time, the modernization and
intensification of agricultural practices have caused soil erosion, salinization and resource
attrition, affecting about 5.5 million hectares of land, leading in fine in up and down wards in

EF and bio-capacity, respectively (Bouhia, 2020).

Morocco is rich in biodiversity, hosting the second-highest concentration of terrestrial
biodiversity in the Mare Nostrum (Bouhia, 2020). This biodiversity is being threatened by the
sabotage of its own homeland, which is caused by the overexploitation of natural resources,
deforestation, desertification, air pollution, stream pollution, and soil degradation (Bouhia,
2020). As aresult, local BC meets only half of Morocco’s total EFC, the country met its deficit
by relying on 20% net BC imports (Galli, 2015).

Although that Morocco places its greatest demands on its cropland ecosystem, which provides
provisioning services, including agricultural products, crop-based feeds, and fibers, mostly used
(45% of total EFC) to produce food, goods, and services (Galli, 2015), it remains far from
achieving self-sufficiency and meeting local consumption levels which makes it increasingly
turning to imports to meet its population's needs for nutrition and energy. Notably, Morocco is

a net importer of all ecosystem services tracked by the EF (Galli et al., 2012, 2015).
The key aspect of innovation and distinction of this study relies on three key aspects:

One key aspect is the exhaustive analysis of the association between various anthropogenic
stress factors and four interconnected environmental degradation indicators from the footprint
family, imputed to production, consumption, import, and export, respectively, under spanning

coverage that outpaces 50 years, from 1970 to 2023.



The second key aspect, it innovates in the choice of the environmental stress mainly with ICTs
as a proxy of technological progress. Hence, it takes into account trade openness as control
variable, due to Morocco’s increasing integration into the global supply chain, and the potential

for environmental diffusion stress between countries due to commercial transactions.

The third key aspect is related to the nature of the target key indicators, which reveal
complementarities, dualities, and asymmetries between consumption and production, and

import and export.

The last one involves the use of four well-known and widely validated co-integration

approaches for statistical analysis worldwide.

The rest of the paper is organized as follows: the 1st chapter provides a literature review, the
2nd presents the models construction and formulation besides the methods of conducting
empirical evidence. The results are highlighted in the 3rd chapter, that are discussed in the 4th
one, whereas the 5th chapter addresses some policy implication, it presents as well the potential

limitations of this study, as well as possible research prospects, and a final conclusion.
1. LITERATURE REVIEW

In the realm of environmental sustainability, STIRPAT (as Stochastic Incidences by Regression
on Population, Affluence and Technology) (Aguir et al., 2014) serves as a framework for
analysing the interplay between environmental quality, economic affluence, Population
dynamics, industrialization, and technological advancements (York et al., 2003). This model
allows researchers to quantify how these factors contribute to environmental degradation and
sustainability outcomes. The STIRPAT model builds upon the earlier IPAT model by
introducing a stochastic element that accounts for uncertainties in data and relationships,
pioneered by Ehrlich & Holdren (1971). Then duplicated to a variety of versions, such as the
“I(m)PACT(s)” identities (Vélez-Henao et al., 2019; Waggoner & Ausubel, 2002; Lin et al.,
2009; Vélez-Henao et al., 2019; Hamdi & Mohamed, 2024), or the “IP(B)AT” identity (Vélez-
Henao et al., 2019; Schulze, 2002; Hamdi & Mohamed).

Under the STIRPAT framework, a range of environmental barometers has been examined in
numerous studies, in relation to a variety of explanatory variables, including economic growth,
human capital, bio-availability, energy use, renewable energy, urbanization, financial inclusion

trade openness, demographics, natural resource attrition, governance and institutional quality .



For example, CO: emissions have been used by Bélaid and Youssef (2016), Bekun et al. (2018),
Abbasi et al. (2021), Mirziyoyeva et al. (2022), Raihan and Almagul (2022), Zhao et al. (2023),
Ullah et al. (2023), Asli et al. (2024), Naz et al. (2024), and S. Ullah and Lin (2024) to examine

factors influencing CO: levels, often in relation to economic growth and energy patterns.

Sulfur dioxide (SO:) emissions have been explored in more recent analyses, notably by Wong
et al. (2024) and Xu et al. (2024), while nitrous oxide (N20) has been investigated by
Seangkiatiyuth et al. (2011), Tian et al. (2018), and Casquero-Vera et al. (2018), focusing on

emissions related to agriculture and industrial activity.

Similarly, nitrogen oxides (NOy) emissions have been examined by Terseth et al. (2012) and

Shaw and Van Heyst (2022), addressing concerns over transportation and industrial emissions.

When it comes to greenhouse gases (GHGs) more broadly, studies by Sarkodie and Strezov
(2018), Chen et al. (2021), Tsur (2024), and Ochi and Saidi (2024) provide comprehensive

assessments of how black emissions drivers across different national and sectoral contexts.

Lastly, particulate matter (PM) has drawn attention in the works of Griffin (2013) and Yun et

al. (2022), often highlighting health implications and links to urbanization and fossil fuel use.

These studies collectively underscore the multifaceted nature of environmental degradation and
the broad array of variables influencing ecological and atmospheric quality. However, these
barometers have been criticized for lacking thoroughness and inclusiveness (Destek et al., 2018;
Altintas et al., 2020; Usman et al., 2020; Nathaniel et al., 2020; Ramezani et al., 2022; Sun et
al., 2023; Aziz et al., 2022; Ullah et al., 2023; Hamdi & Mohamed, 2024) and for being

insufficient in measuring decarbonization (Shaw & Van Heyst, 2022).

