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ABSTRACT 

Snow cover monitoring is essential for hydrological modelling, climate change analysis, and water resource 

management, especially in the Himalayan cryosphere. The most cutting-edge global open-source platform for 

sophisticated geospatial big data analysis is Google Earth Engine (GEE). This study leverages Google Earth 

Engine (GEE) and data sets available, that is Harmonized Sentinel-2 imagery, VIIRS, and Digital Elevation to 

delineate annual snow cover in Uttarkashi, Chamoli, and Pithoragarh districts of Uttarakhand.  This paper aims to 

(i) Land Use Land Cover (LULC) Mapping. (ii) Detection of Snow cover in the Himalayan region districts of 

Uttarkashi, Chamoli, and Pithoragarh, Uttarakhand, India, using the annual composite median of Sentinel-2 

imagery. (iii) To compare the performance of various machine learning models, that is Random Forest (RF), 

Support Vector Machine (SVM), and Classification and Regression Tree (CART) for 5 classes. (iv) To calculate 

the area of 5 classes for the years 2019 and 2024. (v) To build classified maps using the algorithm that results in 

the best overall accuracy.  Here, three machine Learning approaches Random Forest (RF), Support Vector Machine 

(SVM), and Classification and Regression Tree (CART) are trained using input parameters such as bands, spectral 

indices (NDVI, NDBI, NDSI, BSI), and topographic parameters (elevation, slope) derived from ALOS DEM. 

Cloud-masking techniques refine the dataset, ensuring high-quality spectral inputs. The result demonstrated the 

successful mapping of LULC's five land cover classes: bare soil, snow, vegetation, built-up areas, and water 

bodies. The study demonstrated high classification accuracy in 2019 for RF, SVM, and CART across all districts, 

achieving 95.7%, 93.2%, and 90.7% in Chamoli; 96.5%, 97.3%, and 95.6% in Pithoragarh; and 88.6%, 90.0%, 

and 87.3% in Uttarkashi. In 2024, the accuracy rates improved to 96.2%, 93.9%, and 94.6% for Chamoli; 95.8%, 

92.5%, and 91.6% for Pithoragarh; and showed significant gains reaching 95.4%, 95.4%, and 96.1% for Uttarkashi. 

Results indicated that estimated In Chamoli, RF consistently performed better, demonstrating an 8.3% increase in 

snow from 2,206 km² to 2,388 km², while Pithoragarh experienced a 25% loss from SVM to RF:  from 2,099 km² 

to 1,573 km²).Snowfall in Uttarkashi increased by 10.8% from SVM to CART: from 1,804 km² to 1,998 km2, with 
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CART doing exceptionally well in 2024.RF proved most reliable overall, but regional variability suggests need 

for adaptive model selection. 

1. INTRODUCTION 

The mapping of Land Use Land Cover (LULC) using a variety of remotely sensed datasets, such as optical, 

Synthetic Aperture Radar (SAR), Unmanned Aerial Vehicle (UAV), and others, is the primary application of remote 

sensing technologies (Lu and Weng, 2007; Goswami Shikha; Ashok Alaknanda, 2024). Numerous practical uses, 

such as flood mapping, disaster management, future disaster preparedness, rehabilitation and reconstruction 

prioritization, effective land-use planning, and natural resource management, benefit from the classification and 

identification of different land cover types (S, 2018; Tsai et al., 2019; KHANDURİ, 2021; Rawat et al., 2022; Siddique, 

Haris and Pradhan, 2022; Saini and Rawat, 2023). Unlike a conventional plain area, the Himalayan region has a 

unique geography, with many rivers, glaciers, and high mountain ranges (S, 2018). Understanding a range of natural 

and human systems requires constant monitoring of the quantity of snow cover, which can be accomplished 

practically via remote sensing.  

The higher Himalayan region is susceptible to several natural hazards because of factors like freeze-thaw cycles, 

thrusts and faults, earthquakes, high relief, few valleys, steep slopes, intense rainfall, and temperature fluctuations. 

Finding places that are more vulnerable to these types of natural disasters and creating mitigation plans can both be 

facilitated by an understanding of the region's LULC trends. Also, classifying land use and land cover, or LULC, 

is essential for controlling resource depletion in emerging areas and lessening the effects of population increase. 

Effective LULC classification aids in mitigating the negative effects of urbanization's rapid expansion on global 

energy resources, facilitating resource management, sustainable planning, and environmental preservation (Avtar 

et al., 2019). According to (Qu and Long, 2018; Stehfest et al., 2019), accurate LULC maps of a region can assist 

in classifying the land into major classes to provide an overview of the resources, their use, and their influence on 

the socioeconomic development of the area. Additionally, it can assist researchers in examining a range of 

environmental challenges at different sizes. Another important indicator of climate change is the alteration in LULC 

(Li et al., 2022). Furthermore, the water balance of that specific area is always disrupted by changes in the climate 

(Sridhar, Jin and Jaksa, 2013; Sridhar, Kang and Ali, 2019)geomorphology and LULC patterns(Duda and Hart, 

1974). A thorough LULC map is therefore necessary as a dynamic element for the monitoring of water quantity 

and quality(Tariq et al., 2021, 2023) land management(Asif et al., 2023; Zheng et al., 2023) hazards, and risk 

assessment(Goswami Shikha; Ashok Alaknanda, 2024). In order to manage the land use in the area, high-resolution 

data processed using creative and sophisticated geospatial techniques (Dou et al., 2021) are crucial. The region 

frequently experiences hazards like avalanches, rockfalls, debris flows, and cloudbursts, and as a result of altered 

weather patterns, their frequency and intensity have increased(Bhat et al., 2014). In addition to playing a major 

role in a nation's economic development, natural resources like forests are crucial for preserving a region's 

biodiversity, climate, ecological balance, and water conservation. One of the most important indicators of the 

general health of the biological system in the area is the state of the forests. Natural catastrophes can happen at any 

time and are growing more frequent (Siddique, Haris and Pradhan, 2022). Understanding climate, ecology, and 

water cycles requires regular monitoring of snow cover(Nijhawan, Das and Raman, 2019). 



