

Type of the Paper (Original Research)

Do Climate Variables Influence Fish Production in Top Fishery Economies? Evidence from the ARDL Approach

Jaganathan Maniselvam, Swadesh Prakash†, Arpita Sharma, Radhakrishnan Kalidoss and Palsam Karthik Kumar Goud

Fisheries Economics, Extension and Statistics Division, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai-400 061, Maharashtra, India

†Corresponding author: Swadesh Prakash; swadeshprakash@cife.edu.in

ORCID IDs of Authors: Swadesh Prakash: 0009-0000-7324-4223

Key Words	Climate change, Fish production, ARDL model
DOI	https://doi.org/10.4649/NEPT.2026.v25i01.B4355 (DOI will be active only after the final publication of the paper)
Citation for the Paper	Maniselvam, J., Prakash, S., Sharma, A., Kalidoss, R. and Goud, P. P. K., 2026. Do climate variables influence fish production in top fishery economies? Evidence from the ARDL Approach. <i>Nature Environment and Pollution Technology</i> , 25(1), B4355. https://doi.org/10.46488/NEPT.2026.v25i01.B4355

ABSTRACT

Climate change poses significant challenges to food security worldwide, particularly within the fisheries sector, where fish production is highly sensitive to climatic variables. This study investigates the long-run and short-run impacts of climate change on fish production in four major fish-producing countries, China, India, Vietnam, and Bangladesh, using annual time series data from 1990 to 2020. Here, an Autoregressive Distributed Lag (ARDL) model was employed to explore the long-run equilibrium relationships between climate factors (precipitation, minimum, mean, and maximum temperatures, CO₂ emissions) and total fish production, as well as their adjustments to short-run deviations. The findings reveal distinct patterns across countries: CO₂ emissions positively influence long-term fish production in China, India, and Bangladesh, while precipitation boosts fish production in China and Bangladesh. In contrast, Vietnam shows no long-run equilibrium, indicating a higher sensitivity to short-term climatic fluctuations. In the short run, CO₂ emissions significantly enhance fish production in Bangladesh, with regional temperature effects varying. Minimum temperature positively impacts long-term fish production in China but negatively affects it in Bangladesh. In Vietnam, increased maximum temperature enhance short-run production, while minimum temperature reduces it. This study examines the critical role of CO₂ emissions, precipitation, and temperature in influencing fish production, offering key insights for policymakers to develop adaptive strategies for sustainable fish production amid climate change.

INTRODUCTION

Global fisheries and aquaculture are vital to economies around the world, contributing significantly to GDP and supporting global food security (FAO, 2024). Approximately 3 billion people worldwide depend on fish and fishery products to meet 20 percent of their animal protein intake (FAO, 2024). However, these sectors are increasingly at risk from changing climate patterns. By the definition of Intergovernmental Panel on Climate Change (IPCC), climate change is the statistically significant alterations in climate properties that persist for decades or longer, resulting from both natural variability and human activities. This phenomenon is widely acknowledged as an inevitable outcome of over 200 years of greenhouse gas emissions from various sources (Lee et al., 2023). The impacts of climate change are irreversible (Masson-Delmotte et al., 2021) and have led to significant declines in the diversity and productivity of aquatic systems. Climate change poses significant risks to marine and freshwater species, as well as the ecosystems they inhabit, globally (Allan, Palmer and Poff, 2005; FAO, 2024). Tropical regions, particularly South Asia, are especially vulnerable to these impacts (Pörtner et al., 2014). Key climate change impacts, such as rising temperatures, global warming, change in precipitation, sea level rise, harmful algal blooms, increased diseases, ocean acidification and extreme weather events directly influence fish production by altering the biological productivity of fish stocks, as evidenced by various studies (O'Reilly et al., 2003; Perry et al., 2005; Vollmer et al., 2005; Arnason, 2007; Cochrane et al., 2009; Eboh, 2009; Gamito et al., 2013; Muthoka et al., 2024). These changes pose risks not only to coastal regions that sustain fisheries and aquaculture but also to the livelihoods, productivity, and well-being of the communities that rely on them (Daw et al., 2009; Badjeck et al., 2010), the consequent rise in prices is expected to have substantial impacts on food security (Agnishwaran et al., 2024). An estimated 3.3 to 3.6 billion people face high vulnerability to the effects of climate change, with the most severe risks concentrated in underdeveloped and developing regions. Climate change disrupts critical processes in fish species, such as feeding, migration, and breeding behaviours, further intensifying its impacts on fisheries (Brander, 2010). The impact of climate variables such as temperature, precipitation, and CO₂ emissions on fish production is both complex and regionally variable, necessitating a detailed understanding of their effects across different contexts.

Climate change is inducing considerable hydrological changes in aquatic ecosystems. Since 1850, global temperatures have increased by 1.1°C, primarily driven by human-induced global warming, which has led to adverse effects (Lee et al., 2023). These shifts are affecting the physical and chemical properties of water bodies, including temperature, salinity, and pH, which in turn influence the physiological, biological, and genetic traits of aquatic species (Menon et al., 2023). Temperature fluctuations are contributing to thermal stratification and the development of oxygen minimum zones in water bodies, posing challenges to the survival of various organisms (Ng'onga et al., 2019; Mugwanya et al., 2022). Elevated CO₂ levels are contributing to changes in ocean pH, leading to ocean acidification and coral bleaching, which can affect aquatic biodiversity (Thomas, Ramkumar and Shanmugam, 2022). Furthermore, the combination of climate change and overexploitation may exert additional pressure on fish populations (Perry et al., 2010; Planque et al., 2010). Water scarcity, exacerbated by

rising temperatures and fluctuating rainfall patterns, presents further challenges for freshwater and marine ecosystems, potentially intensifying the impacts of existing pollution (Alsaleh, 2024).

Despite obvious evidence of climate change effects on aquatic ecosystems and fisheries, these impacts are often overlooked in climate adaptation policies (Badjeck et al., 2010). Analyzing long-run equilibrium relationships between climate variables and fish production, as well as understanding adjustments to short-run deviations, is critical for effective evidence-based decision-making and resource allocation. Among the key fish-producing countries, China, India, Vietnam, and Bangladesh are pivotal to the global fisheries sector and are susceptible to the impacts of climate change. Although substantial research has been conducted on the relationship between climate change and fisheries globally (Cheung et al., 2009; Das et al., 2020; Doney et al., 2012; Fernandes et al., 2016; Lam et al., 2012; Mohanty et al., 2017; Ninawe et al., 2018; Raubenheimer & Phiri, 2023; Suh & Pomeroy, 2020; Vass et al., 2009), the application of advanced econometric techniques such as the Autoregressive Distributed Lag (ARDL) approach within the fisheries sector remains limited. Most empirical studies employing ARDL models have focused predominantly on the agricultural sector (Janjua, Samad and Khan, 2014; Zhai et al., 2017; Ahsan, Chandio and Fang, 2020; Chandio, Magsi and Ozturk, 2020; Demirhan, 2020; Nasrullah et al., 2021; Warsame et al., 2021; Ramzan et al., 2022; Tagwi, 2022; Waris et al., 2023). Addressing this gap, the present study utilizes the ARDL model to explore the long-run co-integration relationships between climate variables and fish production in leading fish economies, thereby offering new insights into the fisheries sector's response to climate change. The ARDL model is particularly adept at analyzing long-run relationships and performs well with small sample sizes, providing reliable results in regression contexts (Bhuyan, Mohanty and Patra, 2023).

2. MATERIALS AND METHODS

2.1. Data and variables

The annual dataset contains statistics on time series data from 1990 to 2020 covering the four Asian countries namely China, India, Vietnam and Bangladesh. The key variables of interest were total fish production (TFP) which includes both marine and inland measured in million tons, climatic variables such as Precipitation measured in mm, min temperature, mean temperature, max temperature is expressed in terms of degree celcius, CO₂ emission measured in metric tons per capita. The dataset was gathered from the FishStatJ, Food and Agricultural Organization (FishStatJ, 2021) for total fish production, Climate Change Knowledge Portal (CCKP) and World Development Indicators (WDI) for climate variables (See Table 1). This study used total fish production as the explained variable, whereas Precipitation, min temperature, mean temperature, max temperature and CO₂ emissions were employed as explanatory variables. The selection of climate variables in this study is grounded in their critical influence on marine and inland ecosystems, particularly concerning fish production. Precipitation is a key variable due to its direct impact on freshwater inputs into coastal and marine environments, altering salinity, nutrient levels, and habitat conditions, which are crucial for the distribution and productivity

of fish populations (Nye et al., 2009). The minimum temperature is justified by its role in defining the lower thermal limit for fish, where sudden drops can cause thermal stress, reducing metabolic rates and impairing growth, reproduction, and survival, thereby revealing species' vulnerability to cold extremes (Volkoff and Rønnestad, 2020). Mean temperature is crucial for understanding the long-term thermal environment affecting metabolic functions, growth, and reproduction, with shifts potentially altering species distribution and ecosystem dynamics (Mugwanya et al., 2022). Maximum temperature is selected for its importance in assessing the impacts of extreme heat on fish, where exceeding thermal thresholds can lead to heat stress, habitat loss, and mortality, driving shifts in species distributions and community structure (Neubauer and Andersen, 2019). CO₂ emissions, a key driver of global warming and ocean acidification, are selected for their extensive impact on marine and inland ecosystems, as elevated CO₂ levels lead to rising surface temperatures that influence fish physiology, behavior, and habitat availability (Harley et al., 2006; Fabry et al., 2008). By including these variables, this study aims to provide a comprehensive assessment of how various aspects of climate change collectively influence fish production. To address multicollinearity (Mansfield and Helms, 1982) and heteroscedasticity (Engle, 1982) in the annual time series data, we have applied natural logarithmic transformations to all variables. This logarithmic transformation stabilizes data variance and produce more reliable and precise results (Dumrul and Kilicaslan, 2017).

2.2. Econometric methodology

2.2.1. Model specification

The empirical framework for this study is outlined in the following implicit form:

$$TFP_t = f(PREC_t, MINTEM_t, MEANTEM_t, MAXTEM_t, CO_2_t) \quad (1)$$

The relationship in its fitted form can be expressed as follows:

$$LnTFP_t = \alpha_0 + \alpha_1 LnPREC_t + \alpha_2 LnMINTEM_t + \alpha_3 LnMEANTEM_t + \alpha_4 LnMAXTEM_t + \alpha_5 LnCO_2_t + \varepsilon_t \quad (2)$$

where $LnTFP_t$ denotes the logarithm of total fish production, $LnPREC_t$ stands for the logarithm of precipitation, $LnMINTEM_t$ represents the logarithm of minimum temperature, $LnMEANTEM_t$ indicates the logarithm of mean temperature, $LnMAXTEM_t$ signifies the logarithm of maximum temperature, and $LnCO_2_t$ refers to the logarithm of CO₂ emissions.