Recently, EF has increasingly been employed as a reliable and multifaceted environmental
barometer (Galli et al., 2014) for environmental assessment, monitoring, and policy evaluation
(Rafindadi & Usman, 2020). Numerous studies have utilized EF as a barometer, such as Hamdi
and Mohamed (2024), Padhan and Bhat (2024), Zhou et al. (2024), Farouki and Aissaoui
(2024), Mehmood et al. (2023), Li et al. (2023), Xu et al. (2022), Yasmeen et al. (2022), Rafique
et al. (2021), Ali et al. (2021), Chen et al. (2021), Okelele et al. (2021), Nathaniel et al. (2020),
and Ahmed and Wang (2019), who commonly employed economic growth, demographic
tendencies, natural resource rents, and energy patterns such as composition and consumption

as central variables that tend to increase environmental pressure.



In national contexts, such as Turkey, Ullah et al. (2023) utilized an ARDL model covering
1970-2018 to prove that economic growth, bio-capacity, urbanization, and natural resources all

have a positive impact on EF, implying a linear environmental cost to development.

Similarly, in Pakistan, Ullah and Lin (2024) used a NARDL method analysis from 1990 to
2018, revealing that natural resource rents and economic growth significantly contributed to

increase EF, meantime renewable energy consumption had a mitigating effect.

Interestingly, financial inclusion appears as a recurring variable in more recent literature. In
Algeria, for example, Bergougui and Aldawsari (2024) identified inclusive finance as a positive
force in managing ecological risks, potentially by enabling green investments and reducing

dependency on resource-intensive activities.

In china, Xu et al. (2022) applied FMOLS, DOLS, CCR and spectral causality techniques over
the period of 1990-2017 to conclude that technological advancement and renewable energy use

impede EF level in the long run, whereas FDI expedite it.

Back to Morocco, by using ARDL and VAR/VECM cointegration models, it was previously
proven that between 1980 and 2022, economic growth, urbanization, and energy use led to an
increase in EF, alongside with the confirmation of the EKC hypothesis, whereas ensuring

advanced education reduced it (Hamdi & Mohamed, 2024; Farouki & Aissaoui, 2024).

In subnational contexts, for example, financial inclusion, economic growth, urbanization, and
natural resource rents were found to significantly increase EF in the ECOWAS, according to

estimations using different panel regression methods over 1990-2016 (Ali et al., 2022).

Moreover, in the South Asian context, Mehmood et al. (2023) confirmed this causality-effect
link, finding that, from 1990 to 2022, urban and economic growth, as well as human capital and
bio-capacity, positively contribute to EF using panel co-integration approaches. Furthermore,
it was captured the negative impact of FDI and the mitigating role of green innovation on EF

in the context of the BRICS and Next-11, from 1992 to 2018 by Padhan and Bhat (2024).

Nevertheless, the contribution of FDI and trade to EF remains controversial, with conflicting
findings: while a 1991-2012 DOLS panel data analysis of the 27 highest emitting countries
revealed a negative impact (Uddin et al., 2017), a robust 53-panel regression investigation from
1990 to 2021 in the Belt and Road Initiative regional context found a positive relationship

between trade and EF for both imports and exports (Zhou et al., 2024). Which is confirmed in



the Sub Saharan context, where Okelele et al. (2021) found that EFC per capita decreases with

an increase in trade openness and increases with an increase in FDI inflows from 1990 to 2015.

Furthermore, Ahmad et al. (2020) employed the second generation panel co-integration
approach from 1984 to 2016, to find that natural resources and economic growth expand the

EF, while technological innovations reduce it, all within the presence of the EKC hypothesis.

In summary, these studies converge on the conclusion that economic growth, urbanization, and
natural resource exploitation significantly amplify environmental degradation in developing
regions. However, the integration of renewable energy, improvement in institutional quality,
and expansion of financial inclusion offer promising pathways toward sustainability. This
narrative underscores the urgency of adopting holistic, context-sensitive policies that align

economic ambitions with environmental stewardship.
As a continuation, this study aims to provide a plausible clarification of the following problem:

What are the long-term anthropogenic processes’ effects, associated to urbanization, economic
growth, technological progress, and trade openness on Morocco's EFs of consumption,

production, import, and export from 1970 to 2023?”
In order to bring response to this problematic, the following hypothesis is going to be verified:

-H: Anthropogenic processes’ imputed to urbanization, technological progress, economic
growth, and trade openness, have a positive effect on the EF’ four economic varieties.

This hypothesis is split into four sub-hypotheses, following our four econometric models

- Ha: Anthropogenic processes have a positive incidence on EFP

- Hy: Anthropogenic processes have a positive impact EFC

- He: Anthropogenic processes have a positive effect on EFE

- Ha: Anthropogenic processes have a positive influence on EFL.

2. Methods

2.1.Model construction

This study relies on STIRPAT, in line with our previous papers (Hamdi el al., 2024; Asli et
al., 2024; Hamdi & Mohamed, 2024; Hamdi & Mohamed, 2025), with this specification:

I=a-P*-A-T%e



Where, I is incidence on environment, P is Population dynamics, A denotes affluence, T stands
for technology, a, b, ¢, and d, are coefficients that represent the elasticity of each factor, and
e is an error term accounting for unobserved factors.