Abdi(Abdi, 2020) evaluated the performance of four different machine learning algorithms in classifying land cover 

using Sentinel-2 satellite data in a complex mixed-use area in south-central Sweden. Four methods were 

investigated in this study: deep learning, Extreme Gradient Boosting (Xgboost), Random Forests (RF), and Support 

Vector Machines (SVM). The study found that SVM, with an overall accuracy score of 75.80%, was closely 

followed by the Xgboost classifier. The study also discovered that Sentinel-2 bands in the red edge and shortwave 

infrared regions of the spectrum were crucial to the classification process. Using Sentinel-2 data(Saini and Ghosh, 

2018b) also classified crops using RF and SVM classifiers. The results indicated that while SVM reported an overall 

accuracy of 81.85%, RF (84.22%) achieved the best classification accuracy. Additionally, their study demonstrated 

how beneficial Sentinel-2 data is for mapping vegetation. In a different study, the authors used supervised learning 

for LULC mapping and used hybrid, optical, and microwave datasets (Sentinel-2, Sentinel-1, respectively) 

(Chachondhia, Shakya and Kumar, 2021). Every dataset was assessed using the RF and SVM machine learning 

(ML) algorithms. In terms of classification outcomes, the optical and hybrid datasets performed better than the 

microwave dataset (Noi and Kappas, 2017) conducted another LULC investigation using Sentinel-2 satellite data, 

and they evaluated the effectiveness of k Nearest Neighbour (KNN), RF, and SVM classifiers. According to this 

comparative analysis, SVM (95.32%) achieved somewhat better accuracies for KNN (94.59%) and RF (94.70%). 

Using Sentinel-2 satellite images from 2022, machine learning algorithms such as CART (Oliveira et al., 2012), 

SVM (Oliveira et al., 2012), and random forest (RF) (Choubin et al., 2019) can produce accurate and educational 

LULC maps. Key land cover features in the study area, such as vegetation, built-up areas, barren land, and water 

bodies, can be identified using a variety of satellite indices, including the Normalized Difference Vegetation Index 

(NDVI) (Defries and Townshend, 1994), Modified Normalized Difference Water Index and Normalized Difference 

Built Index (NDBI) (Shen et al., 2019). With Kappa coefficients and overall accuracy metrics acting as important 

performance indicators, the effectiveness of the three machine learning models (CART, SVM, and RF) may be 

assessed through validation and accuracy evaluations. According to the study(Abdi, 2020), GEE can interpret 

Sentinel-2 satellite images effectively enough to generate LULC maps for the four land cover classes that are 

defined with accuracy and dependability. With an emphasis on model performance, feature recognition, accuracy 

evaluations, and the effectiveness of GEE in processing satellite images, this study tackles a number of issues 

pertaining to the application of machine learning techniques(Pushpalatha et al., 2024) within Google Earth Engine 

for LULC mapping. The results demonstrate the ability of GEE and three machine learning models (CART, RF, 

and SVM) for generating trustworthy LULC maps, particularly when applied to land-use and environmental 

research. Improved accuracy and robustness are made possible by combining geospatial methods for LULC analysis 

with three machine learning models—RF, SVM, and CART(Chachondhia, Shakya and Kumar, 2021). We can 

obtain more accurate and thorough LULC classification results by combining the advantages of these models and 

utilizing geospatial data, which will capture the intricate spatial relationships and patterns inherent in land use 

dynamics. In a recent work, (Boonpook et al., 2023) evaluated the ability of a deep learning model named LoopNet 

to autonomously categorize land use using Landsat-8 images(Nijhawan, Das and Balasubramanian, 2018). The 

results show that LoopNet performed better than SVM and RF (overall accuracy = 89.84%). Sentinel satellites, 

both optical and radar, were used by (Billah et al., 2023) to track floods and evaluate damage in northeastern 

Bangladesh. With a 90% accuracy rate for mapping land cover, the RF classifier was shown to be more efficient 

than other Machine Learning Classifiers. Sentinel-2 data and the RF method were utilized to analyse LULC change 

in Vietnam. For time series datasets, the approach produced high accuracy (for both the 2019 (90.7%) and 2020 



(91.1%) datasets). India is especially susceptible to natural disasters due to its diversified geology, climate, 

geomorphology, vegetation, geography, and sizable population. The Himalayan region's seismic-tectonic instability 

makes it particularly vulnerable to different mass wasting events. While prompt planning and action can greatly 

lessen the effects of natural disasters and return things to normal, they can also be prevented to a large degree. In 

order to address each disaster planning issue, a thorough evaluation of LULC in the area may be quite helpful. By 

applying three machine learning techniques, RF, SVM, and CART, for classification in the Chamoli, Pithoragarh 

and Uttarkashi districts of Uttarakhand, India, this work aims to create useful snow cover maps and land use land 

cover(Saini and Singh, 2024). The viability of employing satellite Sentinel-2 imagery for this purpose will also be 

examined. 

2. DATA AND STUDY AREA 

The study utilizes the following datasets: 

• Sentinel-2 Surface Reflectance (S2_SR_HARMONIZED)(Claverie et al., 2018): Optical imagery for 

vegetation, water, and built-up land classification. 

• ALOS AW3D30 DEM (Tadono et al., 2014): Elevation and slope data for terrain analysis. 

• VIIRS Stray Light Corrected Nighttime Day/Night Band(Mills, Weiss and Liang, 2013): enhances low-

light imagery accuracy by removing stray light interference, enabling precise detection of nighttime emissions (e.g., 

urban lights, wildfires, auroras). 

• JRC/GSW1_4/Global Surface Water(Pekel et al., 2016): The dataset helps distinguish between water 

bodies and snow/urban regions by mapping global water dynamics (1984–2021). Its incorporation with Sentinel-2 

and DEM data may improve the precision of glacier lake, flood, and snowmelt monitoring.  