2.2.2. AutoRegressive Distributed Lag (ARDL)

We have employed Autoregressive Distributed Lag (ARDL) model to analyze the short - run and long - run relationship between total fish production and climatic variables (Pesaran and Shin, 1995; Pesaran, Shin and Smith, 2001). The choice of the ARDL model is driven by its suitability for examining cointegration and short-term relationships and its effectiveness as an alternative to the more commonly employed Johansen test (Asumadu-Sarkodie and Owusu, 2016; Abbas, 2020; Chandio, Magsi and Ozturk, 2020; Warsame et al., 2021). This model is particularly advantageous as it offers unbiased long-run estimates even when some endogenous variables are treated as regressors (Adom, Bekoe and Akoena, 2012). The ARDL approach estimates both short-

and long-run coefficients using Ordinary Least Squares (OLS) and accommodates regressors that may be either integrated at I(0), I(1), or mutually cointegrated. Unlike many other cointegration methods, the ARDL model delivers consistent results even with smaller sample sizes (Pesaran and Shin, 1995; Pesaran, Shin and Smith, 2001; Adom, Bekoe and Akoena, 2012). In this context, the ARDL model is well-suited in our study for estimating the impact of climate change on total fish production.

2.2.3. Unit root tests

To accurately assess the impact of climate change on total fish production in Asian countries, it is crucial to first verify the stationarity of the variables to prevent biased outcomes. To ensure the stationarity in the time series data, we applied unit root tests, specifically Augmented Dickey-Fuller “ADF” (1979) and Phillips-Perron “PP” (1988) tests. The ADF test was conducted based on the following regression equation:

$$\Delta Y_t = \alpha + \beta_t + \gamma Y_{t-1} + \sum_{i=1}^p \delta_i \Delta Y_{t-i} + \varepsilon_t \quad (3)$$

where, ΔY_t represents the first difference of the variable Y_t , α denotes a constant term, β_t is the coefficient associated with the time trend t , γ is the coefficient of the lagged level of the series, δ_i are the coefficients corresponding to the lagged first differences, p indicates the number of lagged terms, and ε_t represents the error term.

The Phillips-Perron (PP) test was also employed to complement the ADF test. This addresses serial correlation and heteroscedasticity in the error terms through non-parametric adjustments to the test statistics (Vogelsang and Wagner, 2013). The PP test equation is expressed as:

$$Y_t = \alpha + \beta_t + \gamma Y_{t-1} + \varepsilon_t \quad (4)$$

For both tests, the presence of a unit root in the time series is determined by examining whether the p-value is below 0.05. If the null hypothesis (H_0), which suggests non-stationarity, is rejected, it favours the acceptance of the alternative hypothesis (H_1), indicating that the series is stationary.

2.2.4. Estimation procedure

The ARDL model was used to assess the relationships among variables by initially examining the presence of a long-run association. In this study, the long-term association between $\ln\text{TFP}$, $\ln\text{PREC}$, $\ln\text{MINTEM}$, $\ln\text{MEANTEM}$, $\ln\text{MAXTEM}$, and $\ln\text{CO}_2$ evaluated through the bounds testing approach. The ARDL bounds testing model for our study can be described as:

$$\begin{aligned} \Delta \ln\text{TFP}_t = & \alpha_0 + \alpha_1 \sum_{i=1}^p \Delta \ln\text{TFP}_{t-i} + \alpha_2 \sum_{i=1}^{q_1} \Delta \ln\text{PREC}_{t-i} + \alpha_3 \sum_{i=1}^{q_2} \Delta \ln\text{MINTEM}_{t-i} + \\ & \alpha_4 \sum_{i=1}^{q_3} \Delta \ln\text{MEANTEM}_{t-i} + \alpha_5 \sum_{i=1}^{q_4} \Delta \ln\text{MAXTEM}_{t-i} + \alpha_6 \sum_{i=1}^{q_5} \Delta \ln\text{CO}_2_{t-i} + \gamma_1 \ln\text{TFP}_{t-1} + \\ & \gamma_1 \ln\text{PREC}_{t-1} + \gamma_1 \ln\text{MINTEM}_{t-1} + \gamma_1 \ln\text{MEANTEM}_{t-1} + \gamma_1 \ln\text{MAXTEM}_{t-1} + \gamma_1 \ln\text{CO}_2_{t-1} + \varepsilon_t \end{aligned} \quad (5)$$

Where, α_i and γ_i are short- and long-run coefficients, α_0 is the constant, p and q_i are optimal lag orders of regressand and regressors, Δ represents the first difference operator and ε_t is the white noise error term.

To assess the long-run relationship among the variables, we formulated the following hypotheses: the null hypothesis (H_0) assumes no long-run association among the variables ($\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6$), while the

alternative hypothesis (H1) indicates differing parameters ($\alpha_1 \neq \alpha_2 \neq \alpha_3 \neq \alpha_4 \neq \alpha_5 \neq \alpha_6$). The ARDL bounds-testing method employs F-statistics to determine long-term cointegration among the selected variables. According to Pesaran et al., 2001, the F-test statistics involves two key thresholds: the lower limit and the upper limit. An F-statistic falling below the lower bound indicates that there is no significant long-term relationship, whereas a statistic exceeding the upper bound suggests the presence of a long-term association. If the F-test statistic is between these bounds, the results are deemed inconclusive.

To capture the short-term dynamics between variables, an ARDL-based Error Correction Model (ECM) was then employed, as detailed below.

$$\begin{aligned} \Delta \ln TFP_t = & \phi_0 + \phi_1 \sum_{i=1}^p \Delta \ln TFP_{t-i} + \phi_2 \sum_{i=1}^{q-1} \Delta \ln PREC_{t-i} + \phi_3 \sum_{i=1}^{q-1} \Delta \ln MINTEM_{t-i} + \\ & \phi_4 \sum_{i=1}^{q-1} \Delta \ln MEANTEM_{t-i} + \phi_5 \sum_{i=1}^{q-1} \Delta \ln MAXTEM_{t-i} + \phi_6 \sum_{i=1}^{q-1} \Delta \ln CO_2_{t-i} + \phi ECT_{t-1} + \epsilon_t \end{aligned} \quad (6)$$

Where, ϕ_0 represents the intercept, ϕ_i denotes the short-run coefficient, ϵ_t is the error term, and ECT_{t-1} indicates the lagged residual from the model that determines the long-term relationship. The error correction method describes the speed at which adjustment occurs to restore long-term equilibrium after a short-term shock.

Equation (6) illustrates that total fish production is influenced by its past values, current and lagged values of the regressors, and the lagged error term. The parameter ϕ is anticipated to be negative (between 0 and -1), as this indicates the extent to which equilibrium is restored in absolute terms. A positive ϕ would indicate that the model is out of equilibrium and unstable, with no tendency to return to the long-run equilibrium. The optimal lag lengths for each variable were established using the Akaike Information Criterion (AIC).

2.2.5. Diagnostic and stability tests

This study conducted a series of diagnostic tests to evaluate the model's reliability and validity, following the methodology outlined by Pesaran et al., 2001. To detect serial correlation, the Breusch-Godfrey Serial Correlation LM Test was applied, recognized for its ability to accommodate lagged dependent variables, thus enhancing the model's reliability (Breusch, 1978; Godfrey, 1978). Heteroscedasticity was assessed using the Breusch-Pagan-Godfrey (BPG) test, which ensures accurate variance in the residuals and the robustness of the model's estimates (Breusch and Pagan, 1979). The normality of the residuals was assessed using the Jarque-Bera (JB) test, which evaluates the skewness and kurtosis of the residuals to determine if they follow a normal distribution, thereby confirming the appropriateness of the model (Jarque and Bera, 1980). To examine the stability of both long and short-run coefficients, the cumulative sum of recursive residuals (CUSUM) test was conducted, as proposed by Brown et al., 1975.

3. RESULTS

3.1. Descriptive statistics

Table 2 reports the descriptive statistics for the study variables corresponding to each country from 1990 to 2020. Total fish production reveals significant disparities, with China exhibiting the highest mean production at 53.19 million metric tons (MT), followed by India (7.48 MT), Vietnam (3.83 MT), and Bangladesh (2.40 MT). The skewness values indicate that China's production distribution is slightly left-skewed (-0.20), while India, Vietnam, and Bangladesh display right-skewed distributions, indicating the presence of occasional high production figures. Annual precipitation is highest in Bangladesh, averaging 2185.55 mm, followed by Vietnam (1769.98 mm), India (1114.37 mm), and China (610.70 mm). The distribution of precipitation data is nearly symmetric in all countries, with minimal skewness, reflecting stable precipitation patterns. However, Bangladesh shows the highest variability in precipitation, as indicated by the standard deviation of 275.91 mm, while China exhibits the lowest variability (32.53 mm). Temperature variables (annual minimum, mean, and maximum temperatures) present distinct climatic profiles across the countries. Bangladesh and Vietnam experience the highest temperatures, with mean temperatures of 25.71°C and 24.80°C, respectively, while China has the lowest mean temperature at 7.59°C. The temperature distributions across all countries are generally near-normal, with skewness values close to zero, indicating stable and consistent temperature trends. CO₂ emissions are significantly higher in China, with a mean of 4.66 metric tons per capita, compared to India (1.13 MT), Vietnam (1.32 MT), and Bangladesh (0.28 MT). The distribution of CO₂ emissions is slightly positively skewed in all countries, with China showing a modest skewness (0.15) and lower kurtosis (1.34), suggesting a relatively normal distribution with occasional periods of higher emissions. Vietnam exhibits the highest variability in emissions (standard deviation of 0.96 MT), while Bangladesh shows the least variability (0.15 MT). Figure 1 (a, b, c, d) reveals a consistent upward trajectory in total fish production and CO₂ emissions across China, India, Vietnam, and Bangladesh from 1990 to 2020. Temperature and precipitation trends exhibit considerable variability, with distinct fluctuations in each country, reflecting the complex interplay between climatic conditions and fish production over time.

3.2. Unit root tests

The results of the unit root tests shown in Table 3a and 3b for China, India, Vietnam, and Bangladesh indicate that the variables under study predominantly exhibit stationarity at first difference, as evidenced by both the Phillips-Perron (PP) and Augmented Dickey-Fuller (ADF) tests. Specifically, for China and India, all variables, including total fish production (TFP), precipitation, temperature-related variables, and CO₂ emissions, are non-stationary at level but become stationary after differencing, implying an order of integration of I(1). In Vietnam and Bangladesh, most variables also follow a similar pattern, with the exception of minimum temperature and precipitation variables that exhibit stationarity at both levels and first difference, indicating they are integrated of order I(0) or I(1). The stationarity of these variables at mixed levels of integration, I(0) and I(1) making it suitable for the ARDL approach. Furthermore, allowing for comprehensive analysis of long-run relationships between fish production and climate indicators in these countries.

