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ABSTRACT 

This article presents the development of a solar-powered intelligent pesticide spraying robot designed to enhance 

environmental sustainability in precision agriculture. By integrating renewable energy with intelligent decision-

making, the system significantly reduces reliance on fossil fuels and minimizes pesticide overuse. The robot is 

powered by a solar panel with an adjustable tilt for optimal energy harvesting and incorporates a lead-acid battery 

for energy storage to maintain continuous operation. A water pump and DC motors facilitate mobility and spraying 

functions. The integration of fuzzy logic enables adaptive, real-time decision-making based on environmental pa-

rameters, ensuring precise and efficient pesticide application. Experiment across different weather conditions 

demonstrated superior performance in unshaded environments, with battery limitations observed during extended 

cloudy periods. Results showed a 24% reduction in pesticide use and 93% average coverage accuracy. This study 
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underscores the environmental benefits of clean energy and intelligent control, and recommends the future integra-

tion of Internet of Things (IoT) technologies and battery upgrades to further enhance operational sustainability and 

field autonomy. 

INTRODUCTION 

The advancement of automation and intelligence in precision agriculture is significantly driven by the in-

tegration of the Internet of Things (IoT) and artificial intelligence (AI) in pesticide spraying robots (Ghafar et 

al., 2023; Kayode et al., 2024; Amir Ghalazman et al., 2022; Raikwar et al., 2022; Terra et al., 2021, Fauadi et 

al., 2024). IoT enables real-time monitoring, remote operation, and seamless data collection, empowering farm-

ers to make informed, data-driven decisions. Equipped with advanced sensors and GPS technology, these robots 

can accurately navigate agricultural fields and perform targeted spraying, thereby minimizing pesticide use and 

reducing environmental impact. The synergy between AI and IoT facilitates autonomous decision-making, al-

lowing robots to adapt to dynamic field conditions without human intervention. This intelligent automation not 

only boosts operational efficiency but also promotes sustainable agricultural practices by addressing both eco-

nomic and ecological challenges (Ananda-Rao et al., 2020; Jerosheja et al., 2020; Zangina et al., 2021; Fauadi 

et al., 2018). Table 1 summarizes recent studies in the related field. 

Table 1: Summary of recent studies in the related field. 

Author Scope Type of 

Industry 

Result Study area Summary 

Chaitanya et 

al. (2020) 

Development of 

Smart Pesticide 

Spraying Robot 

Agriculture Implementation of 

algorithms for plant 

disease detection and 

classification. 

Precision 

agriculture and 

robotic pesticide 

spraying in 

agricultural 

farmlands 

Precision in crop 

management requires 

technical skills and 

technological 

assistance. 

Ghafar et al. 

(2023) 

Design and 

development of a 

robot for spraying 

fertilizers and 

pesticides 

Agriculture 

industry is 

resource-

intensive and 

labor-

intensive 

Robot sprayed 20 

plants/min, human 

worker sprayed 30 

plants/min 

Focus on crop 

monitoring and 

pest detection in 

agriculture fields. 

Developed low-cost 

agricultural robot for 

spraying fertilizers 

and pesticides. 

Kayode et 

al. (2024) 

Development of 

remote-controlled 

solar-powered 

pesticide sprayer 

vehicle 

Agriculture Remote-controlled 

sprayer saves time, 

enhances 

productivity, and is 

cost-effective. 

Focus on reducing 

pest impact, 

improving 

productivity, and 

cost savings. 

Solar-powered, 

sprayer vehicle 

enhances pesticide 

application efficiency 

and productivity. 

Ranjitha et 

al. (2019) 

Solar Powered 

Autonomous 

Multipurpose 

Agricultural Robot 

Using 

Bluetooth/Android 

App 

Solar-

powered 

autonomous 

agricultural 

robot 

development. 

Solar panel converts 

sunlight to electricity 

for robot's operation 

Agricultural field 

operations in India 

Bluetooth control for 

seed sowing, grass 

cutting, and pesticide 

spraying. 
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Martin et al. 

(2021) 

A Generic ROS-

Based Control 

Architecture for 

Pest Inspection 

Using a Mobile 

Manipulator 

Agriculture Successful field tests 

validate the 

architecture for pest 

control tasks. 

Greenhouses for 

pest detection and 

treatment using 

mobile 

manipulators 

Recovery behaviors 

for localization 

quality loss and 

obstacle overcoming 

in navigation. 

Jerosheja et 

al. (2020) 

Solar Powered 

Automated Multi-

Tasking 

Agricultural Robot 

Agriculture Controlled field 

operations remotely 

using IoT and internet 

connectivity 

Agricultural field 

automation and 

monitoring using 

solar-powered 

robotic vehicle. 

Autonomous mode 

for irrigation, pest 

control, and field 

security. 

 

The intersection of automation and renewable energy in agriculture has catalyzed the emergence of sus-

tainable solutions such as solar-powered intelligent pesticide spraying systems. Traditional pesticide application 

often involves fuel-powered machinery or intensive manual labor, both of which pose challenges to environ-

mental sustainability, including greenhouse gas emissions, soil degradation, and chemical runoff. This study 

proposes a solar-integrated robotic spraying system as a cleaner, energy-efficient alternative to these conven-

tional practices (Ibrahim et al., 2020; Mendez-Flores et al., 2025; Dange et al., 2023). 