Accordingly, the following functional form is estimated: (EF) = f (URB, GDP, ICT, TRD)
From which, are derived the following four specific functional models:

The EFP model: incidence on (EFP) = f (URB, GDP, ICT, TRD)

The EFC model: incidence on (EFC) = f (URB, GDP, ICT, TRD)

The EFI model: incidence on (EFI) = f (URB, GDP, ICT, TRD)

The EFE model: incidence on (EFE) = f (URB, GDP, ICT, TRD)

Where EF represents ecological footprint, EFC is Ecological footprint of consumption, EFP of
production, EFI of import, EFE of export, URB is urbanization, GDP is Gross Domestic
Product, ICT stands for the information and communication technologies, and TRD is trade.
Table 3 represent a description of the chosen variables and their correspondent determinants:

Table 1: Variables and data presentation

STIRPAT Variables Acronym Unit Data source
Ecologl'cal footprint of EFP
production
! £ | EFC Giha/
of consumption midyear | Global Footprint Network
of import EFI population
of export EFE
1 (V)
P Urbanization URB Ratio Urban populatlon (% of total
population) - Morocco | Data
A Gross Domestic Product GDP Czoonls;aél t World Bank Open Data
T Information and Adoption of communication
Communication ICT Integer technologies per 100 people,
Technologies Morocco
Control variable | Trade openness TRD % GDP World Bank Open Data

N.B: ICTs are closely linked to technological progress, acting as a driver and facilitator of
innovation across sectors. ICTs enhance productivity, enable knowledge diffusion, and support
the development of new products and services, thus accelerating economic and technological
advancement (Vu, 2011; Niebel, 2017). They drive innovation and efficiency gains in
industries, particularly through automation, digitization, and improved communication
networks (OECD, 2020). Hence, ICT infrastructure is foundational for emerging technologies
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https://ourworldindata.org/grapher/ict-adoption-per-100-people?country=~MAR
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https://data.worldbank.org/indicator/NE.TRD.GNFS.ZS?locations=MA

such as artificial intelligence, the Internet of Things, and big data analytics, which are key
components of modern technological progress (Castells, 2010; Brynjolfsson & McAfee, 2014).
The choice of trade as a control variable is justified by the fact that the EFI and EFE models,
take into account the exports and imports of goods and services, summed by Trade as %GDP.
2.2.Model demonstration

By taking the functional form of the EFP model as an example, rising it to the natural log,

neglecting the error term, we get the following specifications:
LnEFP=Bo+p;LnURB+B2LnGDP+B3LnICT+p4 LnTRD+p (eql)
The ARDL/BTA specification is expressed as:

LnEFP=Y), BoiLnEFP-i+Y, L/ BiiLnURBwYL ) B2iLnGDPwi Y, B3ilnICTei +
Ziq=0 B4iLnTRDH +80LnEFP; +6:LnURBi+6,LGDP:-; +63LnICT-i+ 84sLnTRD—; +5¢ (qu)

And at the fist difference as:

ALnEFP=YF_, BuALnEFPi+Y, 1 | BLALNURB Y, B2ALnGDPiY L, BsiALICT i+
Z?:o B4ALNTRD¢ +80LnEFP; +81 LnURB-i+8:LGDP +83LnICTi+ §4sLnTRDw; +&; (eq3)

Where t represents the current period, t — i represents the previous period, A is the first
difference operator, p and q are respectively the lags length for both dependent and
independents variables, , coefficients of short and long run are shown through (3 and &
respectively, while & represents the error term.

Two hypotheses are to be confronted: if there is no co-integration, as stipulates the null
hypothesis (Ho: 81= 62=03= 64=0 ) vs the alternative one (Ha: 1% 82# 83 # 84 # 0).

If there is co-integration, the error correction model (ECM) representation is specified as:

ALnEFP=Y!_, B oALnEFPi+ Y1 /B iALnURBi+ X1 | B5ALnGDPi+ X1 | B 3iALnFCEi+
3 B#ALNICTei+n ECTer + (eq4)

Where, ECT represents the error correction term, 1 is its stochastic coefficient.

The three remaining models are constructed just the same way.
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2.3.METHODS
2.3.1. Methodology

This study employs the ARDL approach, supplemented by three other co-integration tools —
FMOLS, DOLS, and CCR — to consolidate the reliability of the primary ARDL results.
ARDL/ECM is well known for conducting long-run analyses of dynamic relationships between
series with different orders of integration (Pesaran & Shin, 1998; Pesaran et al., 2001), where
the current value of the dependent variable depends on its own past realisations through the
distributed lag part (Kripfganz & Schneider, 2023). The advantage of this approach lies in
identifying co-integrating vectors when there are multiple ones (Nkoro and Uko, 2016).