 

The Northern Indian state of Uttarakhand is home to several breathtaking sights. However, it is particularly 

susceptible to a variety of natural disasters because of its unique climate, ecology, tectonic activity, and 

socioeconomic landscape.  Earthquakes, landslides, avalanches, hailstorms, cloudbursts, flash floods, forest fires, 

and lightning strikes are among the many natural disasters that occur in the area.  The establishment of hydroelectric 

power plants, riverbed mining, and the building of local roads and structures have all significantly altered the 

landscape, land use, and natural eco-geological systems. The study focuses on a specific region defined using the 

geometry variable in GEE. The northern Indian Himalayan state of Uttarakhand covers a variety of latitudes (28°43′ 

N to 31°27′ N) and lengths (77°34′ E to 81°02′ E). Its varied geography includes snow-covered Tibetan borders and 

the fertile Terai plains. Three districts Uttarkashi, Chamoli, and Pithoragarh, are at its centre, they are distinguished 

by their distinct geographic locations, cultural diversity, and ecological importance.  

The study examines the snow cover in three Uttarakhand Himalayan districts: Uttarkashi, Chamoli, and Pithoragarh. 

These districts are vital to the state's ecology, with the Ganges fed by glaciers in Uttarkashi, Chamoli blending 

biodiversity and spirituality, and Pithoragarh bordering Nepal and Tibet. The study reveals five critical LULC 

classes in these districts: built-up, snow, vegetation, water, and bare lands, highlighting the need for close 

monitoring of their delicate ecosystems. The research regions in Uttarakhand, India, are depicted in the Figure 1 

along with their elevation. A map of India is displayed in image (a), with the state of Uttarakhand highlighted to 



denote the study area. Detailed elevation maps of the districts of Uttarkashi, Chamoli, and Pithoragarh are shown 

in images (b), (c), and (d), respectively.  

 

Figure 1: Location of study area, a Map of India, i.e, location of study area in Uttarakhand state, b Uttarkashi District, c. 

Chamoli District, d. Pithoragarh District 
 

Elevation ranges are represented on these maps using color-coded gradients, where red/brown denotes higher 

altitudes and blue denote lower elevations. ≤1379 m (blue), 1379–2758 m (green), 2758–4137 m, (yellow), 4137–

5516 m (red), and >5516 m (brown) are the height zones of Uttarkashi. With comparable colour schemes, Chamoli 

and Pithoragarh range from ≤1395 m to >5578 m and ≤1380 m to >5520 m, respectively. Understanding topography 

and hydrological patterns are aided by the display of rivers and contour variations. 

3. METHODOLOGY 

The proposed methodology for Land Use Land Cover(Kadavi and Lee, 2018) Classification Snow cover mapping 

is depicted in the proposed method begins with an annual Harmonized Sentinel-2 MSI, VIIRS Stray light corrected 

Nighttime Day/Night Band, Digital Elevation Model (ALOS DSM: Global 30m v3.2) and WWF HydroSHEDS 

satellite imageries acquisition process for the years 2019 and 2024, followed by data preparation. We employed 

Google Earth Engine's pre-processed Sentinel-2 Surface Reflectance (SR) dataset, which includes applied 

atmospheric and radiometric corrections, eliminating the need for additional processing. For our comparative 

analysis between 2019 and 2024, we acquired all available scenes with less than 20% cloud cover from two annual 

periods: January-December 2019 and January-December 2024. All selected images were at the native 10-meter 



spatial resolution. Using modal compositing to minimize cloud and aerosol effects, we generated multispectral 

image tiles for each year by stacking the Blue (B2: 490 nm), Green (B3: 560 nm), and Red (B4: 665 nm) spectral 

bands.The study area boundary was delineated using a shapefile obtained from the Survey of India 

(https://www.surveyofindia.gov.in/). Training data points were generated through a combination of spectral indices 

derived from Harmonized Sentinel-2 MSI, VIIRS Stray light corrected Nighttime Day/Night Band, Digital 

Elevation Model (ALOS DSM: Global 30m v3.2) and WWF HydroSHEDS datasets, visual interpretation of 

Sentinel-2 imagery, and validation using high-resolution Google Earth basemaps. When machine learning 

classifiers are trained on the dataset, the data analysis process starts. Two parts of the reference dataset are separated, 

one for testing and one for training, with a 70%:30% split, respectively. After that, the testing dataset is used to 

evaluate the classifiers' performance. 

For classification utilizing remotely sensed data, machine learning methods such as RF, SVM(Kadavi and Lee, 

2018), and CART are frequently employed (Qu and Long, 2018; Saini and Ghosh, 2018b, 2018a; Nijhawan, Das 

and Raman, 2019; Chachondhia, Shakya and Kumar, 2021; Dou et al., 2021; Tariq et al., 2021; Billah et al., 2023). 

This study utilized three supervised machine learning approaches: RF, SVM, and CART, with ensemble learning 

involving decision trees to obtain useful LULC maps and snow cover.(Breiman, 2001). It can tolerate noisy, 

correlated characteristics and does well with multidimensional data. The remote sensing community regularly uses 

this classifier because it can successfully and efficiently handle a wide range of issues. Support Vector Machine 

(SVM) is a potent method designed especially to tackle regression and non-linear classification problems(Cortes 

and Vapnik, 1995). SVM divides high-dimensional feature spaces using hyperplanes, handling intricate datasets 

with high accuracy. However, careful selection of regularization parameters and kernel functions can be 

computationally costly. Classification and Regression Tree (CART) is a non-parametric, tree-based classifier that 

uses feature thresholds to partition data, minimizing impurity and generating interpretable decision rules for 

classification or regression tasks.(Breiman et al., 2017) The CART algorithm, a rule-based classification and 

regression tool, can handle classification and regression tasks but is susceptible to overfitting, instability, and 

difficulty in identifying complex relationships in non-linear or unbalanced datasets. After training machine learning 

models, five LULC classes, i.e., Bare, Snow, Vegetation, Built-up, Water, are predicted using the testing dataset. 

For the evaluation process, a confusion matrix is produced by each classifier using the testing dataset. 

3.1 Technical Workflow of the Proposed Methodology 

Figure 2 explains the technical workflow of proposed methology which tells about the data sources, Pre-

processing,methodology, feature extraction,traning and validation, classification algorithm,accuracy 

assessment and model comparison. 

3.1.1.  Data Sources: 

• Google Earth Engine: The platform used for processing and analysing geospatial data. 