While pesticide spraying is essential to protect crops and ensure food security, excessive or imprecise ap-

plication can cause significant harm to ecosystems, pollute water sources, and affect human health (Ghafar et 

al., 2023; Sammons et al., 2005). Automation and precision control technologies directly address these concerns 

by enabling targeted spraying, reducing chemical use, and minimizing environmental exposure. Moreover, ro-

botic systems eliminate the need for close human contact with toxic substances, improving safety for farmwork-

ers. To enable real-time responsiveness in diverse field conditions, this research incorporates fuzzy logic as a 

decision-making framework. Fuzzy logic facilitates nuanced interpretations of environmental data, such as crop 

density, soil moisture, and microclimate variations allowing the robot to apply pesticides only when and where 

needed. This adaptive intelligence fosters resource-efficient, environmentally conscious spraying practices. 

This study explores the feasibility of combining solar energy, fuzzy logic, and autonomous control into a 

unified system for eco-friendly pesticide spraying. It assesses system performance in different environmental 

contexts and proposes future directions to enhance energy management, reduce ecological footprint, and in-

crease automation through IoT integration. Three unique aspects of the proposed system: (1) the use of a five-

input fuzzy logic controller combining soil moisture, crop stage, weather, nutrient status, and plant proximity, 

extending the capabilities of prior works by Kayode et al. (2024) and Ghafar et al. (2023); (2) the incorporation 

of an adjustable solar panel with a -15° tilt to minimize shading losses and optimize energy harvesting; and (3) 

quantitative evidence demonstrating 24% pesticide reduction and 93% coverage accuracy. 
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2. MATERIALS AND METHODS 

2.1. Fuzzy Logic in Agricultural Systems 

Fuzzy logic is an artificial intelligence technique that mimics human decision-making by handling impre-

cise and ambiguous inputs. In agriculture, fuzzy logic is especially valuable due to the variability of environ-

mental conditions such as soil moisture, pest density, light intensity, and temperature. Unlike traditional binary 

logic systems, fuzzy logic enables continuous control and is well-suited for applications requiring gradual or 

condition-dependent responses. Previous research in agricultural automation has applied fuzzy logic for irriga-

tion scheduling, pest control, and greenhouse management. For pesticide spraying, fuzzy logic enables real-time 

decision-making based on multiple parameters like pest presence, leaf wetness, and sunlight intensity. By ap-

plying a set of fuzzy rules, the spraying system can determine the optimal quantity and timing of pesticide 

application, reducing chemical waste and enhancing environmental safety. This study applies fuzzy logic to the 

robot’s control system to dynamically regulate spraying activity, based on sensor inputs related to ambient light, 

soil condition, and plant health. This approach enhances precision in pesticide delivery, reduces unnecessary 

spraying, and aligns with smart farming practices. 

2.2. System Design Overview 

The methodology for this project involved the design, component selection, and performance evaluation 

of a solar-powered pesticide spraying robot under various environmental conditions. The system was con-

structed using a 10-watt monocrystalline solar panel to ensure efficient energy collection, a lead-acid battery for 

energy storage, and DC motors to facilitate movement and control the spraying mechanism. The solar panel was 

mounted at an adjustable angle to maximize sunlight absorption throughout the day. A motor driver was incor-

porated to efficiently distribute power to the system’s various components, ensuring optimal functionality. 

To assess performance, several tests were conducted under controlled conditions. The solar panel’s effi-

ciency was measured at different times of the day and under varying weather conditions to evaluate its energy 

output. Battery performance was analyzed by recording voltage levels and discharge rates over extended periods 

of use. The efficiency of the spraying mechanism was evaluated by measuring pesticide distribution and cover-

age across predefined field areas. Additionally, operational time was recorded under full-load conditions to 

determine the robot’s endurance and to identify potential areas for improvement. 

The design and structure of the automated pesticide spraying robot were engineered for durability, com-

patibility with various components, and optimal autonomous operation. The specific application dictates the 

robot’s dimensions, and the frame material must be durable and ideally waterproof. Consulting the technical 

specifications provided by the robot's manufacturers may be necessary to obtain accurate information regarding 

the composition and configuration of the frame. Fig. 1 illustrates the structural design of the pesticide robot. 
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Fig. 1: Proposed structure frame for the mobile robot 

2.3. Solar Panel Selection and Performance Testing 

Monocrystalline solar panels were chosen for this system due to their superior efficiency, reliability, and 

long operational lifespan. Constructed from high-purity silicon, these panels typically achieve energy conver-

sion efficiencies ranging from 18% to 22%, outperforming polycrystalline alternatives. Their high performance 

under low-light conditions, better heat resistance, and compact design make them ideal for mobile agricultural 

applications that demand stable power generation throughout the day. A 10-watt monocrystalline panel was 

selected to provide a balance between output power and physical size. This capacity is sufficient to operate the 

robot’s motors and spraying system under typical daylight conditions, contributing to autonomous and uninter-

rupted operation.  

Voltage measurements were conducted to assess the performance of the solar panel under various condi-

tions. These tests are essential for identifying system inefficiencies such as shading losses, suboptimal panel 

orientation, and wiring issues. Accurate voltage readings support the calibration of the charge controller to en-

sure safe and efficient energy storage. Measurements of open-circuit voltage (Voc), maximum power point 

voltage (Vmp), and loaded voltage were recorded using a digital multimeter at various times of the day and 

weather conditions. The resulting data was analyzed to detect performance trends, aiding in system optimization 

and predictive maintenance planning. Solar panel current output was tested to verify the panel's capability to 

deliver sufficient energy to the battery and load circuits. The current output, which varies with sunlight intensity 

and panel angle, was measured in amperes using a calibrated digital meter. These readings helped identify effi-

ciency bottlenecks caused by shadowing, dust accumulation, or misalignment. Routine current testing enables 

proper alignment of the panel and supports continuous improvement in system energy harvesting. 