3.3. Co-integration testing

The ARDL bounds test was employed to confirm the existence of a long-run relationship between total fish production and selected climatic factors, and the results are presented in Table 4 for the four countries under study. For China and Bangladesh, the F-statistic values of 6.99 and 6.50, respectively, exceed the upper critical bounds at both 5% and 1% significance levels, indicating the existence of a long-run relationship or cointegration among the variables. In India, the F-statistic of 5.46 surpasses the upper bound at 5% significance level, further supporting the presence of a long-term relationship. However, in Vietnam, the F-statistic of 1.26 falls below the lower critical bound, suggesting the absence of long-run relationship or cointegration among the variables in this case. These findings indicate long-run relationships between total fish production ($\ln\text{TFP}$) and precipitation ($\ln\text{PREC}$), minimum temperature ($\ln\text{MINTEM}$), mean temperature ($\ln\text{MEANTEM}$), maximum temperature ($\ln\text{MAXTEM}$), CO₂ emission ($\ln\text{CO}_2$) in China, India, and Bangladesh, while Vietnam shows no evidence of cointegration. Figure 2 (a, b, c, d) details the model selection process based on the Akaike Information Criterion (AIC). The optimal ARDL model for each country was determined by identifying the model with the lowest AIC value. Specifically, the selected models are ARDL (1, 2, 1, 1, 1, 2) for China, ARDL (1, 0, 0, 0, 0, 0) for India, ARDL (1, 0, 1, 0, 2, 0) for Vietnam, and ARDL (1, 2, 2, 2, 2, 2) for Bangladesh.

3.4. ARDL long-run and short-run estimation

After confirming cointegration among the variables, the ARDL model is employed to assess the long-run and short-run impact of climatic variables on total fish production across each country.

China: Table 5, highlight the long-run and short-run relationships between climatic variables and total fish production in China over time. In contrast to mean temperature, we observed a significant and positive long-run impact of precipitation, minimum temperature, and CO₂ emissions on fish production. Specifically, the long-run coefficient for precipitation (2.44) is highly significant ($p < 0.001$), indicating its strong positive influence on fish production. The relationship between CO₂ emissions and fish production is positive, with a coefficient of 0.45, and is significant at the 1% level ($p < 0.001$). The minimum temperature also shows a positive effect (1.38, $p = 0.063$), although it is marginally significant at 10% level. Meanwhile, the long-run coefficients for mean temperature and maximum temperature are not statistically significant, with the former showing a negative effect (-13.12, $p = 0.139$) and the latter showing a positive effect (11.36, $p = 0.241$). The stability of the long-run coefficients was assessed through the short-run dynamics. This analysis involved estimating an error correction model (ECM) in conjunction with the long-run estimates. The error correction term (ECT) represents the speed at which the regressand, total fish production, returns to its long-run equilibrium after a change in the regressors. The speed of adjustment in this case is 0.24, indicating a 24% correction towards equilibrium within one period. In the short run, total fish production is significantly influenced by current precipitation, which has a positive impact with a coefficient of 0.26 ($p < 0.001$), and lagged CO₂ emissions, which also show a significant positive effect with a coefficient of 0.16 ($p = 0.010$). In contrast, immediate CO₂ emissions, as well as minimum, mean, and maximum temperatures, do not have statistically significant effects on fish production in the short run, as indicated by their high p-values ($P > 0.05$).

India: The ARDL model results (Table 6) revealed that in the long run, only CO₂ emissions have a significant and positive impact on total fish production, with a coefficient of 1.08 ($p < 0.001$), whereas, precipitation and temperature variables - minimum, mean, and maximum temperatures - do not exhibit significant relationships with fish production. Precipitation shows a coefficient of 0.09 ($p = 0.833$), while minimum, mean, and maximum temperatures present coefficients of 26.30, -42.97, and 10.35, respectively, with corresponding high p-values (0.777, 0.856, and 0.944), indicating a lack of significant impact. After long run cointegration was established, the short run dynamics among the variables was subsequently calculated. The climatic variables, including precipitation, minimum temperature, mean temperature, maximum temperature, and CO₂ emissions, exhibit a lag of 0, indicating that changes in these variables do not immediately affect fish production in the short run. The error correction term (ECT) of -0.24 suggests that approximately 24% of any deviation from the long-run equilibrium is adjusted in each period. This implies that fish production is more influenced by long-term climate patterns rather than by immediate fluctuations.

Vietnam: The ARDL model, as indicated by the F-statistic from the bounds test, suggests there is no long-run equilibrium in Vietnam, implying only short-run relationships exist. The results of the short-run coefficients are presented in Table 7. Precipitation, mean temperature, maximum temperature, and CO₂ emissions - do not exhibit significant relationships with total fish production in the short run, as reflected by their high p-values. However, the first lag of minimum temperature and the first lag of maximum temperature affects total fish production at the 10% significance level. The outcome of short run coefficients revealed that 1% increase in minimum temperature leads to a 2.19% decrease in total fish production, whereas a 1% increase in maximum temperature leads to a 3.02% increase in total fish production. Although precipitation and mean temperature have a positive relationship with fish production, and CO₂ emissions have a negative relationship, these effects are not statistically significant ($P > 0.05$).

Bangladesh: In the long run, CO₂ emissions exert a strong positive influence on fish production, with a coefficient of 0.87 ($p < 0.001$), while precipitation also shows a significant positive impact, with a coefficient of 1.39 ($p = 0.001$) see Table 8. Temperature variables show mixed results with the minimum temperature showing a negative effect at -158.96 ($p = 0.083$), indicating marginal significance, whereas mean and maximum temperatures do not exhibit statistically significant impact on total fish production. In the case of short run, precipitation continues to play a critical role, with its immediate effect showing a significant positive coefficient of 0.14 ($p < 0.001$). However, the lagged effect of precipitation is negative and significant, with a coefficient of -0.12 ($p = 0.001$), indicating that an increase in precipitation may have a delayed adverse impact on total fish production. Furthermore, the first lags of minimum and maximum temperatures are also significant, with coefficients of 27.14 ($p = 0.001$) and 35.26 ($p = 0.002$), respectively, suggesting that past temperature variations influence current production levels. Meanwhile the immediate effect of CO₂ emissions is not statistically significant (0.03, $p = 0.576$), the lagged effect is significant and negative, with a coefficient of -0.23 ($p = 0.002$), indicating that previous increases in CO₂ emissions may lead to a reduction in fish production over time. In addition, the ECM coefficient is - 0.31 and is significant at the

1% level. This suggest that deviations from equilibrium in the short run was adjusted at a rate of about 31% annually, progressively aligning towards the long-run equilibrium.

3.5. Diagnostic inspection

The diagnostic tests for the model as shown in table 9 revealed no significant issues of serial correlation, heteroskedasticity, or non-normality of residuals across different countries under study. The Breusch-Godfrey Serial Correlation LM Test indicates no significant evidence of serial correlation in the residuals, with F-statistics of 0.23 ($p = 0.79$) for China, 1.32 ($p = 0.36$) for India, 2.62 ($p = 0.12$) for Bangladesh, and 1.63 ($p = 0.22$) for Vietnam. The Breusch-Pagan-Godfrey Heteroskedasticity Test further supports the model's validity by showing no significant presence of heteroskedasticity, as evidenced by the p - values for all countries, which are greater than 0.05. Additionally, the Jarque-Bera Normality Test confirms that the residuals are normally distributed, with χ^2 values of 0.25 ($p = 0.87$) for China, 0.78 ($p = 0.67$) for India, 0.55 ($p = 0.75$) for Bangladesh, and 0.31 ($p = 0.85$) for Vietnam. Furthermore, the stability of the model was assessed using the cumulative sum of recursive residuals (CUSUM) test. As illustrated in Figures 3 (a, b, c, d), the trajectories of total fish production remain within the 5% significance level throughout the period, thereby validating the stability of the ARDL model in all the studied countries.

3.6. Figures

Figure 1a. Trends in fish production and climate indicators for China during 1990–2020

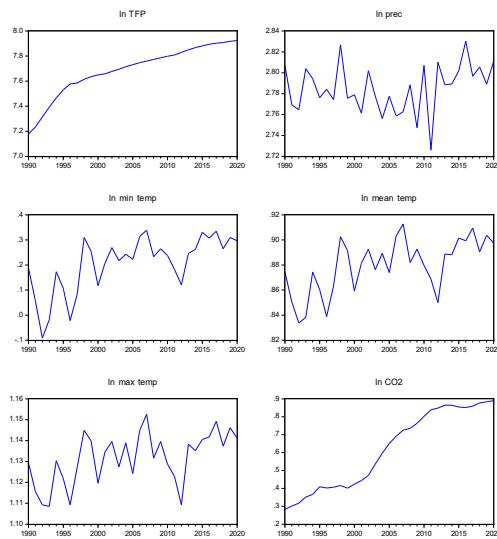


Figure 1c. Trends in fish production and climate indicators for Vietnam during 1990–2020

Figure 1b. Trends in fish production and climate indicators for India during 1990–2020

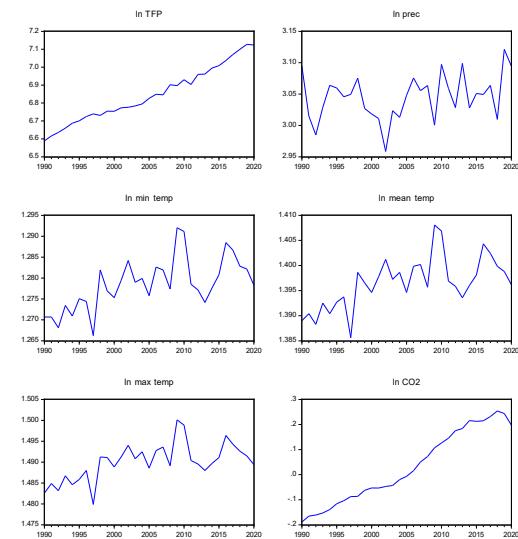


Figure 1d. Trends in fish production and climate indicators for Bangladesh during 1990–2020

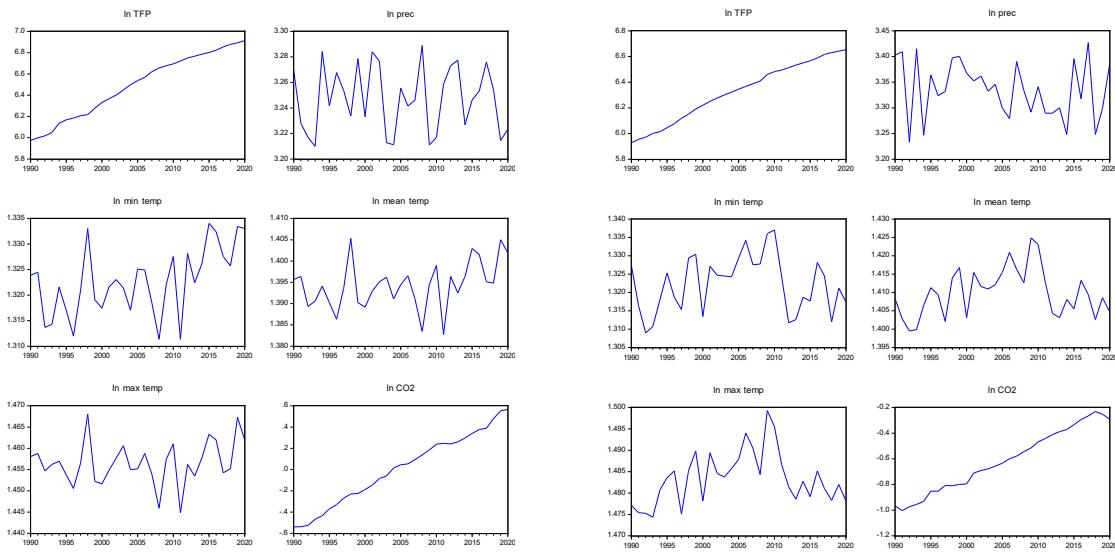


Fig. 1: Trends in fish production and climate indicators for different countries

Figure 2a. AIC model selection for China
Akaike Information Criteria (top 20 models)