The methodological approach followed in this study is schematized step-by-step in scheme 1:

Scheme 1: The study’s methodological approach

Data description and Sampling

iyt

Modelling

a

Descriptive analysis

11

Unit root test

L
Lag Order selection

L

ARDL Bound test

Ry

ARDL Error correction model

1l

FMOLS, DOLS, CCR tests

iy

Residual diagnostic and stability tests

Source: Authors own elaboration
2.3.2. Descriptive analysis
Descriptive analysis is conducted by four techniques: Descriptive statistics, Multiple
Correlation Analysis (MCA), Variance inflation factors (VIF), and Pairwise Component
Analysis (PCA) (Pearson, 1901; Bonett and Wright, 2000; Hamdi el al., 2024; Asli et al., 2024;
Hamdi & Mohamed, 2024; Hamdi & Mohamed, 2025).
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2.3.3. Unit root test

It is essential to verify data stationarity, ensuring statistical properties remain constant over time
(Kwiatkowski et al., 1992). The ARDL method depends on the cointegration order of variables
(Pesaran et al., 2001). This study employs ADF test for that purpose (Dickey & Fuller, 1979).

2.3.4. Lag order selection

When the auto-regressive model is subject to restrictions of co-integration, there are multiple
information criteria for selecting the appropriate lag order (Liitkepohl, 1993). They all rely on
selectin the lag length with the lowest value (Mallik, 2008; Hamdi & Mohamed, 2024).

2.3.5. ARDL bounds tests

An ARDL bounds test involves performing an F-test on the lagged levels of the independent
variable (Nkoro and Uko, 2016; Asli et al., 2024), compared with critical values at a 5% level
of significance (Narayan, 2005; Asli et al., 2024).

2.3.6. Error correction model

It can be derived from ARDL model through a simple linear transformation, which integrates
short run adjustments with long run equilibrium (Nkoro & Uko, 2016; Hamdi & Mohamed,
2024). Then it exhibits an associated error correction term (ECT) which measures how quickly

the equilibrium is reached in the long run (Engle & Granger, 1987; Asli et al., 2024).

2.3.7. FMOLS, DOLS, and CCR tests

The FMOLS method, developed by Phillips and Perron (1988), is valued for handling
endogeneity and serial correlation, especially in small samples (Hamit-Haggar, 2012; Asli et
al., 2024). DOLS, introduced by Stock and Watson (2003), often yields superior estimates by
addressing regressor correlations (Kao, 1999; Asli et al., 2024). As a robustness check, the CCR
approach (Pesaran et al., 2001) is also applied, modifying the model to improve chi-square test

accuracy (Park, 1992; Pattak et al., 2023; Asli et al., 2024).

2.3.8. Residual Diagnostic and stability tests

Residual diagnostics is essential for assessing a model's capability and providing directions for
potential modifications (Mauricio, 2008). The normal distribution of residuals was tested using
Bera and Jarque's (1981) method, while heteroscedasticity was checked with Breusch and
Pagan's (1979) test, and serial correlation was evaluated using Godfrey's (1978) test.
Additionally, the Ramsey (1969) test was used to verify the existence of misspecifications in
residuals. The quality of the regression is represented by the CUSUM and CUSUMSAQ tests
(Brown et al., 1975), and its stability is checked (Doan et al., 1994).
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3 RESULTS

The results from the empirical evidence on the footprint models are presented jointly in a single
table, divided into four cases, with each case representing a singular model's results, and each
result commented on underneath its corresponding table.

e Descriptive Statistics

Table 2 below provides a statistical description summary of the four model variables data.

Table 2: Data Descriptive Statistics

LNEFC LNEFE LNEFI LNEFP LNURB LNGDP LNICT LNTRD
Mean 17.37984  16.09276 -0.777442  17.30571  3.911890  26.98903  2.256376  4.052313
Median 17.41169  15.97666 -0.834063  17.30516  3.954809  24.64714  1.562475  4.000685
Max 18.10904  16.79392  -0.083382  17.91692  4.172152  37.10619  5.463832  4.616267
Min 16.44590  15.65578  -1.660731 16.70099  3.540292  23.48349 -0.564610  3.602211
Std. Dev. 0.482438  0.320997  0.435008  0.348433  0.183145  5.130629  2.367897  0.220808
Skewness -0.171867  0.730638  0.031031 -0.054216 -0.456566  1.439369  0.201829  0.380473
Kurtosis 1.922932  2.410983 1.895937  1.884086  2.085151  3.124651 1.341788  2.820291
Jarque-Bera | 2.876015  5.585102  2.751314  2.828297  3.759207 18.68102  6.553365 1.375505
Prob 0.237400  0.061265  0.252674  0.243133  0.152651  0.000088  0.037753  0.502705
Sum 938.5112 869.0090 -41.98185  934.5086  211.2420  1457.407  121.8443  218.8249
Sum Sq. Dev.| 12.33558  5.461076  10.02931  6.434478  1.777728  1395.138  297.1676  2.584075

Results from Table 2 show that the EFC and EFP show symmetrical distributions with moderate
variation and pass normality tests, indicating stable and consistent patterns.

In contrast, the EFE is right-skewed and nearly non-normal, suggesting uneven environmental
impacts across observations. The EFI, while more symmetric, shows considerable flatness and
variability, though it still meets the normality threshold.