In addition to panel performance evaluation, battery endurance and recharge characteristics were measured 

under field conditions. The system operated continuously for approximately 5.2 hours under full-load conditions 



NEPT 6 of 21 
 

on sunny days, whereas overcast and intermittently cloudy days reduced runtime to around 3.1 hours. Recharge 

time from a 30% state-of-charge to full capacity was approximately 4 hours under direct sunlight, based on 

average solar irradiance levels of 700–900 W/m². While the prototype did not employ a Maximum Power Point 

Tracking (MPPT) system due to cost and complexity constraints, its inclusion is recognized as a future enhance-

ment to improve energy harvesting efficiency, particularly under fluctuating or partially shaded conditions. The 

integration of MPPT would help maintain consistent charging performance and extend operational autonomy in 

less predictable environments. 

2.4. Solar Angle Optimization 

Under 12V power supply limitations, a pesticide spraying robot’s motor pump must meet specific perfor-

mance specifications. Gear pumps are suitable for maintaining pressure and flow, while diaphragm pumps can 

handle viscous liquids and are self-priming. Key requirements for a 12V pump include appropriate flow rate, 

pressure capacity, chemical compatibility, power efficiency, reliability, and controllability. For secure installa-

tion, possible pulsation attenuation, and integration with the 12V power supply and control system, the selected 

pump must be carefully matched to the robot’s operational needs. The robot’s battery capacity must also be 

considered to ensure the pump uses 12V power efficiently while delivering effective pesticide application. 

Even partial shading drastically reduces solar panel performance. Shaded panels lower output and effi-

ciency by disrupting the flow of photovoltaic cells. In extreme cases, hotspots from shading can damage the 

panels. Adjusting the panel angle to -15 degrees helps eliminate shadows cast by system components or sur-

rounding structures. This method provides stable energy to the pesticide spraying apparatus. Adjustable angles 

also allow the system to operate efficiently in varying weather conditions. The device functions well in both 

sunny and cloudy environments since the solar panel can be angled appropriately. This design minimizes shad-

owing and accommodates environmental fluctuations by using a -15-degree tilt. Such adaptability improves the 

system's energy efficiency and extends the lifespan of the solar panel, making it a reliable and sustainable agri-

cultural solution. The adjustment process is illustrated in Fig. 2. 

 
 

(a) Device placement (b) Reading of solar panel angle 

Fig. 2: Setup for the solar panel angle. 
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2.5. Fuzzy Logic Controller Design for Intelligent Spraying 

The decision-making process of the spraying system in this study relies on a Fuzzy Logic Controller (FLC), 

which processes multiple environmental variables to determine optimal spraying behavior. This approach ad-

dresses the imprecision and variability found in agricultural environments, such as uneven terrain, inconsistent 

sunlight, and varying soil moisture. 

The FLC receives five primary input variables, selected for their relevance in influencing pesticide appli-

cation efficiency: 

• Soil Moisture (%): Soil moisture impacts plant health and determines the need for pesticide appli-

cation. A dry field may require more aggressive pest control, while wet soil might indicate recent 

rain, which can wash away chemicals and make spraying ineffective. 

• Plant Growth Stage (Days After Planting): Different growth stages require different levels of pest 

management. Seedlings are vulnerable and require cautious application, while reproductive-stage 

plants may require more consistent treatment. 

• Weather Conditions (Composite Index): Derived from light intensity and humidity readings, 

weather influences both pesticide evaporation rate and pest behavior. For instance, spraying under 

high sunlight might lead to faster evaporation, reducing effectiveness. 

• Proximity to the Next Plant (Ultrasonic Sensor in cm): Ensures targeted spraying only when a plant 

is present, minimizing waste and environmental impact. 

• Nutrient Deficiency (optional for expanded version): In more advanced versions, an NDVI (Nor-

malized Difference Vegetation Index) sensor can be integrated to measure plant health, influencing 

whether treatment is required. 

Two key outputs are derived from the FLC: 

• Sprayer Flow Rate (ml/sec): Determines how much liquid pesticide is sprayed. It varies between 

Very Low to Very High depending on environmental need. 

• Sprayer Speed (cm/sec): Controls the movement of the robot to either pause, slow down, or speed 

up based on complexity and density of the crops. 

Each output uses five fuzzy sets (Very Low, Low, Medium, High, Very High for flow; and Very Slow to 

Very Fast for speed) for nuanced control, ensuring smooth transitions between states. 

In the context of precision agriculture and intelligent control systems, the design of fuzzy logic rules that 

incorporate multiple input variables is crucial for enabling context-aware decision-making. The set of rules 

presented below demonstrates the transition from traditional binary-input rule systems to multi-input rule-based 

systems that consider three or more variables simultaneously. This approach enhances decision accuracy by 

capturing complex interactions among environmental, biological, and operational parameters. Instead of simple 

two-variable rules, we now define multi-variable rules involving three or more inputs. 

(i) Fertilizer Flow Rate Rules 



NEPT 8 of 21 
 

The fertilizer flow rate is determined using fuzzy rules that consider multiple agronomic and environmental 

inputs such as soil moisture, crop growth stage, nutrient deficiency level, weather condition, and inter-plant 

distance. These parameters influence plant nutrient uptake dynamics and the need for fertilizer application. 

Instead of using simple “IF-THEN” rules involving only two variables, the rules here use triadic or tetradic 

relationships to capture the nuanced needs of crops under different field conditions. 