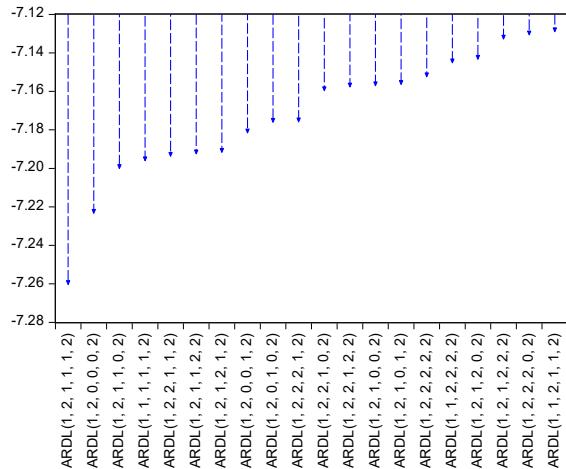


Figure 2b. AIC model selection for India
Akaike Information Criteria (top 20 models)

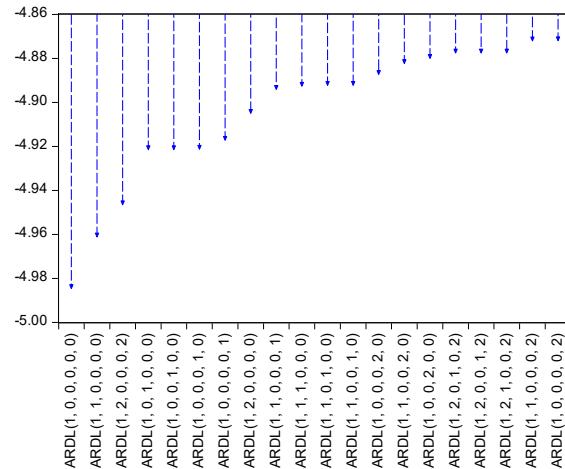


Figure 2c. AIC model selection for Vietnam
Akaike Information Criteria (top 20 models)

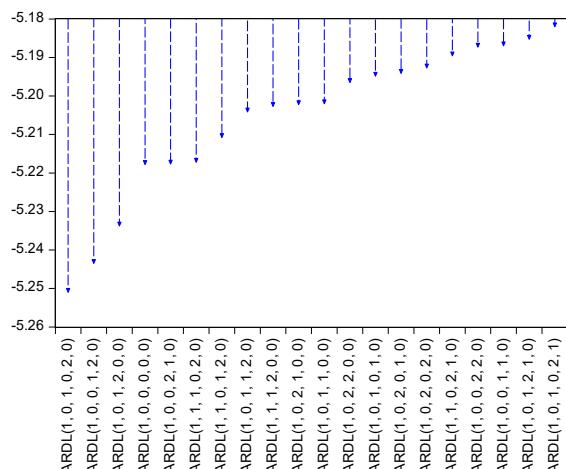


Figure 2d. AIC model selection for Bangladesh
Akaike Information Criteria (top 20 models)

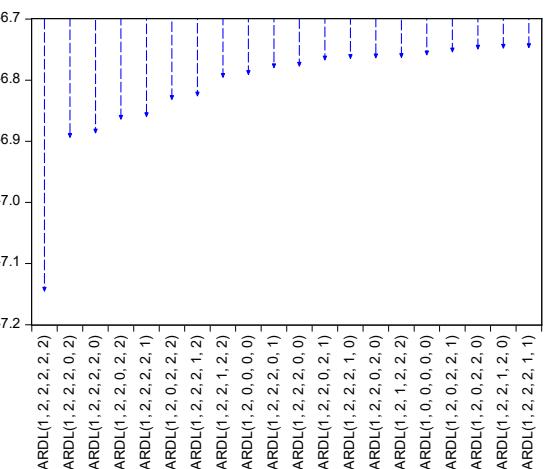
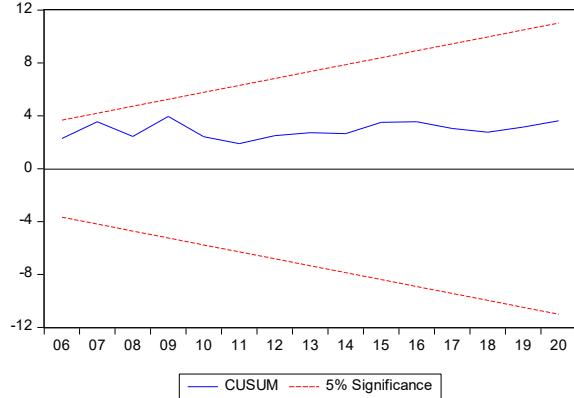
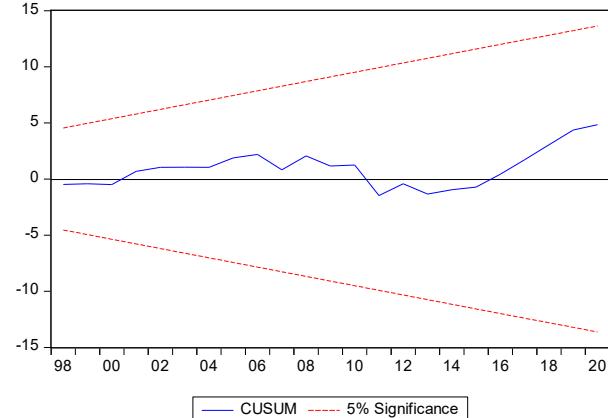
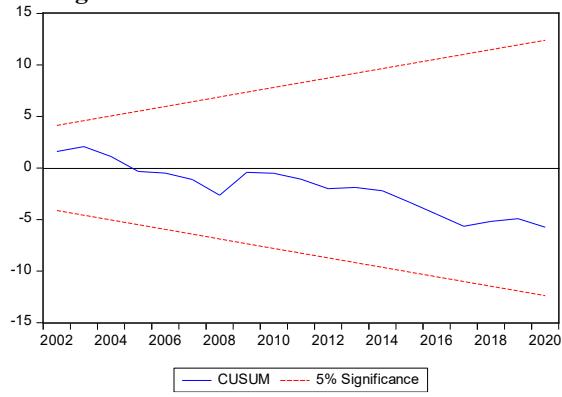
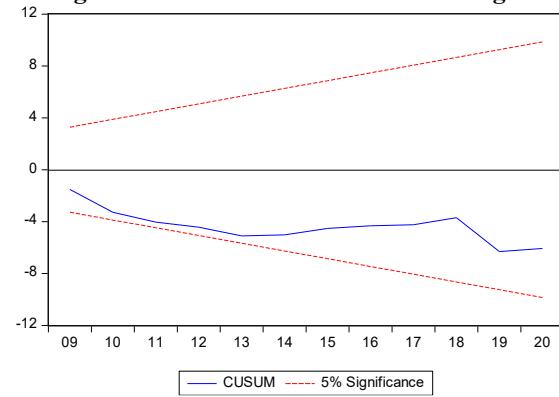


Fig. 2: AIC model selection for different countries**Figure 3a. Plot of CUSUM test for China****Figure 3b. Plot of CUSUM test for India****Figure 3c. Plot of CUSUM test for Vietnam****Figure 3d. Plot of CUSUM test for Bangladesh****Fig. 3:** Plot of CUSUM test for different countries

3.7. Tables

Table 1: Variable description and data sources. Source: Author's collection from various databases

	Variable	Code	Measurement Unit	Source
Dependent Variable	Total Fish Production	TFP	Million tons	FishStatJ, FAO
	Annual Precipitation	PREC	Millimeter	CCKP
Independent Variables	Annual Minimum Temperature	MINTEM	Degree Celcius	CCKP
	Annual Mean Temperature	MEANTEM	Degree Celcius	CCKP
	Annual Maximum Temperature	MAXTEM	Degree Celcius	CCKP
	CO ₂ emission	CO ₂	Metric Tons per capita	WDI

Table 2: Descriptive Statistics

Country	Variables	Mean	Median	Maxi-mum	Mini-mum	Std. Dev.	Skew-ness	Kurto-sis
China	Total Fish production	53.19	53.79	83.93	15.11	20.14	-0.20	2.08
	Annual Precipitation	610.70	614.41	676.47	531.98	32.53	-0.14	2.84
	Annual Minimum Temperature	1.65	1.73	2.18	0.81	0.38	-0.59	2.47
	Annual Mean Temperature	7.59	7.62	8.18	6.82	0.37	-0.49	2.32
	Annual Maximum Temperature	13.54	13.63	14.21	12.84	0.39	-0.41	2.24
	CO2 emission	4.66	4.47	7.76	1.91	2.18	0.15	1.34
India	Total Fish production	7.48	6.70	13.41	3.88	2.77	0.76	2.51
	Annual Precipitation	1114.37	1120.49	1322.44	908.97	93.05	0.12	2.74
	Annual Minimum Temperature	18.99	18.98	19.59	18.46	0.27	0.28	2.84
	Annual Mean Temperature	24.92	24.92	25.59	24.30	0.29	0.16	3.04
	Annual Maximum Temperature	30.91	30.93	31.63	30.19	0.32	0.03	3.20
	CO2 emission	1.13	0.98	1.80	0.65	0.38	0.40	1.64
Vietnam	Total Fish production	3.83	3.44	8.19	0.94	2.32	0.37	1.80
	Annual Precipitation	1769.98	1762.83	1945.05	1621.31	104.95	0.07	1.67
	Annual Minimum Temperature	21.03	21.01	21.58	20.48	0.32	0.04	2.23
	Annual Mean Temperature	24.80	24.80	25.43	24.14	0.31	0.08	2.94
	Annual Maximum Temperature	28.62	28.59	29.38	27.85	0.34	0.09	3.58
	CO2 emission	1.32	1.11	3.68	0.29	0.96	0.95	3.09
Bangladesh	Total Fish production	2.40	2.22	4.50	0.85	1.17	0.32	1.82
	Annual Precipitation	2185.55	2156.07	2674.16	1710.40	275.91	0.01	1.92
	Annual Minimum Temperature	21.01	21.11	21.73	20.37	0.37	0.04	2.11
	Annual Mean Temperature	25.71	25.67	26.60	25.09	0.39	0.43	2.62
	Annual Maximum Temperature	30.45	30.45	31.57	29.81	0.44	0.66	3.04
	CO2 emission	0.28	0.23	0.59	0.10	0.15	0.59	2.03