• VIIRS Stray Light Corrected Nighttime Day/Night Band: Provides nighttime light data, useful for 

urban and human activity analysis. 

• Digital Elevation Model (ALOS DSM: Global 30m v3.2): Provides topographic data. 

• WWF HydroSHEDS: Offers hydrological data like river networks and watersheds. 

https://www.surveyofindia.gov.in/


• Study Area Shapefile: Defines the geographic boundary for analysis, downloaded from the Survey of 

India. 

• MOD10A1.061 Terra Snow Cover Daily Global 500m: Snow Cover Daily Global 500m product 

contains snow cover, snow albedo, fractional snow cover, and quality assessment (QA) data 

 

 

 

Figure 2:  Workflow of the proposed methodology 



 
Figure 3 Workflow to calculate Snow Cover Duration Analysis for period of year (2000–2023) 

3.1.2. Preprocessing: 

• Image Collection Filtering: Filters out images with more than 30% cloud cover to ensure data quality. 

• Cloud Masking: Removes cloud-contaminated pixels from the images. 

• Median Value Filtering: Reduces noise by using median pixel values over a time series(Goswami and 

Ashok, 2024). 

• Image Clipping: Crops the images to the study area boundary. 

3.1.3.   Feature Extraction: 

• Spectral Indices: Calculates indices like Vegetation Indices (e.g., NDVI), Bare Soil Index (BSI), 

Normalized Difference Snow Index (NDSI), and incorporates topographic data for enhanced 

classification. Table 1 Shows the formulas of varies indices. 

3.1.4.   Training and Validation: 

• Collection of Training Samples: Gathers labelled data for supervised classification. 

• Data Splitting: Divides the data into 70% for training and 30% for validation. 

3.1.5.   Classification Algorithms: 

• Random Forest: An ensemble learning method for classification. 

• Support Vector Machine (SVM): A kernel-based method for classification. 

• Classification and Regression Tree (CART): A decision tree-based approach. 

 

 



3.1.6.   Accuracy Assessment: 

• Precision: Measures how often the classifier correctly predicts a class. 

• Recall: Measures how well the classifier represents relevant positive cases out of all actual positives. 

• Confusion Matrix: A table showing true vs. predicted classifications. 

• Kappa Coefficient: Evaluates classifier agreement beyond chance. 

• Overall Accuracy: The total percentage of correctly classified pixels. 

• F1 Score: Balances precision and recall for class-specific accuracy. 

3.1.7.   Model Comparison and Output: 

• Models Performance Comparison: Compares the accuracy of Random Forest, SVM, and CART to 

select the best-performing algorithm. 

• Classified Maps: The final output is a land cover map generated using the algorithm with the highest                         
overall accuracy. 
 

Table 1: Spectral Indices Formulas 
Index Formula Purpose 
NDVI (B8-B4)/(B8+B4) Vegetation Health 
NDBI (B11-B8)/(B11+B8) Built-up Areas 
MNDWI (B3-B11)/(B3+B11) Water Bodies 
BSI ((B6+B4) -(B2+B11))/((B6+B4) +(B2+B11)) Bare Soil Detection  
NDSI (B3-B11)/(B3+B11) Snow 

 

For each ML classifier (RF, SVM, and CART), a variety of evaluation parameters are generated from the confusion 

matrix, including overall accuracy, precision, recall, F-score, and kappa coefficient. The following is a definition 

of the utilized parameters: 

(i) TP: True Positive, which stands for the total number of samples that were correctly classified.  

(ii) TN: the sum of all samples for which the negative class is properly predicted by the model.  

(iii) FP: False Positive, which stands for the total number of incorrectly classified samples that belong to several 

classes but were wrongly assigned to a specific class.  

(iv) FN: False Negative is classification error occurs when a sample of a given class is mistakenly categorized as 

not belonging to that class. 

Another often-used parameter for remote sensing classification applications is the Kappa Coefficient, which ranges 

from 0 to 1. It illustrates the discrepancy between the actual and improbable(expected) agreements. A Kappa score 

of 0 indicates that there is no agreement between the reference image and the classified image. On the other hand, 

a kappa value of 1 indicates that the reference image and the classified image are identical. Therefore, the more 

precise the classification, the greater the kappa value (ka). Equations 1, 2, 3, 4, and 5 are used, successively, to 

produce a variety of metrics, including accuracy, precision, recall, F1-score, and kappa values. 
Accuracy   =           True Positive + True Negative                                                                                                    (1) 
                            True Positive + True Negative + False Negative + False Positive 
Precision   =          True Positive                                                                                                                                (2) 
                              True Positive + False Positive 
Recall         =         True Positive                                                                                                                                 (3) 
                             True Positive + False Negative 
F1 – Score =        2 ∗    Precision ∗ Recall                                                                                                                 (4) 
                                    Precision + Recall                                                                 
kappa     =     observed accuracy − chance agreement                                                                                                (5) 
                                   1 − chance agreement 
 



RESULT AND DISCUSSION 

The VIIRS Stray Light Corrected Nighttime Day/Night Band, Harmonized Sentinel-2 MSI, Digital Elevation Model 

(ALOS DSM: Global 30m v3.2), WWF HydroSHEDS satellite datasets are used in this study to classify LULC and 

map snow cover in the Himalaya region using RF, SVM, and CART classifiers. One of the most biologically varied 

areas of the globe, the Himalayas are home to a variety of habitats, including subtropical forests, alpine meadows, 

and glaciers. The area's forests and snow are vital parts of its ecology, offering a number of significant advantages 

that are vital to the environment and its inhabitants. Some of the world's biggest and most significant rivers, such 

as the Ganges, Brahmaputra, and Indus, are found in the Himalayan region. The snow and ice that build up on the 

area's mountains and glaciers feed these rivers. The rivers wouldn't have enough water to support the local 

ecosystems and population without this snow and ice. Thus, snow cover mapping and LULC classification are 

essential data for decision-making and the research area's sustainable development. The reference dataset was 

gathered using Google Earth Engine and Training data points were generated through a combination of spectral 

indices derived from the Harmonized Sentinel-2 MSI, VIIRS Stray light corrected Nighttime Day/Night Band, 

Digital Elevation Model (ALOS DSM: Global 30m v3.2) and WWF HydroSHEDS datasets, visual interpretation 

of Sentinel-2 imagery, and validation using high-resolution Google Earth basemaps. It was then split into 70:30 

ratios, with 30% of the samples being used for testing and 70% of the reference samples being utilized for training. 