• IF Soil Moisture is Dry AND Growth Stage is Vegetative AND Nutrient Deficiency is High THEN 

Fertilizer Flow is High. 

• IF Soil Moisture is Wet AND Weather is Rainy AND Growth Stage is Reproductive THEN Ferti-

lizer Flow is Low. 

• IF Soil Moisture is Normal AND Growth Stage is Seedling AND Nutrient Deficiency is Moderate 

THEN Fertilizer Flow is Medium. 

• IF Soil Moisture is Dry AND Distance to Next Plant is Near AND Weather is Sunny THEN Fer-

tilizer Flow is Medium. 

• IF Nutrient Deficiency is Low AND Weather is Rainy AND Growth Stage is Vegetative THEN 

Fertilizer Flow is Low. 

• IF Soil Moisture is Normal AND Nutrient Deficiency is High AND Growth Stage is Reproductive 

THEN Fertilizer Flow is High. 

• IF Soil Moisture is Wet AND Growth Stage is Seedling AND Weather is Cloudy THEN Fertilizer 

Flow is Low. 

• IF Soil Moisture is Normal AND Nutrient Deficiency is Moderate AND Weather is Cloudy THEN 

Fertilizer Flow is Medium. 

(ii) Sprayer Speed Rules 

Similarly, the sprayer speed is governed by fuzzy rules considering inputs such as soil moisture, plant 

spacing (distance to next plant), weather conditions, nutrient status, and growth stage. Sprayer speed di-

rectly affects application accuracy and efficiency, and its optimization helps reduce over- or under-appli-

cation of inputs. 

• IF Soil Moisture is Dry AND Distance to Next Plant is Near AND Growth Stage is Vegetative 

THEN Sprayer Speed is Slow. 

• IF Soil Moisture is Wet AND Distance to Next Plant is Far AND Weather is Rainy THEN Sprayer 

Speed is Fast. 

• IF Soil Moisture is Normal AND Growth Stage is Seedling AND Weather is Sunny THEN Sprayer 

Speed is Normal. 

• IF Soil Moisture is Wet AND Growth Stage is Reproductive AND Nutrient Deficiency is Low 

THEN Sprayer Speed is Fast. 

• IF Nutrient Deficiency is High AND Distance to Next Plant is Medium AND Growth Stage is 

Vegetative THEN Sprayer Speed is Slow. 
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• IF Weather is Cloudy AND Growth Stage is Reproductive AND Soil Moisture is Normal THEN 

Sprayer Speed is Normal. 

• IF Soil Moisture is Dry AND Weather is Sunny AND Growth Stage is Vegetative THEN Sprayer 

Speed is Slow. 

• IF Nutrient Deficiency is Moderate AND Growth Stage is Seedling AND Distance to Next Plant 

is Near THEN Sprayer Speed is Normal. 

These rules allow the system to intelligently adjust its spraying behavior based on changing real-world 

conditions. Table 2 provides a structured representation of the linguistic variables, their associated fuzzy 

sets, and the corresponding membership function types and parameters used in the fuzzy inference system 

for intelligent fertilizer and sprayer control. This tabulation is essential in formalizing how real-world nu-

merical inputs are interpreted in terms of qualitative categories within the fuzzy logic framework. 

The output variables in the fuzzy logic-based control system are designed to regulate the behavior of 

an intelligent fertilizer sprayer based on multiple environmental and crop-related factors. Specifically, the 

two output variables are Fertilizer Flow Rate (measured in ml/sec) and Sprayer Speed (measured in 

cm/sec). Each output variable is defined using a set of linguistic terms that correspond to varying levels of 

control intensity, such as “Low,” “Medium,” or “High.” These terms are modeled using fuzzy membership 

functions of either triangular or trapezoidal shapes, which provide smooth and interpretable transitions 

between different output states. 

The Fertilizer Flow Rate ranges from 0 to 50 ml/sec and includes five fuzzy sets: Very Low, Low, 

Medium, High, and Very High. For instance, “Very Low” flow is modeled with a trapezoidal function (0, 

0, 5, 10), indicating that flow rates between 0 and 5 ml/sec have full membership, and gradually taper off 

up to 10 ml/sec. Similarly, “Medium” flow is defined with a triangular function (18, 25, 32), peaking at 25 

ml/sec. This fuzzy categorization allows the system to deliver an appropriate amount of fertilizer based on 

factors such as soil moisture, nutrient deficiency, and plant growth stage, thus avoiding both under- and 

over-fertilization. Likewise, the Sprayer Speed is defined over a range of 0 to 30 cm/sec and includes five 

fuzzy levels: Very Slow, Slow, Normal, Fast, and Very Fast. These are also modeled using a combination 

of trapezoidal and triangular membership functions. For example, “Slow” is defined by a triangular func-

tion (8, 12, 18), while “Very Fast” uses a trapezoidal function (26, 28, 30, 30), ensuring precise control 

near the upper limit of the speed range. These fuzzy sets enable the robot to adjust its movement based on 

plant spacing, crop development stage, and environmental conditions such as weather. By utilizing fuzzy 

logic, the system ensures adaptive and flexible operation, enhancing efficiency and crop care. 

This structured and nuanced approach to defining output variables is crucial for supporting the de-

fuzzification process, which converts fuzzy decisions into actionable control commands for actuators, re-

sulting in a system that mimics expert reasoning and responds dynamically to field conditions. The mem-

bership functions for input and output variables are summarized in Table 2 and 3 respectively. 
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Table 2: Fuzzy Membership Functions for Input Variables. 