Table 3a: Unit Root Tests

		PP			ADF		
		At level	1st Diff	Implied order of integration	At level	1st Diff	Implied order of integration
China	LN_TFP	3.07	-1.68*	I (1)	1.41	-1.67*	I (1)
	LN_PREC	0.06	-30.69***	I (1)	0.20	-12.66***	I (1)
	LN_MIN_TEMP	-0.81	-7.30***	I (1)	0.39	-8.59***	I (1)
	LN_MEAN_TEMP	0.69	-9.60***	I (1)	0.14	-6.55***	I (1)
	LN_MAX_TEMP	0.69	-12.61***	I (1)	0.13	-7.44***	I (1)
	LN_CO2	2.46	-1.84*	I (1)	1.20	-1.90*	I (1)
India	LN_TFP	11.25	-4.50***	I (1)	6.82	-9.79***	I (1)
	LN_PREC	-0.02	-9.82***	I (1)	0.40	-9.19***	I (1)
	LN_MIN_TEMP	0.40	-10.69***	I (1)	0.22	-7.13***	I (1)

LN_MEAN_TEMP	0.39	-9.81***	I (1)	0.26	-7.48***	I (1)
LN_MAX_TEMP	0.28	-8.70***	I (1)	0.28	-7.83***	I (1)
LN_CO2	-0.62	-2.03**	I (1)	-0.98	-2.03**	I (1)

Table 3b: Unit Root Tests

		PP			ADF		
		At level	1st Diff	Implied order of integration	At level	1st Diff	Implied order of integration
Vietnam	LN_TFP	-0.22	-4.44***	I (1)	-0.77	-4.37***	I (1)
	LN_PREC	-6.81***	-21.29***	I (0), I (1)	-4.69***	-5.38***	I (0), I (1)
	LN_MIN_TEMP	-4.92***	-22.32***	I (0), I (1)	-4.92***	-5.93***	I (0), I (1)
	LN_MEAN_TEMP	-4.99***	-18.75***	I (0), I (1)	-5.00***	-8.03***	I (0), I (1)
	LN_MAX_TEMP	-5.04***	-17.90***	I (0), I (1)	-5.19***	-7.88***	I (0), I (1)
Bangladesh	LN_CO2	-2.30	-5.32***	I (1)	-2.30	-4.92***	I (1)
	LN_TFP	0.04	-4.28***	I (1)	0.24	-4.35***	I (1)
	LN_PREC	-7.19***	-19.28***	I (0), I (1)	-7.19***	-6.91***	I (0), I (1)
	LN_MIN_TEMP	-3.24*	-14.81***	I (0), I (1)	-3.24*	-6.50***	I (0), I (1)
	LN_MEAN_TEMP	-2.87	-16.82***	I (1)	-2.94	-6.46***	I (1)
	LN_MAX_TEMP	-2.94	-16.06***	I (1)	-3.00	-6.54***	I (1)
	LN_CO2	-3.05	-5.37***	I (1)	-3.15	-5.30***	I (1)

Note: (*) Significant at the 10%; (**) Significant at the 5%; (****) Significant at the 1% level

Table 4: Bounds Cointegration Test

Country	F-statistic Value	Critical value		
		Significance level	Lower bound	Upper bound
China	6.99	5%	2.62	3.79
		1%	3.41	4.68
India	5.46	5%	2.39	3.38
		1%	3.06	4.15
Vietnam	1.26	5%	2.62	3.79
		1%	3.41	4.68
Bangladesh	6.50	5%	2.62	3.79
		1%	3.41	4.68

Table 5: Results of long and short-run coefficients using the ARDL model for China

Long run				
	Coefficient	Std. Error	t-Statistic	Prob.
LN_PREC	2.44	0.53	4.57	0.000
LN_MIN_TEMP	1.38	0.68	2.01	0.063
LN_MEAN_TEMP	-13.12	8.40	-1.56	0.139
LN_MAX_TEMP	11.36	9.30	1.22	0.241
LN_CO2	0.45	0.04	10.35	0.000
Short run				
	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.21	0.01	-21.34	0.000
D(LN_PREC)	0.26	0.05	5.46	0.000

D(LN_PREC(-1))	-0.09	0.05	-2.03	0.061
D(LN_MIN_TEMP)	0.10	0.08	1.29	0.216
D(LN_MEAN_TEMP)	-0.80	0.82	-0.98	0.343
D(LN_MAX_TEMP)	0.61	0.83	0.74	0.469
D(LN_CO2)	0.06	0.06	1.09	0.294
D(LN_CO2(-1))	0.16	0.06	2.97	0.010
ECM(-1)*	-0.24	0.01	-23.65	0.000

ARDL (1, 2, 1, 1, 1, 2)

Table 6: Results of long and short-run coefficients using the ARDL model for India

Long Run				
	Coefficient	Std. Error	t-Statistic	Prob.
LN_PREC	0.09	0.43	0.21	0.833
LN_MIN_TEMP	26.30	91.88	0.29	0.777
LN_MEAN_TEMP	-42.97	234.62	-0.18	0.856
LN_MAX_TEMP	10.35	144.33	0.07	0.944
LN_CO2	1.08	0.13	8.07	0.000
C	17.56	11.28	1.56	0.133
Short run				
	Coefficient	Std. Error	t-Statistic	Prob.
CointEq(-1)*	-0.24884	0.035857	-6.93995	0

ARDL (1, 0, 0, 0, 0, 0)

Table 7: Results of Short run ARDL model for Vietnam

Short run				
	Coefficient	Std. Error	t-Statistic	Prob.*
LN_TFP(-1)	1.05	0.12	8.40	0.000
LN_PREC	0.30	0.23	1.34	0.197
LN_MIN_TEMP	-3.63	22.29	-0.16	0.872
LN_MIN_TEMP(-1)	-2.19	1.21	-1.80	0.088
LN_MEAN_TEMP	6.01	54.62	0.11	0.914
LN_MAX_TEMP	-1.83	32.68	-0.06	0.956
LN_MAX_TEMP(-1)	3.03	1.55	1.96	0.065
LN_MAX_TEMP(-2)	1.34	0.84	1.59	0.128
LN_CO2	-0.04	0.11	-0.35	0.732
C	-5.62	4.39	-1.28	0.216

ARDL (1, 0, 1, 0, 2, 0)

Table 8: Results of long and short-run coefficients using the ARDL model for Bangladesh

Long run

	Coefficient	Std. Error	t-Statistic	Prob.
LN_PREC	1.39	0.33	4.15	0.001
LN_MIN_TEMP	-158.96	84.01	-1.89	0.083
LN_MEAN_TEMP	351.15	201.62	1.74	0.107
LN_MAX_TEMP	-183.29	117.26	-1.56	0.144
LN_CO2	0.87	0.02	40.16	0.000
Short run				
	Coefficient	Std. Error	t-Statistic	Prob.
C	-3.34	0.45	-7.39	0.000
D(LN_PREC)	0.14	0.03	5.17	0.000
D(LN_PREC(-1))	-0.12	0.03	-4.57	0.001
D(LN_MIN_TEMP)	-8.26	6.14	-1.35	0.203
D(LN_MIN_TEMP(-1))	27.14	6.07	4.48	0.001
D(LN_MEAN_TEMP)	16.60	14.75	1.13	0.282
D(LN_MEAN_TEMP(-1))	-62.85	14.70	-4.27	0.001
D(LN_MAX_TEMP)	-6.60	8.57	-0.77	0.456
D(LN_MAX_TEMP(-1))	35.26	8.61	4.09	0.002
D(LN_CO2)	0.03	0.05	0.57	0.576
D(LN_CO2(-1))	-0.23	0.06	-3.99	0.002
CointEq(-1)*	-0.31	0.04	-7.43	0.000
ARDL (1, 2, 2, 2, 2, 2)				

Table 9: Diagnostic tests of the model

	China		India		Bangladesh			
	F - Statistics	P - value	F - Statistics	P - value	Vietnam	P - value	F - Statistics	P - value
Breusch-Godfrey Serial Correlation LM Test	0.23	0.79	1.32	0.36	1.63	0.22	2.62	0.12
Heteroskedasticity Test: Breusch-Pagan-Godfrey	1.01	0.47	1.33	0.28	1.78	0.13	0.67	0.77
Normality test: Jarque-Bera	0.25	0.87	0.78	0.67	0.31	0.85	0.55	0.75

4. DISCUSSION

Globally, climate change affects marine and freshwater fish species by shifting their distribution and altering habitats, which in turn reduces their productivity (Allan, Palmer and Poff, 2005; FAO, 2024). Tropical ecosystems, especially in the Asian region, are particularly vulnerable to these changes (Pörtner et al., 2014). The present study examined the impact of climate change on fisheries in the case of top fish-producing countries.

4.1. CHINA

Based on this study, precipitation has a long-term impact on total fish production in China. We observed that 1% increase in annual precipitation can raise total fish production by 2.44%. Several studies provide insights

into these relationships. For instance, (Holst and Yu, 2010) found that precipitation positively impacts aquaculture outputs, while a 1°C increase in annual average temperature was associated with a rise in national mean output by 1.47 million tons. Similarly, (Meynecke et al., 2006) identified a significant positive correlation between annual rainfall and total fish production in Australia, highlighting the importance of precipitation for fishery yields. The study indicated seasonality with trend in annual temperature over time, ranging from 1.6°C to 13.5°C. China's seas have generally warmed over the past few decades, with the East China Sea experiencing the most significant rise and the South China Sea the least, leading to varying impacts on fisheries (Belkin, 2009; Liang, Xian and Pauly, 2018). Consistent with these findings, our analysis demonstrated that mean temperature exerts a negative impact on fish production, suggesting that rising temperatures may pose challenges to sustaining fisheries in the region. China's national climate commitment, aiming for carbon neutrality by 2060 and an emissions peak by 2030, highlights the significance of understanding the impact of climatic factors on fisheries outputs. Research by Chandio, et al., 2020 revealed that CO₂ emissions have a significant positive effect on agricultural output in China in both long-run and short-run analyses. However, they also found that temperature exerts a negative effect on agricultural output in the long run, suggesting that the benefits of CO₂ fertilization may be offset by the adverse impacts of rising temperatures. This complexity is echoed in Janjua et al., 2014, who reported that CO₂ and precipitation positively influenced wheat production in Pakistan over the long run, reinforcing the notion that different climatic variables can have varied effects on agricultural productivity depending on the context and timescale.