Each land cover class has its own exclusive partitioning of the reference data pixels. to put into practice the RF, 

SVM, and CART machine learning techniques. Higher statistical accuracy in remote sensing is a sign of more 

precise maps of snow cover and LULC. In this study, the F1-score, Precision, and Recall were employed to 

determine class-specific accuracy, while the confusion matrix was used to compute the overall accuracy and the 

kappa coefficient. The effectiveness of the RF, SVM, and CART algorithms for classification was assessed using a 

suitable sampling dataset. Estimates of the producer's (recall) and user's (precision) accuracy for each spatial cover 

class, as well as the F1-score, overall accuracy, and kappa coefficient as a general measure of the classification 

finding’s efficacy, were calculated using the confusion matrices of these algorithms. 

 
Table 2: Classifier overall accuracy and kappa coefficient obtained by RF, SVM, CART 

 

This study of comparative analysis evaluates three machine learning classifiers RF, SVM, and CART for land 

use/land cover classification across three Himalayan regions (Chamoli, Pithoragarh, and Uttarkashi) between 

2019 and 2024 shown in Table 2. The results demonstrate RF's superior consistency, maintaining high accuracy 

(OA >95.7%) and reliability (Kappa >94.5%) across all regions with minimal fluctuations (±0.7%). While SVM 

and CART showed remarkable improvements in Uttarkashi (CART: +8.8% OA, +11.1% Kappa; SVM: +5.4% 

OA, +6.9% Kappa), they exhibited significant declines in Pithoragarh (SVM: -4.8% OA, -6.5% Kappa; CART: -

4.0% OA, -5.1% Kappa). Chamoli witnessed steady performance across all models, with CART showing the most 

Region 
 

Model 2019 2024 
ML Classifiers OA (%) Kappa (%) OA (%) Kappa (%) 

 
Chamoli 

RF 95.7 95.7 96.2 96.2 
SVM 93.2 91.3 93.9 91.8 
CART 90.7 88.1 94.6 92.8 

Pithoragarh 
RF 96.5 95.5 95.8 94.5 

SVM 97.3 96.6 92.5 90.1 
CART 95.6 94.3 91.6 89.2 

Uttarkashi 
RF 88.6 85.6 95.4 94.2 

SVM 90 87.3 95.4 94.2 
CART 87.3 84 96.1 95.1 



improvement (+3.9% OA, +4.7% Kappa). The strong OA-Kappa correlation (differences <2%) confirms 

classification reliability, though SVM and CART's regional performance variations highlight their sensitivity to 

local conditions, contrasting with RF's robust generalization across diverse terrains and temporal changes. These 

findings suggest RF's suitability for regional-scale LULC mapping, while SVM and CART may require location-

specific tuning for optimal performance For LULC classification, this work assesses RF, SVM, and CART 

classifiers in three Himalayan regions (2019–2024). The acronyms used before delving deeper into confusion 

matrix and calculated accuracy measures for particular LULC class are described Table 3. RF proved to be the 

most dependable because to its remarkable stability (OA>95.7%, Kappa>94.5%) and low variations (±0.7%). 

Both SVM and CART had a dramatic reduction in Pithoragarh (SVM: -4.8% OA; CART: -4.0% OA), whereas 

they shown notable improvements in Uttarkashi (CART: +8.8% OA; SVM: +5.4% OA). Across models, 

Chamoli's performance remained consistent, with CART seeing noteworthy increases (+3.9% OA). The veracity 

of the results is confirmed by the significant OA-Kappa correlation (less than 2% difference). The results highlight 

the significance of context-aware model selection in LULC mapping by recommending RF for reliable regional 

applications and requiring location-specific tuning for SVM/CART because of their sensitivity to local variables. 
 

Table 3: Abbreviations for various land use Land cover 
Abbreviation Full Form Description 
RF Random Forest A machine learning classifier based on ensemble decision trees. 
SVM Support Vector Machine A supervised learning model used for classification/regression. 
CART Classification and Regression 

Tree 
A decision tree-based algorithm for classification or regression tasks. 

OA Overall Accuracy Overall classification accuracy across all classes. 
SC Snow Cover Land cover class representing snow-covered areas. 
VC Vegetation Cover Land cover class representing vegetated areas (e.g., forests, crops). 
BU Built-up Land cover class representing urban or constructed areas. 
Kappa Kappa Coefficient Statistical measure of inter-rater agreement, adjusted for chance. 
F1 F1-score The F1 score is the harmonic mean of precision and recall, balancing 

both to assess classification model performance. 
LULC Land Use Land Cover Land Use Land Cover shows land’s use and surface type. 
NDVI Normalized Difference 

Vegetation Index 
NDVI (Normalized Difference Vegetation Index) measures vegetation 
health using satellite reflectance of red and near-infrared light. 

 

This study provides the confusion matrices of the best classification outputs from RF, SVM, and CART, 

highlighting class-wise performance and patterns of misclassification in land use/land cover mapping. 
Table 4: Normalised Confusion Matrix Chamoli produced by RF in 2019 

 Classification (Predicted) 
 Actual \ Predicted Bare Snow Vegetation Built-up Water Producer's 

Accuracy/Recall 

G
ro

un
d 

T
ru

th
 

(A
ct

ua
l) 

Bare 0.96 0 0 0.04 0 0.96 
Snow 0.04 0.96 0 0 0 0.96 
Vegetation 0 0 0.95 0 0 1 
Built-up 0.05 0.05 0 0.9 0 0.9 
Water 0 0 0 0.08 0.92 0.92 

 Consumer's 
Accuracy/Precision 0.92 0.95 1 0.9 1 Overall Accuracy = 

95.7 % 
  

This multi-class classifier RF for Chamoli for year 2019 shown in Table 4  achieves 95.7% overall accuracy, with 

Vegetation (100% recall/precision) and Water (100% precision, 92% recall) performing best. Bare (96% recall, 

92% precision) and Snow (96% recall, 4% Bare misclassification) show strong results, while Built-up (90% 

recall/precision) struggles with Bare/Snow overlap. NDWI/NDBI could improve Water-Built-up and spectral 

confusion. The model is reliable but refinable. 
 