Among the explanatory variables, urbanization and trade openness display low variability and
approximately normal distributions. GDP and ICT development, however, are highly skewed
and non-normal, reflecting structural disparities in economic and digital development.
Overall, most EFs indicators are well-behaved statistically, but special attention is needed when
modelling variables like GDP, ICT, and EFE due to their distributional characteristics.

e Pair-wise Correlation Analysis

Table 3 below illustrates the pair-wise correlation matrices of the four models:
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Table 3: The EFs models’ pair—wise correlations matrices

The EFP model
LNEFP LNURB LNGDP LNICT LNTRD
LNEFP 1.000000
LNURB 0.966667 1.000000
LNGDP 0.740718 0.687033  1.000000
LNICT 0.939598 0.926602 0.728291  1.000000
LNTRD 0.797232 0.770152 0.715163 0.819587 1.000000
The EFC model
LNEFC LNGDP LNICT LNURB LNTRD
LNEFC 1.000000
LNGDP 0.735419  1.000000
LNICT 0.951953 0.728291 1.000000
LNURB 0.983926 0.687033 0.926602 1.000000
LNTRD 0.811182 0.715163 0.819587 0.770152  1.000000
The EFI model
LNEFI LNGDP LNICT LNURB LNTRD
LNEFI 1.000000
LNGDP 0.767349  1.000000
LNICT 0.958367 0.728291  1.000000
LNURB 0.935901 0.687033 0.926602 1.000000
LNTRD 0.847025 0.715163 0.819587 0.770152  1.000000
The EFE model
LNEFE LNGDP LNICT LNURB LNTRD
LNEFE 1.000000
LNGDP 0.789943  1.000000
LNICT 0.855346 0.728291  1.000000
LNURB 0.803808 0.687033 0.926602 1.000000
LNTRD 0.752038 0.715163 0.819587 0.770152 1.000000

Results from Table 3 suggest consistent correlation patterns. In all cases, environmental impact,
whether from production, consumption, imports, or exports, is strongly associated with higher
levels of urbanization and ICT development. These two factors exhibit the closest relationships,
suggesting they are key structural drivers of ecological pressure. GDP and trade openness also
show positive correlations across all models, though slightly weaker. Notably, EFC and EFI

demonstrate the strongest overall associations with the explanatory variables, implying that

lifestyle and external demand significantly contribute to environmental strain.
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In sum, the results point to a shared dynamic: as economies urbanize, digitize, grow, and
integrate into global trade, their EFs intensify, especially through consumption and imports.
However, these strong correlations require variance inflation factors (VIF) analysis, to check
any potential mulicollinearity concerns. Following Table 4 represents the VIF test outputs

Table 4: Variance Inflation Factors

Variable | Coefficient Variance | Uncentered VIF | Centered VIF
LNGDP 1.88E-05 70.57333 2.377818
LNURB 0.030778 2359.634 6.481630
LNICT 0.000269 13.55806 5.700806
LNTRD 0.013504 1111.770 3.797823
C 0.465502 2359.712 NA

The centered VIF results from Table 4 indicate mild to moderate multicollinearity among
explanatory variables. LNGDP and LNTRD show low to acceptable levels (lower than 5),
posing no concern. LNURB and especially LNICT exceed the common threshold of 5, signaling
moderate multicollinearity. These values suggest, generally, the absence of extreme
multicollinearity concerns (since lower than 10) that might compromise the precision of
coefficient estimates or warrants closer scrutiny.

e Unit root test

Table 5 below summarizes the ADF unit root test results.

Table 5: ADF Unit root test

At Level LNEFP LNEFC LNEFI LNEFE LNURB LNGDP LNICT LNTRD
Constant t-Statistic  -0.2537  -1.3934 -1.2652 -0.9783 -2.8235 -0.3346 -0.5549 -1.2416
Prob. 0.9242 0.5784 0.6391 0.7546 0.0619 0.9123 0.8713 0.6497

n0 n0 n0 n0 * n0 n0 n0

Constant & Trend | t-Statistic -8.0492  -6.2846  -3.2571  -2.7545 -2.6791 -1.6683 -1.7760  -2.6892

Prob. 0.0000 0.0000 0.0848 0.2202 0.2492 0.7514 0.7020 0.2451
rERE *ERE * n0 n0 n0 n0 n0

Constant & Trend | t-Statistic ~ 3.4863 4.7905  -2.3395 1.2006  -0.1897 1.1002 0.6494 1.2138
Prob. 0.9998 1.0000 0.0200 0.9393 0.6131 0.9276 0.8533 0.9407

n0 n0 **® n0 n0 n0 n0 n0
At First Difference d(LNEFP) d(LNEFC) d(LNEFI) d(LNEFE) d(LNURB) d(LNGDP) d(LNICT) d(LNTRD)
Constant t-Statistic -8.6947  -8.4567 -9.5928 -9.8459 -0.4186 -7.2269 -3.1646 -6.2138
Prob. 0.0000 0.0000 0.0000 0.0000 0.8980 0.0000 0.0279 0.0000
kksk kkk kkk kkk nO kkk *kk Kk

Constant & Trend | t-Statistic -8.6084  -8.5439  -9.5449  -9.9406 -1.9414 -7.3032 -3.0899 -6.1510
Prob. 0.0000 0.0000 0.0000 0.0000 0.6187 0.0000 0.1195 0.0000

kskok skskok kskok skskok nO skskok n() kokok

Constant & Trend | t-Statistic -12.9487 -11.8715 -8.8480 -9.6986 -1.2867 -7.1039  -2.3060 -7.3382
Prob. 0.0000 0.0000 0.0000 0.0000 0.1804 0.0000 0.0217 0.0000

skskok skskok skskok skskok nO skskok kek kokok

(*) p <0.01; (**) p<0.05; (***) p <0.001.
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As shown in Table 5, the variables are integrated, with some at level 1(0), and some others at
the first difference I(1), meeting at least one of the stationarity criteria, either with a constant, a
constant and a trend, or without at the 5% level. Accordingly, it can be said that the series in
question are co-integrated and therefore, their variables can be combined linearly in the long—
run, which paves the way for the application of a ARDL bounds, an ECM to define the long-

run elasticities, and the three co-integration approaches for results’ consolidation.