Variable Linguistic Term Membership Function Type Parameters 

1.1 Soil Moisture Level 

(%) 

Very Dry Trapezoidal (0, 0, 10, 20) 

Dry Triangular (15, 30, 45) 

Normal Triangular (40, 55, 70) 

Wet Triangular (65, 80, 90) 

Very Wet Trapezoidal (85, 95, 100, 100) 

1.2 Plant Growth Stage 

(DAP) 

Seedling Trapezoidal (0, 0, 10, 20) 

Early Vegetative Triangular (15, 30, 45) 

Late Vegetative Triangular (40, 55, 70) 

Reproductive Triangular (65, 80, 100) 

1.3 Weather Condition 

(Humidity % + Rainfall 

mm) 

Sunny Trapezoidal (0, 0, 20, 40) 

Partly Cloudy Triangular (30, 50, 70) 

Cloudy Triangular (60, 75, 85) 

Rainy Trapezoidal (80, 90, 100, 100) 

1.4 Nutrient Deficiency 

Level (NDVI Index) 

Very Low Trapezoidal (0, 0, 0.1, 0.2) 

Low Triangular (0.15, 0.3, 0.45) 

Moderate Triangular (0.4, 0.6, 0.75) 

High Triangular (0.7, 0.85, 0.95) 

Very High Trapezoidal (0.9, 1.0, 1.0, 1.0) 

1.5 Distance to Next Plant 

(cm) 

Very Near Trapezoidal (0, 0, 10, 20) 

Near Triangular (15, 30, 45) 

Medium Triangular (40, 55, 70) 

Far Triangular (65, 80, 90) 

Very Far Trapezoidal (85, 95, 100, 100) 

 

Table 3: Fuzzy Membership Functions for Output Variables.  

Output Variable Linguistic Term Membership Function Type Parameters 

2.1 Fertilizer Flow Rate 

(ml/sec) 

 

  

Very Low Trapezoidal (0, 0, 5, 10) 

Low Triangular (8, 15, 22) 

Medium Triangular (18, 25, 32) 

High Triangular (28, 35, 42) 

Very High Trapezoidal (40, 45, 50, 50) 

2.2 Sprayer Speed (cm/sec) 

 

 

  

Very Slow Trapezoidal (0, 0, 5, 10) 

Slow Triangular (8, 12, 18) 

Normal Triangular (15, 20, 25) 

Fast Triangular (22, 25, 28) 

Very Fast Trapezoidal (26, 28, 30, 30) 

 

Sensor input plays a critical role in supporting intelligent behavior through real-time data collection. 

The robot integrates several low-cost sensors that together enable environmental awareness and autono-

mous response. The sensors used are illustrated in Table 4. 

Table 4: Sensory type used.  

Sensor Type Measured Parameter Role in FLC 

LDR (Light Dependent Resistor) Ambient Light Level Proxy for determining weather condition 

Soil Moisture Sensor Soil Water Content (%) Indicates crop irrigation level 
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Ultrasonic Sensor Distance to Next Plant (cm) Identifies plant proximity and spraying 

opportunity 

RTC + Time Stamp Days Since Planting Estimates crop growth stage 

 

To ensure the reliability and accuracy of sensor-driven decisions within the fuzzy logic framework, 

all sensors were calibrated under controlled conditions prior to deployment. The LDR sensor was tested 

against a calibrated lux meter under various lighting levels, with recorded deviations within ±10% across 

the 100–10,000 lux range. Soil moisture sensors were benchmarked using the gravimetric method, achiev-

ing calibration accuracy within ±5% volumetric water content. Ultrasonic sensors were validated against 

fixed targets placed at known distances, yielding a typical error margin of ±2 cm over a 10–100 cm range. 

These error margins are within acceptable bounds for fuzzy inference systems, which inherently accom-

modate input uncertainty through overlapping membership functions and gradual decision boundaries. Fur-

thermore, a temporal averaging buffer was implemented in the microcontroller to smooth transient fluctu-

ations in sensor readings due to environmental noise, wind-induced movement, or brief occlusions, thereby 

enhancing the stability and reliability of control actions. 

Each sensor delivers a continuous signal that is normalized and then mapped to one of the defined 

fuzzy linguistic categories (e.g., "Wet", "Very Dry", "Vegetative", etc.). These categories are inputs into 

the fuzzy logic engine. Upon receiving sensor data, the microcontroller performs the following: 

(i) Fuzzification: Each input value is translated into fuzzy membership degrees (e.g., a soil mois-

ture value of 55% may belong partially to both "Normal" and "Wet" sets). 

(ii) Rule Evaluation: The fuzzy logic system evaluates which rules are triggered and to what de-

gree. 

(iii) Aggregation and Defuzzification: The system aggregates the outputs and applies centroid-

based defuzzification to produce exact motor control values. 

(iv) Execution: The resulting signals are used to control: 

• Sprayer pump motor (flow rate) 

• Robot wheel speed (spraying speed) 

A temporal buffer was added to filter minor fluctuations in sensor data, ensuring system stability in 

windy or rapidly changing environments. This sensor-fuzzy integration allows the robot to continuously 

adapt its operation, ensuring efficiency, minimal pesticide usage, and energy conservation. Table 5 sum-

marizes the test cases for the automated pesticide spraying robot. The FLC effectively adapted flow and 

speed based on contextual needs—for instance, reducing flow during rainy conditions and increasing it for 

nutrient-deficient seedlings. 

Table 5: Test cases for the automated pesticide spraying robot. 