Table 5: Normalised Confusion Matrix Chamoli produced by RF in 2024 
 Classification (Predicted) 
 Actual \ Predicted Bare Snow Vegetation Built-

up Water Producer's 
Accuracy/Recall 

G
ro

un
d 

T
ru

th
 

(A
ct

ua
l) 

Bare 0.97 0 0 0.03 0 0.97 
Snow 0 1 0 0 0 1 
Vegetation 0.03 0 0.97 0 0 0.97 
Built-up 0.18 0 0 0.82 0 0.82 
Water 0 0 0 0.14 0.86 0.86 

 Consumer's 
Accuracy/precision 0.93 1 1 0.82 1 Overall Accuracy = 

96.2% 
 

The Chamoli 2024 classifier RF Shown in Table 5 achieves 96.2% accuracy, excelling in Snow (100% 

recall/precision) and Vegetation (97% recall, 100% precision). Bare (97% recall, 93% precision) shows minor 

confusion with Built-up, which struggles (82% recall/precision, 18% misclassified as Bare). Water (100% 

precision, 86% recall) faces murky-water misclassification. Key challenges include Built-up ↔ Bare (urban  

expansion) and Water ↔ Built-up (spectral overlap). Improvements like GLCM texture analysis and NDBI/NDWI 

indices can enhance classification, though urbanization and climate change require adaptive refinements for 

Himalayan monitoring. 
Table 6: Normalised Confusion Matrix Pithoragarh produced by SVM in 2019 

 Classification (Predicted) 

 
Actual \ Predicted Bare Snow Vegetatio

n Built-up Water Producer's 
Accuracy/Recall 

G
ro

un
d 

T
ru

th
 

(A
ct

ua
l) 

Bare 0.94 0 0.06 0 0 0.94 
Snow 0 1 0 0 0 1 
Vegetation 0.03 0 0.97 0 0 0.97 
Built-up 0 0 0 1 0 1 
Water 0.06 0 0 0 0.94 0.94 

 
Consumer's 
Accuracy/precision 0.88 1 0.97 1 1 Overall Accuracy 

= 97.3 % 

The Pithoragarh 2019 SVM classifier shown in Table 6 achieves 97.3% accuracy, with Snow and Built-up (100% 

recall/precision) performing flawlessly. Vegetation (97% recall/precision, 3% Bare misclassification) and Water 

(100% precision, 94% recall, 6% Bare confusion) show strong results, while Bare (94% recall, 88% precision) 

faces minor misclassifications. Key challenges include spectral overlap in mixed pixels (Bare/Vegetation/Water). 

Suggested improvements: textural features, NDVI (Vegetation), and NDWI (Water) for sharper class boundaries. 

Though reliable for Himalayan monitoring, the model needs refinement for urban planning and hydrology 

applications in complex terrain. 
Table 7: Normalised Confusion Matrix Pithoragarh produced by RF in 2024 

 Classification (Predicted) 

 
Actual \ Predicted Bare Snow Vegetation Built-up Water Producer's 

Accuracy/Recall 

G
ro

un
d 

T
ru

th
 

(A
ct

ua
l) 

Bare 0.97 0 0 0 0.03 0.97 
Snow 0.03 0.97 0 0 0 0.97 
Vegetation 0 0 0.96 0 0 1 
Built-up 0 0 0.12 0.88 0 0.88 
Water 0 0 0 0.11 0.89 0.89 

 
Consumer's 
Accuracy/precision 0.97 1 0.93 0.93 0.89 Overall Accuracy  

= 95.8 % 
 

The Pithoragarh 2024 Random Forest classifier shown in Table 7 achieves 95.8% accuracy, with Bare and Snow 

performing best (97% recall/precision, F1=0.97–0.98). Vegetation shows 100% recall but 93% precision due to 

urban greenery confusion, while Built-up struggles (88% recall, 93% precision, F1=0.90) with green-roof 



misclassification. Water (89% recall/precision, F1=0.89) faces reflective-surface ambiguity. Key challenges 

include spectral overlaps (Built-up/Vegetation, Bare/Water). Improvements suggested: GLCM textures, NDBI 

(urban), and NDWI (water). Though effective for Himalayan monitoring, the model requires refinement for urban 

and water-body dynamics. 
Table 8: Normalised Confusion Matrix Uttarkashi produced by SVM for 2019 

 Classification (Predicted) 

 
Actual \ Predicted Bare Snow Vegetation Built-up Water Producer's 

Accuracy/Recall 

G
ro

un
d 

T
ru

th
 

(A
ct

ua
l) 

Bare 0.89 0.36 0 0.07 0 0.89 
Snow 0.37 0.96 0 0 0 0.96 
Vegetation 0.23 0 0.95 0.02 0 0.95 
Built-up 0.11 0 0 0.88 0 0.88 
Water 0 0 0 0.23 0.77 0.77 

 
Consumer's 
Accuracy/precision 0.83 0.96 1 0.72 1 Overall Accuracy 

= 90 % 
 

The Uttarkashi 2019 SVM model achieves 90% accuracy shown in Table 8, with Snow (96% recall/precision) 

and Vegetation (95% recall, 100% precision) performing best. Bare land (89% recall, 83% precision) shows minor 

confusion with Snow/Built-up, while Built-up (88% recall, 72% precision) struggles with false positives. Water 

has the lowest recall (77%, confused with Built-up). Key challenges include Water-Built-up reflectance and Bare-

Snow spectral overlap. Recommendations: NDWI (Water), NDBI (Built-up), and texture features to improve 

classification. The model works well but needs refinement for urban/water features in Himalayan terrain. 
 