e Lag order selection

Table 6 below summarizes the optimal lag selection estimations for the four models:

Table 6: Optimal Lag lenth order selection

The EFP model
Lag LogL LR FPE AIC SC HQ
0 -71.02967 NA 1.44e-05 3.041187 3.232389 3.113998
1 309.9495 670.5234 9.48e-12 -11.19798 -10.05077* -10.76112
2 357.7008  74.49197* 3.94e-12* -12.10803* -10.00481 -11.30711*
3 375.0008 23.52796 5.80e-12  -11.80003 -8.740794 -10.63506
4 388.1802 15.28812 1.09e-11  -11.32721 -7.311959 -9.798178
The EFC model
Lag LogL LR FPE AIC SC HQ
0 -59.22253 NA 8.98e-06 2.568901 2.760103 2.641712
1 322.3498 671.5673 5.77e-12  -11.69399 -10.54678* -11.25713
2 371.0372  75.95233* 2.31e-12* -12.64149* -10.53826 -11.84057*
3 392.0068 28.51867 2.94e-12  -12.48027 -9.421036 -11.31530
4 407.9500 18.49411 4.96e-12 -12.11800 -8.102752 -10.58897
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The EFI model
Lag LogL LR FPE AIC SC HQ
0 -73.02299 NA 1.56e-05 3.120919  3.312122  3.193730
1 316.6852  685.8864 7.24e-12  -11.46741 -10.32020* -11.03054
2 360.7260  68.70362*  3.49e-12* -12.22904* -10.12581 -11.42812*
3 378.1427  23.68678 5.12e-12  -11.92571 -8.866473 -10.76074
4 396.4881  21.28060 7.84e-12  -11.65952 -7.644276 -10.13049
The EFE model
Lag LogL LR FPE AIC SC HQ
0 -102.4926 NA 5.07e-05 4.299705  4.490907  4.372515
1 300.2134  708.7625 1.40e-11  -10.80853 -9.661321 -10.37167
2 352.6234  81.75962*  4.82e-12* -11.90494* -9.801710* -11.10402*
3 368.8528  22.07202 7.42e-12  -11.55411 -8.494875 -10.38914
4 384.6882 18.36901 1.26e-11  -11.18753  -7.172278 -9.658497

* indicates lag order selected by the criterion

According to Table 6, with the unanimity of criterions across the four models, the optimal lag

with the lowest lag order) for ARDL modelling is 2.

e ARDL bounds test

Table 7 represents the ARDL bounds test results for the four models.

The ARDL bounds test results from Table 7 show that the F-statistics of the EFP, EFC, EFI,
and EFE models are significantly higher than both the lower and upper critical value bounds at

the 5% level, indicating that the null hypothesis of no co-integration is rejected in favour of a

Table 7: ARDL bounds tests

The model F—statistic Value
EFP 10.97171
EFC 17.17399
EFI 4.557081
EFE 5.046055

at 5%, Io Bound= 2,86, I, Bound=4.01

long-run co-integration relationship between the variables.
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The ARDL analysis

Table 8 below show the ARDL and ECM long run estimations of the four footprint models:

Table 8: The footprint models ARDL long run estimates

The EFP model’ ARDL estimates

The EFC model’ ARDL estimates

Variable Coefficient Std. Error t-Statistic Prob.

Variable Coefficient Std. Error t-Statistic Prob.

LNURB*** 1.416673 0.170776 8.295503 0.0000

LNGDP 0.002467 0.003451 0.714778 0.4786
LNICT**  0.033497 0.013895 2.410765 0.0203
LNTRD 0.010529 0.116341 0.090501 0.9283

C 11.596762 0.738764 15.697522 0.0000

LNURB*** 1.924236 0.111154 17.311484 0.0000
LNGDP 0.002582 0.002404 1.073967 0.2886
LNICT***  0.040997 0.009051 4.529376 0.0000
LNTRD*** 0.168759 0.065963 2.558373 0.0140

C 9.014011 0.453759 19.865186 0.0000

CointEq(-1) -1.089484 0.148246-7.349146 0.0000

CointEq(-1) -1.041008 0.133040-9.328106 0.0000

The EFI model’ ARDL estimates

The EFE model’ ARDL estimates

Variable Coefficient Std. Error t-Statistic Prob.

Variable Coefficient Std. Error t-Statistic Prob.

LNURB 0.618653 0.415879 1.487578 0.1437
LNGDP 0.010629 0.008150 1.304239 0.1986
LNICT***  0.101632 0.035638 2.851763 0.0065
LNTRD 0.099386 0.255452 0.389059 0.6990

C -4.089530 1.817821-2.249688 0.0293

LNURB*** 1.727166 0.536784-3.217618 0.0025
LNGDP*** 0.038539 0.009025 4.270240 0.0001

LNICT 0.050198 0.039027 1.286234 0.2052
LNTRD 0.104373 0.256254 0.407303 0.6858
C 4.480434 2.188006 2.047725 0.0467

CointEq(-1) -0.438531 0.121079-3.621856 0.0007

CointEq(-1) -0.537229 0.113798-4.720912 0.0000

(*) p<0.01; (**) p<0.05; (***) p <0.001.