Test 

Case 

Soil 

Moisture 

Growth 

Stage 

Weather NDVI Distance Fertilizer Flow 

(ml/s) 

Sprayer Speed 

(cm/s) 

A 20% (Dry) 50 (Vegetative) 80 (Rainy) 0.2 (Low) 40 cm ~22 ~10.5 
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B 70% (Wet) 30 (Seedling) 60 (Cloudy) 0.5 

(Moderate) 

70 cm ~17 ~12.8 

C 45% 

(Normal) 

80 

(Reproductive) 

30 (Sunny) 0.8 (High) 20 cm ~25 ~9.3 

 

3. RESULTS AND DISCUSSIONS 

3.1 Performance Evaluation of the Intelligent Spraying System 

The FLC was implemented to enhance the precision and adaptability of the pesticide spraying mechanism 

by interpreting real-time environmental data. This section presents simulation outcomes and performance eval-

uation across various field scenarios to validate the effectiveness of the FLC in optimizing spraying operations. 

The system was tested using controlled input cases to observe output responses. Key results: 

The fuzzy logic-based control system was evaluated based on three key performance indicators: pesticide 

efficiency, coverage accuracy, and battery conservation. The following metrics are crucial for validating the 

robot’s effectiveness in real-world agricultural applications: 

(i) Pesticide Efficiency 

One of the most significant outcomes of using the fuzzy logic controller was the reduction in overall pes-

ticide consumption. The system achieved an approximate 24% reduction in pesticide usage when compared 

to a conventional fixed-rate spraying approach. This improvement is attributed to the system's ability to 

intelligently assess real-time environmental conditions such as soil moisture and weather. For example, in 

scenarios involving wet soil or rainfall, the fuzzy logic system accurately identified that spraying would be 

ineffective or redundant and automatically reduced or halted the pesticide flow. This not only minimized 

chemical waste but also contributed to environmental sustainability by preventing over-application and 

runoff. 

(ii) Coverage Accuracy 

Another critical metric was the coverage accuracy, which averaged 93% across diverse field conditions. 

The fuzzy controller continuously adjusted the robot’s spraying activity based on the proximity to the next 

plant and the plant's growth stage. This adaptive behavior ensured that the pesticide was applied only where 

necessary, leading to precise targeting of affected areas. The ability to deliver pesticide consistently, with-

out over-spraying or missing patches, makes the system particularly valuable for precision agriculture prac-

tices. 

(iii) Battery Conservation 
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The adaptive spraying behavior also had a direct impact on energy consumption. By reducing pump usage 

in situations where spraying was unnecessary (such as in sparse crop sections or during unfavorable 

weather), the system effectively conserved battery power. Tests showed an increase in operational time of 

approximately 12% to 18%, which is critical for solar-powered systems operating in remote or extended 

field conditions. This efficiency enables longer deployments per charge and reduces the frequency of 

maintenance or recharging, thus enhancing the robot’s practicality for real-world farming applications. 

The mobility of a solar-powered pesticide spraying robot is significantly affected by several weather cir-

cumstances, including the amount of sunshine available, the presence of shade, and the temperature. These 

characteristics can have an impact on the robot's power efficiency, movement, and overall performance in agri-

cultural settings. The robot's performance depends on sunlight because it uses solar energy to power its parts. 

Clouds and rain restrict sun radiation, reducing battery charge and gadget use. However, sunny weather gener-

ates the most power, ensuring efficiency. With a -15-degree tilt, the solar panel can help reduce self-shading 

and external shading from trees or buildings. This is crucial because self-shading and external shadowing impair 

energy absorption and system performance. Even a little panel shading can reduce power production and the 

robot's capacity to maneuver and spray insecticides. The data for voltage, current and power were successfully 

gathered for input analysis, which was carried out from 10.00 am. in the morning to 5.00 pm. in the evening and 

the data is represented in Fig. 3. 

 

(a) 

 

(b) 

 
(c) 

Fig. 3: Graph of Input for (a) voltage; (b) current and (c) power over time for shading condition. 

Shade severely reduces solar panel performance. Because the panel receives less sunshine, the voltage is 

lower than optimum. Since shade hinders electron flow, decreasing sunshine quickly reduces current output. 

Because power is the product of voltage and current, solar panel power generation is reduced. When nearby 

objects throw longer shadows that block sunlight, afternoon shading is most noticeable. These settings indicate 

that even a tiny amount of shadowing can drastically reduce solar panel efficiency and energy output. Mean-

while, for the non-shading condition, the data was successfully gathered for input analysis, which was carried 

out from 10.00 am. in the morning to 5.00 pm. in the evening and the data is represented in Fig. 4. 
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(a) 

 

(b) 

 
(c) 

Fig. 4: Graph of Input for (a) voltage; (b) current and (c) power over time for non-shading condition. 

Table 6 presents the detailed daily energy budget of the solar-powered spraying system under typical field operat-

ing conditions. The table quantifies the average power consumption of each major component, its estimated duty 

cycle per day, and the corresponding daily energy usage. Energy harvested from a 10 W solar panel is calculated 

based on observed field irradiance, accounting for charge controller efficiency losses. Internal losses from battery 

round-trip efficiency and DC/DC conversions are included to reflect realistic energy availability. The overall sys-

tem achieves an energy efficiency of 89.3%, with an average surplus of 3.95 Wh/day, demonstrating its suitability 

for energy-autonomous operation in smallholder agricultural environments. Energy harvested is calculated from 

the 10‑W panel specified in the prototype design, multiplied by the measured average of 4.2 peak‑sun‑hours ob-

tained under 700–900 W m⁻² field irradiance conditions and derated by 12 % for PWM charge‑controller losses. 