4.2. INDIA

India is increasingly grappling with the impacts of climate change, which have intensified in both frequency and severity, affecting its natural environment, economy, and society (Mall, Kumar and Bhatla, 2011; Kushawaha et al., 2021; Picciariello et al., 2021). The country is facing a range of extreme climate-related challenges, including heatwaves, floods, unpredictable monsoons, and declining groundwater reserves (Misra, 2013; Dhara and Koll, 2021; Charak, Ravi and Verma, 2024). Ranked as the 7th most affected nation by climate change according to the (Global Climate Risk Index, 2021). India has committed to achieving net zero emissions by 2070 and has made notable progress in decoupling its economic growth from its emissions. According to the (IPCC, 2022) report, India maintains a relatively low level of emissions per capita compared to other major global economies, demonstrating its commitment to sustainable development. Our study revealed a significant positive impact of CO₂ emissions on long-term fish production. CO₂ may enhance primary productivity by promoting the growth of aquatic vegetation and phytoplankton, key components of the food web, the short-term effects appear less pronounced (Geider et al., 2001; Tremblay et al., 2015). These findings are consistent with trends observed in the agricultural sector, where CO₂ emissions have also been found to positively influence long-term productivity. Ahmed & Saha, 2023 reported a positive association between per capita CO₂ emissions and agricultural GDP in India over the long term, though no significant short-term effect was detected. This parallel between fisheries and agriculture highlights the complex nature of CO₂'s role in enhancing productivity

over extended periods. Moreover, climate change-induced physical changes, such as increased water temperatures and altered dissolved oxygen levels, have been linked to higher risks of disease outbreaks in aquatic systems (Harvell et al., 2002; Vilchis et al., 2005). These changes, driven by warming waters, could further exacerbate challenges to India's fisheries and aquaculture sectors that are critical to food security and livelihoods.

4.3. VIETNAM

The results from the ARDL model for Vietnam reveal that no long-run equilibrium exists between climatic variables and total fish production, suggesting that only short-run relationships are significant. This aligns with findings from Pham, 2012, which similarly reported no significant relationship between temperature and shrimp productivity across multiple ecological regions in Vietnam. However, regional differences were noted, with temperature affecting shrimp production in the North Central Coastal region, while rainfall had no notable impact. Cao et al., 2013 identified an inverse correlation between temperature and shrimp production, further supporting the complex relationship between climate and fisheries in Vietnam. The absence of long-run effects could be attributed to Vietnam's vulnerability to extreme climate events, which disrupts the consistency of relationships between climatic variables and fish production. Vietnam is among the nations most severely impacted by climate change, as reported by the Ministry of Natural Resources and Environment (MoNRE, 2016). Frequent and extreme climate occurrences, such as typhoons, floods, and rising sea levels, have a profound effect on the fisheries sector, disrupting long-term trends and making it difficult to establish stable, long-run relationships between climate factors and production outputs. This unpredictable nature of extreme climate events may obscure long-run trends, as fish production systems adapt to short-term fluctuations rather than establishing long-term equilibria. In response to these challenges, the Vietnamese government has implemented meticulously designed policies aimed at mitigating the impacts of climate change. Vietnam's comprehensive strategies, such as the National Target Program to Respond to Climate Change (NTP-RCC), the Vietnam Green Growth Strategy (VGGs), the Law on Environmental Protection (2020), and the National Action Plan on Climate Change (NAPCC), have been instrumental in mitigating the impacts of climate change on various sectors, including fisheries. These policies align with Vietnam's commitment to the Sustainable Development Goals (SDGs), which emphasize responsible production practices, the protection of coastal and marine ecosystems, and climate resilience (Ministry of Planning and Investment, 2018). Wilbanks, 2003 highlights that climate change serves as both a challenge and a catalyst for advancing sustainable development, and this duality is evident in Vietnam's proactive approach. Through carefully designed government interventions, the country is managing the short-term impacts of climate change, helping to maintain the resilience of its fisheries sector.

4.4. BANGLADESH

The ARDL model results for this country highlight a relationship between climatic variables, and total fish production, with significant impacts observed both in the short and long run. Bangladesh ranks 7th in long-term climate vulnerability from 2000 to 2019 (Global carbon atlas, 2022), reflecting its susceptibility to climate

change, which appears to influence the fisheries sector in both time frames. The long-run analysis showed that CO₂ emissions have a strong positive influence on fish production, which is explained by the rise in per capita carbon emissions, from 0.107 metric tons in 1990 to 0.510 metric tons in 2020. Although Bangladesh ranks 39th in per capita CO₂ emissions globally (Global carbon atlas, 2022), its relatively low industrial greenhouse gas (GHG) emissions (Islam, Kundu and Khan, 2020) suggest that this positive long-run association could be linked to the ecological dynamics of CO₂ enhancing primary productivity. This is consistent with findings by Begum et al., 2022, who also reported a positive relationship between CO₂ emissions and marine fish production in Bangladesh over the long term. Precipitation also exhibited a significant positive impact on fish production in both the long and short run, reinforcing the notion that rainfall plays a vital role in Bangladesh's fisheries sector. Begum et al., 2022 found that a 1% increase in average rainfall could increase marine fish production by 1.65%, a result consistent with our study where precipitation had a sustained positive influence on fish output. This relationship aligns with research showing that increased rainfall often coincides with upwelling events that bring nutrient-rich waters to the surface, significantly boosting fish catches (Atindana, Ofori-Danson and Brucet, 2019). Similar positive associations between rainfall and fish productivity have been observed in other regions, such as Malaysia (Madihah Jafar-Sidik, Aung Than and Awnesh Singh, 2010) and Pakistan (Ayub, 2010), further substantiating the critical role of precipitation in driving marine fish production. The short-run results revealed a more nuanced picture. While precipitation continues to be a significant factor, its lagged effect turns negative, suggesting that excessive rainfall may initially benefit fish production but could have adverse delayed effects. This phenomenon may be attributed to ecological disruptions, such as the increased risk of undesirable phytoplankton blooms during periods of high atmospheric CO₂, which can negatively impact marine ecosystems (Schippers, Lürling and Scheffer, 2004). Temperature variables also display significant short-run effects on fish production. Ho et al., 2013 observed that fish landings increase with rising temperatures. However, as temperatures continue to rise, increased stratification is expected to restrict the flow of nutrients to the surface, potentially reducing productivity (Kay, Caesar and Janes, 2018). Bangladesh's proactive climate policies, including the Bangladesh Climate Change Strategy and Action Plan (BCCSAP, 2009), the National Adaptation Program of Action (National Adaptation Programme of Action (NAPA), 2005) and the National Fisheries Policy (NFP), reflect the country's commitment to addressing the multifaceted challenges posed by climate change. These frameworks, alongside the Bangladesh Delta Plan 2100, aim to mitigate the long-term impacts of climate change on the fisheries sector, ensuring its sustainability amidst increasing climate variability.

5. CONCLUSIONS

This study provides a fresh perspective on understanding the impact of climate change on fisheries in four leading fish-producing countries: China, India, Vietnam, and Bangladesh. The results revealed long-run associations for all countries except Vietnam, where only short-run relationships were identified. In China and Bangladesh, precipitation and CO₂ emissions exhibited significant positive long-run impacts on fish production, highlighting the role of favorable weather patterns and carbon availability in supporting aquatic ecosystems. The results for

India, however, showed that only CO₂ emissions have a significant long-run effect, while temperature and precipitation do not display any significant impacts. In Vietnam, the absence of long-run equilibrium suggests that fish production is influenced only by short-term climatic changes, particularly the lagged effects of minimum and maximum temperatures. Diagnostic tests confirmed the model's robustness, with no evidence of serial correlation, heteroskedasticity, or non-normality in the residuals. The policy implications of this study are substantial. In China, promoting green aquaculture and reducing emissions through innovative technologies can enhance resilience to climate change. India should focus on low-carbon fishing practices and adaptive aquaculture systems to mitigate the adverse effects of rising temperatures while improving water resource management to benefit from precipitation changes. Vietnam requires enhanced strategies for flood management and the development of climate-resilient aquaculture to cope with precipitation variability. Bangladesh, with its vulnerability to climate-induced floods, must prioritize sustainable water practices and species diversification to safeguard fish production. Each country should integrate climate resilience into fisheries policies to ensure sustainable development and food security, mitigating risks posed by rising temperatures and shifting precipitation patterns.

Author Contributions: Conceptualization, methodology, supervision SP, AS and RK; software, validation, formal analysis, investigation, re-sources, data curation, writing—original draft preparation, writing—review and editing JM, visualization PKG. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors extend gratitude to the Director of ICAR-Central Institute of Fisheries Education, Mumbai, India for facilitating the logistical requirements.

Conflicts of Interest: The authors declare no conflicts of interest.

REFERENCES

1. Abbas, S. (2020) 'Climate change and cotton production: an empirical investigation of Pakistan', *Environmental Science and Pollution Research*, 27(23), pp. 29580–29588. Available at: <https://doi.org/10.1007/s11356-020-09222-0>.
2. Adom, P.K., Bekoe, W. and Akoena, S.K.K. (2012) 'Modelling aggregate domestic electricity demand in Ghana: An autoregressive distributed lag bounds cointegration approach', *Energy policy*, 42, pp. 530–537.
3. Agnishwaran, R. *et al.* (2024) 'Impact of Climate Change on Fisheries and Food Security: A Comprehensive Review', *Chronicle of Aquatic Science*, 1(10), pp. 199–211. Available at: <https://doi.org/10.61851/coas.v1i10.18>.
4. Ahmed, M. and Saha, P. (2023) 'Economic Impact of Climate Change on Agriculture: A Study of India and its Neighbouring Countries Using ARDL Approach', *Nature Environment and Pollution Technology*, 22(4), pp. 2173–2179.

5. Ahsan, F., Chandio, A.A. and Fang, W. (2020) 'Climate change impacts on cereal crops production in Pakistan: Evidence from cointegration analysis', *International Journal of Climate Change Strategies and Management*, 12(2), pp. 257–269.
6. Allan, J.D., Palmer, M. and Poff, N.L. (2005) 'Climate change and freshwater ecosystems', *Climate change and biodiversity*, pp. 274–290.
7. Alsaleh, M. (2024) 'The Impact of Aquaculture Economics Expansion on Marine Water Quality in the EU Region', *Regional Studies in Marine Science*, p. 103625.
8. Arnason, R. (2007) 'CLIMATE CHANGE AND FISHERIES: ASSESSING THE ECONOMIC IMPACT IN ICELAND AND GREENLAND', *Natural Resource Modeling*, 20(2), pp. 163–197. Available at: <https://doi.org/10.1111/j.1939-7445.2007.tb00205.x>.
9. Asumadu-Sarkodie, S. and Owusu, P.A. (2016) 'The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model', *Environmental Science and Pollution Research*, 23(11), pp. 10968–10982. Available at: <https://doi.org/10.1007/s11356-016-6252-x>.
10. Atindana, S.A., Ofori-Danson, P.K. and Brucet, S. (2019) 'Modelling the effects of climate change on shellfish production in marine artisanal fisheries of Ghana', *AAS Open Research*, 2, p. 16.
11. Ayub, Z. (2010) 'Effect of temperature and rainfall as a component of climate change on fish and shrimp catch in Pakistan', *The journal of transdisciplinary environmental studies*, 9(1), pp. 1–9.
12. Badjeck, M.-C. *et al.* (2010) 'Impacts of climate variability and change on fishery-based livelihoods', *Marine policy*, 34(3), pp. 375–383.
13. *Bangladesh Climate Change Strategy and Action Plan (BCCSAP) of 2009 - Google Search* (no date). Available at: https://www.google.com/search?q=Bangladesh+Climate+Change+Strategy+and+Action+Plan+%28BCCSAP%29+of+2009&sca_esv=bb3b1024b4da0aca&sca_upv=1&sxsrf=ADLYWILeXR3kEXZ23xmKbx6RDQHD1rXwcg%3A1726393093535&ei=BavmZsykIPCaseMPkMSp2QM&ved=0ahUKEwiMu9S408SIAxVwTWwGHRBiKjsQ4dUDCA8&oq=Bangladesh+Climate+Change+Strategy+and+Action+Plan+%28BCCSAP%29+of+2009&gs_lp=Egxnd3Mtd2l6LXNlcnAiQ0JhbmdsYWRIc2ggQ2xpWF0ZSBaGFuZ2UgU3RyYXRIZ3kgYW5kIEFjdGlvbiBQbGFuIChCQ0NTQVApIG9mIDlwMDlIAFAAWABwAHgBkAEAmAEAoAEAqgEAuAEMyAEA-AEC-AEBmAIAoAIAmAMA4gMFEgExIECSBwCgBwA&sc1=gws-wiz-serp (Accessed: 15 September 2024).