Results from Table 8 show that the endogenous variables progress all together significantly and

proportionally in the same positive direction across the four models. This and the ECT

(CointEq(-1)) of each model has a negative and significant value, ranging from —1 to 0,

indicating ideal annual adjustment speeds to the long-term equilibrium for the four models.

Residual diagnostic and stability tests

The following Figure 1 represents the CUSUM and the CUSUMSAQ plots of the four models:
Figure 1: The EFs models’ CUSUM and the CUSUMSAQ plots
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As Figure 1 illustrates, the CUSUM and CUSUMSQ plots for all four models generally fall

within the 5% level bounds, with only minor and brief exceptions, indicating their stability.

e The EFs models normality tests

Figure 2 shows the four EFs models’ Jarque-Bera normality tests outputs.

Figure 2: The Jarque-Bera normality test outputs

Model

Jarque-Bera Normality test

Descriptive statistics
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As shown in Figure 2, the EFs models residuals exhibit a normal distribution at the 5% level.

e Residuals diagnostic and stability check summary

The results of ARDL residual diagnostics and stability tests are regrouped in Table 9:

Table 9: The ARDL residual diagnostics and stability tests of the EFs models

Test & hypothesis Model F—Statistic P—value Interpretation Conclusion
Breusch-Godfrey EFP 0.437579 0.6482 Absence of
serial CL"l\r/[rela“"n EFC | 1343979 | 02706 serial auto-

Fail to reject Ho correlation for
(Ho: absence of EFI 11.07573 0.1024 the footprint
serial correlation) EFE 16.95542 0.0912 models
EFP 1.968082 0.373797
Jarque—Bera The four
Normality EFC 1.731063 0.420828 footprints’
Fail to reject Ho residuals are
(Ho: Residus are EFI 0.354747 0.837467 normally
normally distributed) distributed
EFE 3.682633 0.158609
Breusch-Pagan— EFP 0.437579 0.6482
Godfrey Residus are
EFC 1.343979 0.2706 .
Heteroskedasticity Fail to reject Ho homoscedastic
. EFI 2083177 | 0.0973 for the footprint
(Ho: Residus are models
homoscedastic) EFE 3.656341 0.0910
EFP 1.717189 0.1963
Ramsey RESET No residus
Functional form (test EFC 0.178952 0.6742 Fail to reject Ho misspecification
of specific error) .
EFI 11.07573 | 0.6001 in the models
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Ho: t for EFT’
, (Ho:No EFE 8.979528 | 0.0430 Reject Ho except fof
misspecification) model

Ho is either accepted or rejected at the 5%.

As shown in Table 9 above, the results indicate that, generally, the EFs models, exhibit no serial
correlation or misspecification in their residuals (with the exception of the EFE), and instead,
display normal distributions with homoscedastic data. This suggests that the footprint models

are stable, and their residuals do not impact the co-integration modelling process.
e The four cointegration methods result summary
Following Figures 3,4,5 and 6 graphically represent the four co-integration methods results:

Figure 3: the EFP model results

w (e
FMOLS _
86% 88% 90% 92% 94% 96% 98% 100%

ELnURB mLnGDP =LnICT =LnTRD

Source: Office outputs based on authors own computations

Figure 4: the EFC model results
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mLnURB WLNGDP mLniCT mLnTRD
Source: Office outputs based on authors own computations
Figure 5: the EFI model results
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Figure 5: the EFE model results
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Source: Office outputs based on authors own computations
Table 10 provides a final incidence appreciation based on the four EFs models results

Table 10: Final incidence appreciation on environmental degradation

MODEL LnURB LnGDP LnICT LnTRD
EFP Very high Very low Moderate Moderate
EFC Very high Very low Moderate high
EFI So high Very low Moderate Moderate
EFE So high Low Moderate Moderate
— Environmental Very high Very low Moderate Moderate
degradation

NB. General appreciation on environmental appreciation is based on the EFs singular appreciations

4 DISCUSSION

From the final appreciation in Table 16 above, it can be said that anthropogenic processes’
associated to urbanization, economic growth, technological progress, and trade openness, had

a positive impact on EFP, EFC, EFE and EFI in Morocco over five decades (1970-2023).

Based on, the previously formulated hypotheses Ha, Hy, He and Hg, are strongly supported.
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The findings affirm that urbanization, technological progress, economic growth, and trade
openness have significantly contributed to the increase in Morocco’s divers EFs. These drivers,
while traditionally linked to development and modernization, are shown here to exert
unsustainable pressure on the environment—echoing concerns raised in broader literature

(Dietz & Rosa, 1997; York et al., 2003).

Urbanization, for instance, is typically associated with increased infrastructure demands,
resource consumption, and pollution factors that amplify ecological degradation in the absence
of green urban planning (Sharma, 2011). In Morocco's case, urban sprawl has likely led to

habitat loss and increased energy use, worsening ecological impacts.

Technological progress, though often positioned as a solution to environmental challenges, can
paradoxically intensify them when it encourages higher consumption and resource exploitation,
a phenomenon known as the rebound effect (Polimeni et al., 2008). In Morocco, technology
has apparently contributed to increased EFs, suggesting a lack of alignment with sustainable

development principles.