Table 6: Daily energy budget and overall system efficiency of the solar‑powered sprayer robot  

Category Component 
Avg. Power 

(W) 

Duty-cycle 

(h day⁻¹) 
Energy (Wh day⁻¹) 

Energy harvested 
10 W monocrystalline PV module (4.2 PSH 

× 88 % charge-controller efficiency) 
N/A N/A 37 

Energy consumed 

– loads 
Drive motors (2 × 7 W) 14 1.3 18.2 

  Sprayer pump 8 1 8 

  MCU + environmental sensors 0.35 6 2.1 

  LoRa/BLE communication bursts 0.5 0.5 0.25 

  Regulators & status LEDs 0.2 6 1.2 

Subtotal (active 

loads) 
      29.75 

Internal losses 
Battery round-trip & DC/DC conversion 

(≈ 10 % of PV input) 
N/A N/A 3.3 

Total energy con-

sumed 
      33.05 

System efficiency       (33.05 ÷ 37.0) × 100 = 89.3 % 

Daily surplus mar-

gin 
      3.95 Wh  
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3.2 Analysis of Fuzzy Logic Decision Behavior and Controller Robustness 

The effectiveness of the fuzzy logic system was evaluated using both qualitative observations and quanti-

tative performance metrics. This section discusses how the fuzzy system improved the robot's operation across 

different field scenarios. Three controlled test scenarios were conducted as in Table 7. 

Table 7: Test case scenarios. 

Test 

Case 

Soil 

Moisture 

Growth 

Stage 

Proximit

y (cm) 

Weathe

r 

A Dry (25%) Vegetative 30 cm Sunny 

B 
Normal 

(50%) 
Seedling 50 cm Cloudy 

C Wet (80%) 
Reproductiv

e 
20 cm Rainy 

 

Fig. 5 presents a 3D surface plot that illustrates how the fertilizer flow rate varies in response to changes 

in soil moisture and plant growth stage. The plot demonstrates a smooth and continuous surface, indicating that 

the fuzzy inference system transitions output values gradually, without abrupt shifts. This smoothness is essen-

tial in control systems to ensure stable and predictable responses. The surface also highlights a non-linear rela-

tionship between the inputs and the output, which is a hallmark of fuzzy logic controllers to allow the system to 

handle complex, real-world agricultural conditions more effectively than linear models. 

Notably, regions with high soil moisture and early growth stages correspond to increased fertilizer flow, 

which aligns with agronomic expectations, as younger plants require more nutrients. In contrast, the fertilizer 

flow rate decreases significantly when soil moisture is low and plants are in later growth stages, reflecting 

reduced nutrient demands. The mid-range areas show a smooth gradient, confirming that the fuzzy system 

blends the rules appropriately to avoid sudden changes. Additionally, sharper slopes in some regions indicate 

zones where the rule base applies stronger influence, leading to more decisive changes in output. This behavior 

enhances responsiveness when rapid adjustments are needed. Overall, the plot confirms that the fuzzy logic 

controller is functioning correctly and effectively adapts the fertilizer flow rate based on environmental inputs. 
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Fig. 5: 3D Surface Plot 

Table 8: Test case scenarios. 

Test 

Case 

Fuzzy Flow 

Output (ml/sec) 

Sprayer Speed 

(cm/sec) 

Pesticide 

Usage (ml) 

Coverage 

Accuracy (%) 

A 22.1 10.3 332 94% 

B 25.6 14.8 278 96% 

C 15.3 8.1 186 91% 

 

Table 8 presents the performance of the fuzzy logic-controlled pesticide spraying robot under three differ-

ent field scenarios. In Test Case B, which involved early-stage seedlings, the system applied the highest fuzzy 

flow output (25.6 ml/sec) and operated at the fastest sprayer speed (14.8 cm/sec), yet recorded the lowest total 

pesticide usage (278 ml). This indicates that the robot effectively targeted areas in need without over-applica-

tion. In contrast, Test Case C, representing a wet field condition following rainfall, recorded the lowest fuzzy 

flow output (15.3 ml/sec) and the lowest spraying speed (8.1 cm/sec), resulting in minimal pesticide use (186 

ml).  

This demonstrates the system’s ability to reduce or pause spraying in unnecessary conditions, conserving 

resources and energy. Overall, the fuzzy logic controller contributed to an estimated 24% reduction in pesticide 

consumption compared to traditional fixed-rate spraying methods. Additionally, the robot exhibited lower 

power consumption in scenarios where pump operation was reduced, further confirming its energy-efficient 

design. The system’s adaptive responses to environmental factors, such as soil moisture and rainfall, reinforce 

its suitability for sustainable and intelligent pesticide management in small- to medium-scale farming. The rule-

based fuzzy approach also ensures transparency and ease of interpretation, making it a practical tool for preci-

sion agriculture. 
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To further validate the reliability of the fuzzy logic controller, the system’s computational and response 

performance was analyzed during test execution. The average processing time per fuzzy control cycle including 

sensor input capture, fuzzification, rule evaluation, and defuzzification, was approximately 102 milliseconds on 

the ESP32-S3 microcontroller, which supports timely and efficient decision-making suitable for real-time agri-

cultural operations. The total latency from sensing to actuation, including communication with the sprayer motor 

and wheel controller, was measured at approximately 140 milliseconds. This acceptable low-latency response 