Table 9: Normalised Confusion Matrix Uttarkashi produced by CART for 2024 

 Classification (Predicted) 

 
Actual \ Predicted Bare Snow Vegetation Built-up Water Producer's 

Accuracy/Recall 

G
ro

un
d 

T
ru

th
 

(A
ct

ua
l) 

Bare 0.91 0 0.06 0.03 0 0.91 
Snow 0 0.96 0 0 0 1 
Vegetation 0 0 0.95 0 0 1 
Built-up 0 0 0 0.96 0.04 0.96 
Water 0 0 0 0.04 0.96 0.96 

 
Consumer's 
Accuracy/precision 1 1 0.93 0.93 0.93 Overall Accuracy  

= 96.1% 
 

The Uttarkashi 2024 CART model achieves 96.1% accuracy, shown in Table 9 with Snow (100% recall/precision) 

and Bare land (100% precision, 91% recall) performing strongly. Vegetation (100% recall, 93% precision) faces 

false positives, while Built-up (96% recall, 93% precision) shows minor confusion with Water. Water (96% recall, 

93% precision) is rarely misclassified. Key challenges include spectral overlaps (Bare ↔ Vegetation/Built-up) 

and reflective surfaces (Built-up ↔ Water). Suggested improvements: NDVI (Vegetation), NDWI (Water), and 

GLCM texture analysis for urban areas. Though effective, the model requires refinement for Uttarkashi's rugged 

terrain. The analysis shows improved overall accuracy from 2019 to 2024 across all regions, with Uttarkashi 

achieving the most significant gains (+6.8% for RF). Random Forest consistently delivered the highest accuracy 

(≥95.4% OA in 2024), outperforming SVM and CART in most cases. All regions maintained strong classification 

performance in 2024, with OA scores remaining above 92.5% for all models. 

The analysis of land cover categorization in Chamoli Uttarkashi and Pithoragarh, shows distinct trends in 

classification accuracy for various types of terrain. The distinct spectral signature of snow cover allows for 

relatively Accurate classification (F1 scores 0.96-1.00) however, the most consistently accurate category is 



vegetation, which maintains a high accuracy (F1 0.95-1.00) because to its distinct spectral characteristics. 

locations with varying reflectance and shadow effects still provide obstacles. The complex nature of urban 

characteristics in hilly terrain, where pixel intermixing and rocky topography severely impair classification 

precision, and spectral mixing with bare soil cause built-up regions to exhibit high variability (F1 0.72-0.94). Due 

to issues such seasonal variations in water reflectance, shadow effects, and spectral similarities between fallow 

and bare ground, water bodies and bare land show mild performance swings (F1 0.77-0.97 and 0.83-0.97, 

respectively). The most reliable classifier is Random Forest, which routinely outperforms SVM and CART, 

especially for troublesome classifications like built-up regions where its ensemble method better manages spectral 

ambiguity. Although there have been noticeable increases in accuracy during the 2019–2024 era (such as 

Uttarkashi RF +6.8%), ongoing difficulties with built-up classification (particularly in Chamoli) and water body 

identification (in Pithoragarh) point to the need for methodological improvements. The main drawbacks are 

spectral misunderstanding between water and built-up surfaces and terrain-induced shadows that impact populated 

regions. In order to overcome these categorization difficulties in mountainous areas, future research should 

concentrate on combining terrain adjustment algorithms, higher-resolution data, and sophisticated spectral 

indices, especially for the most troublesome land cover classes. 

 
Table 10: F1-Score Comparison (2019 vs 2024) 

Region Year Best 
Classifier 

Bare Snow Vegetation Built-
up 

Water Key Improvement 

Uttarkashi 2019 RF 0.86 0.96 0.98 0.79 0.87 Baseline 
2024 RF ↑0.95 ↑1.00 0.97 ↑0.94 ↑0.96 +15% Built-up 

Chamoli 2019 SVM 0.94 0.96 1.00 0.90 0.96 Peak Vegetation 
2024 RF ↑0.95 ↑1.00 0.98 ↓0.82 0.92 +4% Bare 

Pithoragarh 2019 SVM 0.91 1.00 0.97 1.00 0.97 Peak Snow 
2024 CART ↑0.97 0.98 0.97 ↓0.90 ↓0.89 +6% Bare 

 

Across the Himalayan terrains, the Table 10 shows clear trends in classifier performance. Snow's distinct NIR 

reflectance qualities allow for near-perfect accuracy (1.00 F1 in Uttarkashi/Chamoli 2024) in classification; 

nonetheless, RF exhibits marginally better performance than SVM when handling shadow-affected pixels. SVM 

performs especially well in Chamoli's deep woods (1.00 F1 2019), and vegetation benefits from excellent NDVI 

separation, maintaining exceptional dependability (0.97-1.00 F1) across all regions and years. 

The most variable areas are built-up (0.79-1.00 F1), where RF's ensemble technique in Uttarkashi 2024 improved 

accuracy by 15% compared to 2019. This was due to improved handling of spectral mixing with bare soil. 

However, Chamoli's 8% decline (0.90→0.82) indicates that hilly urban morphology continues to provide 

difficulties, since SVM's kernel techniques outperformed CART's decision boundaries. 

While CART in Pithoragarh 2024 struggled with the reflectance variability of glacial-fed water (-8% accuracy), 

RF's multi-temporal learning in Uttarkashi improved water detection by 9%. Water bodies exhibit modest 

fluctuations (0.87-0.97 F1). Although Chamoli's stable but sub-perfect scores show that there are still issues with 

fallow-land discrimination, bare land classification increased steadily (most notably by +9% in Uttarkashi RF). 

The comparison between 2019 and 2024 shows how RF is superior, with its ensemble method and comprehensive 

feature selection providing 6–15% accuracy gains for difficult classes. 