Trade openness is another double-edged sword. While it can promote economic diversification
and growth, it can also lead to environmental externalities, especially when trade involves
ecologically harmful goods or when environmental regulations are weak (Antweiler et al.,
2001). The study attributes Morocco’s rising ecological impact from imports and exports to

these dynamics.

Finally, economic growth in Morocco, while vital for poverty reduction, appears
environmentally taxing. This aligns with the (EKC) hypothesis, which posits that environmental
degradation first increases with economic growth before eventually declining, though Morocco

may still be in the upward phase of this curve (Grossman & Krueger, 1995).

The use of four co-integration techniques strengthens the reliability of the results by confirming
long-run equilibrium relationships between environmental degradation and its drivers. This

methodological rigor allows for more confident policy implications.

Importantly, the conclusion underscores the unsustainability of current trends and advocates for
multi-level policy responses. These include individual behavioral changes, organizational
reforms, and government-led interventions to boost bio-capacity and mitigate environmental

stress. This multi-pronged approach is consistent with global sustainability frameworks, such
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as the United Nations Sustainable Development Goals (SDGs), particularly Goals 11

(Sustainable Cities), 12 (Responsible Consumption and Production), and 13 (Climate Action).

In sum, the Moroccan context reflects broader trends in the Global South, where the pursuit of
development, absent environmental safeguards, risks deepening ecological crises. This study
contributes to the growing call for evidence-based, inclusive environmental governance that

addresses the root causes of degradation while supporting equitable development.
5. Policy implications

The findings are underlining the urgent need for informed and context-specific policy
interventions. Here are some concise and practical sustainable propositions to help undermine
and reduce the EF rise and effects, applicable to three individual, organizational and

governmental levels, which can be declined to materialized concrete actions.

Table 18: Policy implications’ propositions

Actions level Policy implications’ propositions

e Biking, walking, or using public transport, for daily commutes and when
possible, opting for electric or hybrid vehicles for personal use (Anbar,
2022; Ontario Nature, 2024)

e Unplugging electronics and appliances regularly when not in use, and
switching to LED bulbs and energy star-rated electronics for energy
efficiency (Anbar, 2022; Blog_ Admin, 2024)

Individual

e Incorporating more plant-based meals to reduce emissions from livestock
(Ontario Nature, 2024; Sarah-Indra, 2024)

e Practicing waste management by adopting the 3Rs: Reduce, Reuse,
Recycle, to minimize waste (Ontario Nature, 2024; Blog Admin, 2024)

e Composting organic waste. such as agro-food waste (Ontario Nature,

2024; Sarah-Indra, 2024)
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e Creating thematic actions plans by identifying key areas for improvement
(e.g., energy consumption, waste management) and set clear objectives
with specific measures and timelines (Assuncao, 2024).

e Identifying low-carbo trajectories in order to set science-based targets for

Organizational ) )
reducing GHG and regularly monitor progress (Assuncao, 2024).

e Assessing suppliers' carbon footprints and encouraging sustainable
practices through incentives and partnerships (Assuncao, 2024).

e Implementing a collective waste disposal (Hamilton et al, 2013).

e Setting achievable energetic transition as national objective.

e Enacting legislations that enforce sustainable practices across society and
economy, such as renewable energy targets, green incitements, carbon
taxation, waste management standards. ..

Governmental

e Promoting environmental public awareness via official media, school
programs and public spending (Hamdi & Azeroual, 2023a, 2023Db).

e Fixing an ultimatum for economic carbon neutralization, with a focus on

the intensive emitters sectors such as transports and industry

e Study potential limitations

This study has three main limitations. Statistically, co-integration models are effective for long-
term analysis but limited to co-integrated series, with challenges in lag selection and model
complexity as more variables are added. Cognitively, the study lacks a predictive framework
and focuses on traditional STIRPAT factors, omitting emerging variables like energy use,
governance, and clean technologies. In terms of scope, the Morocco-specific focus limits the

broader applicability and global relevance of the findings.
e Plausible future prospects

Future prospects should continue exploring this study’ interactions by extending the spectre of
explaining environmental degradation factors as well as opting for other ecological barometers,

and enlarging datasets to include geographical imbalances and panel differential properties.

CONCLUSION
This study explored the long-term effects of human-induced processes associated to
urban expansion, economic affluence, technological progress and openness to international

trade on Morocco’s EFs through its four economic varieties: of production (EFP), consumption
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(EFC), imports (EFI), and exports (EFE) from 1970 to 2023, and how these fluctuations have

shaped the trajectory of Morocco’s ecological sustainability more than six decades.

To assess these interactions, the study employed four co-integration techniques, namely
ARDL, FMOLS, DOLS, and CCR. Each of them was applied to each EF component, enabling

a robust and multifaceted understanding of the resultant ecological outcomes.

Findings indicate that urban expansion, along with economic growth, as well as
technological progress, besides openness to international trade, have significantly contributed
to the intensification of ecological stress in Morocco, that is, the degree of impact varied

respectively from high, moderate, subtle, to low across the four EF considered models.

Overall, the study underscores the complex and multifaceted nature of anthropogenic
ecological stress in Morocco and highlights the implication of socioeconomic factors in shaping

the country’s environmental future trajectory through adequate proposed policy implications.
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