ensures that the robot can adapt rapidly to changing field conditions such as sudden shading or variable soil 

moisture without significant delay or overshooting. Furthermore, consistency checks were performed to assess 

the fuzzy logic system's stability across repeated trials. For each of the three test scenarios, ten repeated execu-

tions were conducted under controlled environmental input values. In over 96% of these runs, the system pro-

duced identical or adjacent fuzzy outputs for sprayer speed and flow rate, reflecting strong robustness to input 

noise and minor sensor fluctuations. This result affirms the system’s ability to maintain consistent behavior, a 

crucial requirement for autonomous field deployment. While the current rule base uses multiple triadic and 

tetradic logic rules to ensure context-aware responses, we recognize that further optimization could reduce the 

computational burden for deployment on more resource-constrained platforms. Techniques such as rule pruning, 

fuzzy clustering, or hierarchical inference may be explored in future work to maintain decision fidelity while 

improving processing efficiency. 

To evaluate the decision accuracy of the fuzzy logic controller, a confusion matrix analysis was conducted 

using 180 labelled sensor–action samples. Each output generated by the controller—namely, flow rate and 

sprayer speed—was mapped to one of five predefined linguistic categories (Very Low, Low, Medium, High, 

Very High), and compared against expert-labelled ground truth. The resulting confusion matrices demonstrate 

strong agreement between predicted and expected classes, with overall classification accuracy of 92% for flow 

rate and 93% for sprayer speed, respectively. Cohen’s kappa coefficient values of 0.89 (flow rate) and 0.90 

(speed) further confirm a high level of consistency beyond random chance. Misclassifications were minimal 

and occurred only between adjacent categories (e.g., Medium vs. High), indicating that the fuzzy boundaries 

were well-defined and that the controller exhibited stable decision behavior even under variable field conditions. 

This analysis validates that the fuzzy system's rule set and membership functions accurately reflect expert ag-

ronomic judgment in real-world scenarios. 

Table 9: Confusion matrix. 

Flow-rate confusion matrix (rows = ground 

truth, columns = prediction) 
VL L M H VH 

VL 26 2 0 0 0 

L 1 32 3 0 0 

M 0 3 28 2 0 

H 0 0 2 24 2 

VH 0 0 0 3 22  
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3.3 Generalizability and Limitations 

The test scenarios presented variations in soil moisture, crop growth stages, plant spacing, and weather 

conditions were carefully designed to reflect the diversity of real-world agricultural environments, particularly 

within tropical regions such as Malaysia and Indonesia. These variables were selected based on common con-

ditions encountered in row-based farming systems growing crops like maize, chili, and leafy vegetables. Alt-

hough the system was tested on controlled plots and did not involve direct biological sampling, the test cases 

simulate realistic agronomic situations. For instance, wet soil conditions during the reproductive stage under 

rainy weather (Test Case C) represent a common challenge in monsoon-affected areas. Similarly, the use of 

fuzzy inputs like NDVI and soil moisture enables the robot to be crop-agnostic and adaptable to various agri-

cultural settings with minimal recalibration. 

Furthermore, the modular architecture of both the hardware and fuzzy logic controller allows the system 

to be scaled or adapted to different farm sizes, crops, or geographies. Updating the fuzzy membership parameters 

and sensor thresholds can enable easy transferability across regions and seasons. The use of low-cost sensors 

and solar energy also enhances its suitability for resource-constrained or remote agricultural communities. 

Therefore, while this study provides a focused performance evaluation, the framework and results presented 

here are generalizable to broader applications in precision agriculture across similar agroecological zones. 

The current study was conducted under semi-controlled outdoor conditions to ensure repeatability and to 

validate the system's core functionalities. All field tests were performed in homogeneous crop row arrangements 

with uniform plant spacing and soil type, which facilitated the evaluation of the fuzzy logic system under well-

defined conditions. However, this setup does not capture the full variability found in real-world agricultural 

environments. 

Key limitations of the current system include the lack of testing on heterogeneous field structures, such as 

mixed cropping systems or irregular plant spacing. The robot’s ability to detect and adapt to weed interference 

or discriminate between crops and weeds has not been assessed. Similarly, experiment did not involve uneven 

or sloped terrain, which may affect robot stability and sensor alignment. Environmental effects such as wind-

induced pesticide drift, varying droplet sizes, and nozzle pressure consistency were not explicitly measured. 

These factors may influence spraying accuracy and pesticide efficacy. 

Future work will focus on addressing these limitations by conducting experiment in more diverse condi-

tions, integrating terrain-adaptive mobility features, and implementing machine vision modules to enhance plant 
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discrimination. Additionally, droplet size uniformity and spray pattern consistency will be evaluated under dif-

ferent environmental conditions to ensure agronomic effectiveness and environmental safety. 

4. CONCLUSIONS 

The solar-powered pesticide spraying robot demonstrated that sustainable and energy-efficient pesticide 

application is achievable using solar energy, particularly beneficial in remote agricultural settings. The robot's 

adjustable solar panel improved energy collection under varying conditions, while automation reduced labor 

demands and reliance on non-renewable energy. Performance testing revealed that battery capacity and shading 

significantly affected operational efficiency. The robot performed best in unshaded environments, though lim-

ited battery life under cloudy conditions posed challenges. Despite this, the system proved to be a viable and 

cost-effective solution for modernizing pesticide application. Overall, the project successfully developed a func-

tional solar-powered robot that integrates renewable energy and automation to improve agricultural productiv-

ity. With further optimization, its adaptability and efficiency can be enhanced for broader applications. 
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