 
 



Table 11: Overall, Area calculated by best Performance Classifiers (Area in km2) 
Region Year Model Bare Snow Vegetation Built-up Water Classified 

Area  
Total 
Area 

Cloud 
Cover 

Chamoli 2019 RF 1,774.54 2,205.64 2,358.23 592.78 49.57 6,980.75 7,814 833.25 
2024 RF 1,833.06 2,388.48 2,357.82 777.14 450.34 7,806.83 7,814 7.17 

Pithoragarh 2019 SVM 1,616.92 2,098.53 1,910.71 825.37 101.62 6,553.13 7,226 672.87 
2024 RF 2,334.87 1,573.41 2,349.41 313.02 647.73 7,218.45 7,226 7.56 

Uttarkashi 2019 SVM 3,218.46 1,803.58 1,836.01 229.17 13.62 7,100.83 7,989 888.17 
2024 CART 2,634.54 1,998.00 2,751.93 536.88 61.18 7,982.53 7,989 6.47 

 

The land cover classification results (in km2) for the three Himalayan areas (Chamoli, Pithoragarh, and 

Uttarkashi) for 2019 and 2024 are compared in Table 11 using the top-performing machine learning models (RF, 

SVM, and CART). Compared to Pithoragarh, which witnessed a 537% increase in water but a 25% loss in snow, 

Chamoli observed an 808% expansion of its water body (from 49.57 to 450.34 km2) and an 8% rise in snow 

cover. In Uttarkashi, the amount of vegetation recovered significantly, increasing by 50% to 2,751.93 km². 

Regional differences were evident in built-up areas, which decreased 62% in Pithoragarh and increased 31% in 

Chamoli. Significant technical advancements may be seen in the 2024 results, when 99.9% of all regions are 

identified, and cloud cover has decreased from 600–900 km² to less than 10 km². The most popular classifier in 

2024 was Random Forest (RF), although CART did remarkably well for the vegetation of Uttarkashi. While some 

anomalies, such as the snow melting in Pithoragarh, need additional validation through spectral analysis and 

ground truthing, these discoveries also point to both real ecological changes (water expansion, vegetation 

regeneration) and sophisticated detection skills. 

 

  

  



  

Figure 4: The classified and LULC maps and Snow cover map of Chamoli, Pithoragarh, Uttarkashi for 2019 and 2024 was created using 

an algorithm that achieved the highest overall accuracy. 

 

 

 

Figure 5: Digital Elevation Map of Uttarakhand 



 

Figure 6 Mean Snow Duration (in days) Vs Elevation (in meters) for periods of year 2000-2023 

Conclusion 

This Research work was intended to accomplish primary objectives are as follows (i) Land Use Land Cover 

(LULC) Mapping. (ii) Detection of Snow cover in the Himalayan region districts of Uttarkashi, Chamoli, and 

Pithoragarh, Uttarakhand, India, using the annual composite median of Sentinel-2 imagery. (iii) To compare the 

performance of various machine learning models, that is Random Forest (RF), Support Vector Machine (SVM), 

and Classification and Regression Tree (CART) for 5 classes. (iv) To calculate the area of 5 classes for the years 

2019 and 2024. (v) To build classified maps using the algorithm that results in the best overall accuracy shown in 

Figure 3. The study is located the area of Studying these LULC classes was made possible by the study area's 

location in a region with a variety of terrains and scenery. To encourage sustainable land use practices that benefit 

human communities and the environment, policymakers and planners can make better decisions by being aware 

of the distinctive features of each LULC. The following are the main points of the study: (i) The results of the 

implementation demonstrated that the RF classifier outperformed district Chamoli for the years 2019 and 2024, 

respectively, in terms of overall accuracy 95.7% and 96.2% and kappa value 95.7% and 96.2%., (ii) The results 

of the implementation demonstrated that the SVM classifier outperformed the district in 2019 with an overall 

accuracy of 97.3% and a kappa value of 96.6%, while RF classifier outperformed the district Pithoragarh in 2024 

with an overall accuracy of 95.8% and a kappa value of 94.5%., (iii) The results of the implementation 

demonstrated that the RF classifier outperformed the district in 2019 with an overall accuracy of 95.5% and a 

kappa value of 94.4%, while RF classifier outperformed the district Pithoragarh in 2024 with an overall accuracy 

of 96.1% and a kappa value of 95.1%., (iv) The results indicated that most land cover classes achieved over 85% 

accuracy across all three classifiers (RF, SVM, and CART). The snow class showed particularly high classification 

accuracy (> 97%), whereas the water class had the lowest accuracy (> 88%)., (v) All classifiers in the examination 

of snow categorization across the Himalayan areas shown good accuracy (96–100%), with RF consistently 

improving, especially in Chamoli (2024). In Uttarkashi (2024) and Pithoragarh (2019), SVM and CART both 

received Ideal performance nonetheless, because of spectral similarities, all models consistently misidentified 

snow with water or sand. The most dependable performance across time and areas was shown by RF, while SVM 



and CART showed regional fluctuation. These results demonstrate the robustness of the classifiers detection 

capabilities as well as the continuous difficulty of differentiating spectrally identical feature types in remote 

sensing., (vi) The study's findings showed that the study area's largest LULC class is vegetation and snow cover. 

Built-up and Water, on the other hand, is the smallest LULC class geographically. According to the findings, the 

estimated snow cover area is 2205.64 km2 by RF for 2019 and 2388.48 km2 by RF for 2024; additionally, the 

SVM estimates 2098.53 km2 for 2019 and 1573.41 km2 for 2024; additionally, the RF estimates 2924.72 km2 for 

2019 and the CART estimates 1998 km2 for 2024., (vii) All three classifiers worked well overall and generated 

useful classification outcomes. Excellent LULC maps were created by every ML classifier shown in Figure 4. The 

study's findings showed that using a variety of satellite data, including the Harmonized Sentinel-2 MSI, VIIRS 

Stray Light Corrected Nighttime Day/Night Band, Digital Elevation Model (ALOS DSM: Global 30m v3.2), and 

WWF HydroSHEDS, is a practical way to map snow cover and LULC classes.  

The study's future goals include employing remotely sensed datasets for time series analysis(Verma, Mehta and 

Goswami, 2022) and enhanced LULC categorization. In Future, SAR data and Landsat, combined with deep 

learning algorithms, can enhance LULC classification for understanding snow cover dynamics and climate change 

response in global mountain ecosystems. 

Figure 5 shows the digital elevation Map of Uttarakhand and Figure 6 shows Uttarakhand’s average annual snow 

cover duration in days from 2000 to 2023 in relation to elevation. MODIS MOD10A1(Hall, 2015) daily snow 

cover data was used to calculate the length of snow (in days/year). There is a noticeable upward trend, with longer 

and almost constant snow cover at higher elevations (>4000 m). 
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