14. Begum, M. *et al.* (2022) 'The impact of climate variables on marine fish production: an empirical evidence from Bangladesh based on autoregressive distributed lag (ARDL) approach', *Environmental Science and Pollution Research*, 29(58), pp. 87923–87937. Available at: <https://doi.org/10.1007/s11356-022-21845-z>.
15. Belkin, I.M. (2009) 'Rapid warming of large marine ecosystems', *Progress in oceanography*, 81(1–4), pp. 207–213.
16. Bhuyan, B., Mohanty, R.K. and Patra, S. (2023) 'Impact of climate change on food security in India: an evidence from autoregressive distributed lag model', *Environment, Development and Sustainability* [Preprint]. Available at: <https://doi.org/10.1007/s10668-023-04139-3>.
17. Brander, K. (2010) 'Impacts of climate change on fisheries', *Journal of Marine Systems*, 79(3–4), pp. 389–402.
18. Breusch, T.S. (1978) 'Testing for autocorrelation in dynamic linear models.', *Australian economic papers*, 17(31). Available at: https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=0004900X&A_N=6477185&h=IPMpnbCBeAyBDeZJArGV7hdr%2BxAyOcYaACOzYjsey9k0mwUjfx%2BPQcM2%2FwfBkmA4nDzuhI7eYx5hb6j3mePgTw%3D%3D&crl=c (Accessed: 29 August 2024).
19. Breusch, T.S. and Pagan, A.R. (1979) 'A simple test for heteroscedasticity and random coefficient variation', *Econometrica: Journal of the econometric society*, pp. 1287–1294.
20. Brown, R.L., Durbin, J. and Evans, J.M. (1975) 'Techniques for testing the constancy of regression relationships over time', *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 37(2), pp. 149–163.
21. Cao, L.Q., Nguyen, T.H. and Nguyen, N.H. (2013) 'Evaluation of climate impacts on infrastructure, area, productivity and yield of aquaculture in coastal areas to develop intergrated response and piloting model for aquaculture', *Institute of Fisheries Economics and Planning* [Preprint].
22. Chandio, A.A. *et al.* (2020) 'Assessment of formal credit and climate change impact on agricultural production in Pakistan: A time series ARDL modeling approach', *Sustainability*, 12(13), p. 5241.
23. Chandio, A.A., Magsi, H. and Ozturk, I. (2020) 'Examining the effects of climate change on rice production: case study of Pakistan', *Environmental Science and Pollution Research*, 27(8), pp. 7812–7822. Available at: <https://doi.org/10.1007/s11356-019-07486-9>.
24. Charak, A., Ravi, K. and Verma, A. (2024) 'Review of Various Climate Change Exacerbated Natural Hazards in India and Consequential Socioeconomic Vulnerabilities', *IDRiM Journal*, 13(2), pp. 142–177.

25. Cheung, W.W.L. *et al.* (2009) 'Projecting global marine biodiversity impacts under climate change scenarios', *Fish and Fisheries*, 10(3), pp. 235–251. Available at: <https://doi.org/10.1111/j.1467-2979.2008.00315.x>.
26. Cochrane, K. *et al.* (2009) 'Climate change implications for fisheries and aquaculture', *FAO Fisheries and aquaculture technical paper*, 530, p. 212.
27. Das, I. *et al.* (2020) 'Effects of climate change and management policies on marine fisheries productivity in the north-east coast of India', *Science of the Total Environment*, 724, p. 138082.
28. Daw, T. *et al.* (2009) "Climate change and capture fisheries: potential impacts, adaptation and mitigation" in Cochrane, K., Young, CD, Soto, D. and Bahri, T.(eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge'. Available at: <https://ueaprints.uea.ac.uk/id/eprint/29707/1/FAO-2009-CCimplications-for-fisheries.pdf> (Accessed: 13 September 2024).
29. Demirhan, H. (2020) 'Impact of increasing temperature anomalies and carbon dioxide emissions on wheat production', *Science of The Total Environment*, 741, p. 139616.
30. Dhara, C. and Koll, R.M. (2021) 'How and why India's climate will change in the coming decades', in *The India Forum*. Available at: <https://www.theindiaforum.in/article/how-and-why-india-s-climate-will-change-coming-decades> (Accessed: 16 September 2024).
31. Doney *et al.*, 2009 climate change and fisheries - Google Search (no date). Available at: https://www.google.com/search?q=Doney+et+al.%2C+2009+climate+change+and+fisheries&sca_esv=ea85460ec5208a83&sca_upv=1&sxsrf=ADLYWIK3zf_R32G3MGVORksBhd92yhYsYA%3A1726226203767&ei=Gx_kZvTDLu-E4-EP1rzd0AM&ved=0ahUKEwi0vbXd5b-IAxVvwjgGHVZeFzoQ4dUDCA8&oq=Doney+et+al.%2C+2009+climate+change+and+fisheries&gs_lp=Egxnd3Mtd216LXNlcnAiL0RvbmV5IGV0IGFsLiwgMjAwOSBjbGltYXRlIGNoYW5nZSBhbmQgZmlzaGVyaWVzMgUQIRigAUiBHVAAWABwAHgAkAEAmAG0A6ABtAOqAQm0LTG4AQzIAQD4AQL4AQGYAgGgAsEDmAMAkgcDNC0xoAfYAQ&sclient=gws-wiz-serp (Accessed: 13 September 2024).
32. Doney, S.C. *et al.* (2012) 'Climate Change Impacts on Marine Ecosystems', *Annual Review of Marine Science*, 4(1), pp. 11–37. Available at: <https://doi.org/10.1146/annurev-marine-041911-111611>.
33. Dumrul, Y. and Kilicaslan, Z. (2017) 'Economic impacts of climate change on agriculture: Empirical evidence from ARDL approach for Turkey', *Journal of Business Economics and Finance*, 6(4), pp. 336–347.

34. Eboh, E. (2009) 'Implications of Climate Change for Economic Growth and Sustainable Development in Nigeria', in. Available at: <https://www.semanticscholar.org/paper/Implications-of-Climate-Change-for-Economic-Growth-Eboh/f596088cc234df9211e4eed9f8c2291449a6e113> (Accessed: 13 September 2024).

35. Engle, R.F. (1982) 'Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation', *Econometrica: Journal of the econometric society*, pp. 987–1007.

36. Fabry, V.J. *et al.* (2008) 'Impacts of ocean acidification on marine fauna and ecosystem processes', *ICES Journal of Marine Science*, 65(3), pp. 414–432.

37. FAO (2024) *The State of World Fisheries and Aquaculture, Publications*. Available at: <https://doi.org/10.4060/cd0683en>.

38. Fernandes, J.A. *et al.* (2016) 'Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios', *ICES Journal of Marine Science*, 73(5), pp. 1357–1369.

39. Gamito, R. *et al.* (2013) 'Climate-induced changes in fish landings of different fleet components of Portuguese fisheries', *Regional Environmental Change*, 13(2), pp. 413–421. Available at: <https://doi.org/10.1007/s10113-012-0358-6>.

40. Geider, R.J. *et al.* (2001) 'Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats', *Global change biology*, 7(8), pp. 849–882.

41. Global carbon atlas (2022) *CO2 Country emissions*. Available at: <http://www.globalcarbonatlas.org/en/CO2-Emissions>.

42. GLOBAL CLIMATE RISK INDEX (2021) *GLOBAL CLIMATE RISK INDEX*. Available at: https://www.germanwatch.org/sites/default/files/Global%20Climate%20Risk%20Index%202021_2.pdf.

43. Godfrey, L.G. (1978) 'Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables', *Econometrica: Journal of the Econometric Society*, pp. 1293–1301.

44. Harley, C.D.G. *et al.* (2006) 'The impacts of climate change in coastal marine systems', *Ecology Letters*, 9(2), pp. 228–241. Available at: <https://doi.org/10.1111/j.1461-0248.2005.00871.x>.

45. Harvell, C.D. *et al.* (2002) 'Climate warming and disease risks for terrestrial and marine biota', *Science (New York, N.Y.)*, 296(5576), pp. 2158–2162. Available at: <https://doi.org/10.1126/science.1063699>.

46. Ho, D.J. *et al.* (2013) 'Influence of weather condition on pelagic fish landings in Kota Kinabalu, Sabah, Malaysia', *Journal of Tropical Biology & Conservation (JTBC)*, 10. Available at: <https://jurcon.ums.edu.my/ojums/index.php/jtbc/article/view/249> (Accessed: 28 August 2024).

47. Holst, R. and Yu, X. (2010) 'Climate Change And Production Risk In Chinese Aquaculture', 2010: *Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany* [Preprint]. Available at: <https://ideas.repec.org/p/ags/iatr10/91275.html> (Accessed: 14 September 2024).

48. IPCC (2022) *Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*.

49. Islam, M.M., Kundu, G.K. and Khan, M.I. (2020) 'Aquaculture: a faster growing greenhouse gas emission sector in Bangladesh', *J Ecol Dev*, 35(3), pp. 1–15.

50. Janjua, P.Z., Samad, G. and Khan, N. (2014) 'Climate change and wheat production in Pakistan: an autoregressive distributed lag approach', *NJAS-Wageningen Journal of Life Sciences*, 68, pp. 13–19.

51. Jarque, C.M. and Bera, A.K. (1987) 'A test for normality of observations and regression residuals', *International Statistical Review/Revue Internationale de Statistique*, pp. 163–172.

52. Kay, S., Caesar, J. and Janes, T. (2018) 'Marine dynamics and productivity in the Bay of Bengal'. Available at: <https://library.oapen.org/bitstream/handle/20.500.12657/27910/1002089.pdf?sequence=1#page=296> (Accessed: 15 September 2024).

53. Kushawaha, J. *et al.* (2021) 'Climate change and its impact on natural resources', in *Water conservation in the era of global climate change*. Elsevier, pp. 333–346. Available at: <https://www.sciencedirect.com/science/article/pii/B978012820200500026> (Accessed: 14 September 2024).

54. Lam, V. *et al.* (2012) 'Climate change impacts on fisheries in West Africa: implications for economic, food and nutritional security', *African Journal of Marine Science*, 34(1), pp. 103–117. Available at: <https://doi.org/10.2989/1814232X.2012.673294>.

55. Lee, H. *et al.* (2023) 'IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.' Available at: <https://mural.maynoothuniversity.ie/17886/> (Accessed: 28 August 2024).

56. Liang, C., Xian, W. and Pauly, D. (2018) 'Impacts of ocean warming on China's fisheries catches: an application of "mean temperature of the catch" concept', *Frontiers in Marine Science*, 5, p. 26.

57. Madiyah Jafar-Sidik, M.J.-S., Aung Than, A.T. and Awnesh Singh, A.S. (2010) 'Sensitivity of fish landings to some meteorological parameters: a case study.' Available at: <https://www.cabidigitallibrary.org/doi/full/10.5555/20103203558> (Accessed: 15 September 2024).

58. Mall, R.K., Kumar, R. and Bhatla, R. (2011) 'Climate change and disaster in India', *Journal of South Asian Disaster Studies*, 4(1), pp. 27–76.

59. Mansfield, E.R. and Helms, B.P. (1982) 'Detecting Multicollinearity', *The American Statistician*, 36(3a), pp. 158–160. Available at: <https://doi.org/10.1080/00031305.1982.10482818>.

60. Masson-Delmotte, V.P. *et al.* (2021) 'Ipcc, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change'. Available at: <http://researchspace.csir.co.za/dspace/handle/10204/12710> (Accessed: 28 August 2024).

61. Menon, S.V. *et al.* (2023) 'Water physicochemical factors and oxidative stress physiology in fish, a review', *Frontiers in Environmental Science*, 11, p. 1240813.

62. Meynecke, J.-O. *et al.* (2006) 'Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia', *Estuarine, Coastal and Shelf Science*, 69(3–4), pp. 491–504.

63. Ministry of Planning and Investment, 2018 vietnam - Google Search (no date). Available at: https://www.google.com/search?q=Ministry+of+Planning+and+Investment%2C+2018+vietnam&sca_esv=bb3b1024b4da0aca&sca_upv=1&sxsrf=ADLYWII9e2E4KYjVhbJj88Ga0_JUQm5M7Q%3A1726392085984&ei=FafmZoXqO6-E4-EPl-SW2A8&ved=0ahUKEwjFyJzYz8SIAxUvwjgGHReyBfsQ4dUDCA8&uact=5&oq=Ministry+of+Planning+and+Investment%2C+2018+vietnam&gs_lp=Egxnd3Mtd2l6LXNlcAiMU1pbmlzdHJ5IG9mIFBsYW5uaW5nIGFuZCBJbnZlc3RtZW50LCAYMDE4IHZpZXRuYW0yBxAhGKABGAoyBxAhGKABGApI7jhQzAZY-S9wAXgAkAEAmAH3AaABrgaqAQUwLjEuM7gBA8gBAPgBAZgCBaACvwbCAGsQABiABBiwAxiiBMICBBAjGCfCAGgQABiABBiiBMICBRAhGKABmAMAiAYBkAYEkgcFMS4xLjOgB7oS&sclient=gws-wiz-serp (Accessed: 15 September 2024).

64. Misra, A.K. (2013) 'Climate change impact, mitigation and adaptation strategies for agricultural and water resources, in Ganga Plain (India)', *Mitigation and Adaptation Strategies for Global Change*, 18(5), pp. 673–689. Available at: <https://doi.org/10.1007/s11027-012-9381-7>.

65. Mohanty, B. *et al.* (2017) 'The Impact of Climate Change on Marine and Inland Fisheries and Aquaculture in India', in B.F. Phillips and M. Pérez-Ramírez (eds) *Climate Change Impacts on Fisheries and Aquaculture*. 1st edn. Wiley, pp. 569–601. Available at: <https://doi.org/10.1002/9781119154051.ch17>.

66. (MoNRE, 2016). - Google Search (no date). Available at: [https://www.google.com/search?q=\(MoNRE%2C+2016\).&oq=\(MoNRE%2C+2016\).+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIKCAEQABgFGA0YHjIKCAIQABgFGA0YHjIKCAMQABgIGA0YHjIKCAQQABgIGA0YHjIKCAUQABgIGA0YHjIKCAYQABgIGA0YHjIMCAcQABgIGA0YDxgeMgwICBAAGAgYDRgPGB4yDAgJEAAYBRgNGA8YHtIBCD0ODNqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8](https://www.google.com/search?q=(MoNRE%2C+2016).&oq=(MoNRE%2C+2016).+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIKCAEQABgFGA0YHjIKCAIQABgFGA0YHjIKCAMQABgIGA0YHjIKCAQQABgIGA0YHjIKCAUQABgIGA0YHjIKCAYQABgIGA0YHjIMCAcQABgIGA0YDxgeMgwICBAAGAgYDRgPGB4yDAgJEAAYBRgNGA8YHtIBCD0ODNqMGo3qAIAsAIA&sourceid=chrome&ie=UTF-8) (Accessed: 16 September 2024).

67. Mugwanya, M. *et al.* (2022) 'Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review', *Aquaculture and Fisheries*, 7(3), pp. 223–243.

68. Muthoka, M. *et al.* (2024) 'Socio-economic impacts of climate change and adaptation actions among smallholder fish farmers in Sub-Saharan Africa', *Aquaculture, Fish and Fisheries*, 4(3), p. e182. Available at: <https://doi.org/10.1002/aff2.182>.

69. Nasrullah, M. *et al.* (2021) 'Autoregressive distributed lag (ARDL) approach to study the impact of climate change and other factors on rice production in South Korea', *Journal of water and climate change*, 12(6), pp. 2256–2270.

70. *National Adaptation Programme of Action (NAPA)* (2005). Bangladesh: Ministry of Environment and Forest Government of the People's Republic of Bangladesh.

71. Neubauer, P. and Andersen, K.H. (2019) 'Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology', *Conservation Physiology*, 7(1), p. coz025. Available at: <https://doi.org/10.1093/conphys/coz025>.

72. Ng'onga, M. *et al.* (2019) 'The interactive effects of rainfall, temperature and water level on fish yield in Lake Bangweulu fishery, Zambia', *Journal of thermal biology*, 84, pp. 45–52.

73. Ninawe, A.S., Indulkar, S.T. and Amin, A. (2018) 'Impact of climate change on fisheries', in *Biotechnology for Sustainable Agriculture*. Elsevier, pp. 257–280. Available at: <https://www.sciencedirect.com/science/article/pii/B978012812160300009X> (Accessed: 13 September 2024).

74. Nye, J.A. *et al.* (2009) 'Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf', *Marine Ecology Progress Series*, 393, pp. 111–129.

75. O'Reilly, C.M. *et al.* (2003) 'Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa', *Nature*, 424(6950), pp. 766–768.

76. Perry, A.L. *et al.* (2005) 'Climate Change and Distribution Shifts in Marine Fishes', *Science*, 308(5730), pp. 1912–1915. Available at: <https://doi.org/10.1126/science.1111322>.

77. Perry, R.I. *et al.* (2010) 'Sensitivity of marine systems to climate and fishing: concepts, issues and management responses', *Journal of Marine Systems*, 79(3–4), pp. 427–435.

78. Pesaran, M.H. and Shin, Y. (1995) *An autoregressive distributed lag modelling approach to cointegration analysis*. Department of Applied Economics, University of Cambridge Cambridge, UK. Available at: http://request-attachments.storage.googleapis.com/bRv1Dv9b8djCBcOc9hAnvz9gHg1eA4HF1gOGySUCokMEpfXnVvGzMvfj3Hu6YWtrdDaYEeP7BAVQP0FTkZs8JQKRIh6HNaElqtPV/An_Autoregressive_Distributed_Lag_Modeling_Approac.pdf (Accessed: 13 September 2024).

79. Pesaran, M.H., Shin, Y. and Smith, R.J. (2001) 'Bounds testing approaches to the analysis of level relationships', *Journal of Applied Econometrics*, 16(3), pp. 289–326. Available at: <https://doi.org/10.1002/jae.616>.

80. Pham, Q.H. (2012) 'Impact assessment and identification of response in agriculture and fisheries.', *Institute of Agricultural Environment* [Preprint].

81. Picciariello, A. *et al.* (2021) 'A review of the climate related risks facing India and their economic and social costs, The Costs of Climate change in India'. ODI.

82. Planque, B. *et al.* (2010) 'How does fishing alter marine populations and ecosystems sensitivity to climate?', *Journal of Marine Systems*, 79(3–4), pp. 403–417.

83. Pörtner, H.-O. *et al.* (2014) 'Ocean systems', in *Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change*. Cambridge University Press, pp. 411–484. Available at: <https://epic.awi.de/id/eprint/37501/> (Accessed: 14 September 2024).

84. Ramzan, M. *et al.* (2022) 'Environmental pollution and agricultural productivity in Pakistan: new insights from ARDL and wavelet coherence approaches', *Environmental Science and Pollution Research*, 29(19), pp. 28749–28768. Available at: <https://doi.org/10.1007/s11356-021-17850-3>.

85. Raubenheimer, C. and Phiri, A. (2023) 'The impact of climate change and economic development on fisheries in South Africa: a wavelet-based spectral analysis', *Humanities and Social Sciences Communications*, 10(1), pp. 1–11.

86. Schippers, P., Lürling, M. and Scheffer, M. (2004) 'Increase of atmospheric CO₂ promotes phytoplankton productivity', *Ecology Letters*, 7(6), pp. 446–451. Available at: <https://doi.org/10.1111/j.1461-0248.2004.00597.x>.

87. Suh, D. and Pomeroy, R. (2020) 'Projected economic impact of climate change on marine capture fisheries in the Philippines', *Frontiers in Marine Science*, 7, p. 232.

88. Tagwi, A. (2022) 'The impacts of climate change, carbon dioxide emissions (CO2) and renewable energy consumption on agricultural economic growth in South Africa: ARDL approach', *Sustainability*, 14(24), p. 16468.

89. Thomas, A., Ramkumar, A. and Shanmugam, A. (2022) 'CO2 acidification and its differential responses on aquatic biota – a review', *Environmental Advances*, 8, p. 100219. Available at: <https://doi.org/10.1016/j.envadv.2022.100219>.

90. Tremblay, J.-É. *et al.* (2015) 'Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean', *Progress in Oceanography*, 139, pp. 171–196.

91. Vass, K.K. *et al.* (2009) 'Assessing the impact of climate change on inland fisheries in River Ganga and its plains in India', *Aquatic Ecosystem Health & Management*, 12(2), pp. 138–151.

92. Vilchis, L.I. *et al.* (2005) 'OCEAN WARMING EFFECTS ON GROWTH, REPRODUCTION, AND SURVIVORSHIP OF SOUTHERN CALIFORNIA ABALONE', *Ecological Applications*, 15(2), pp. 469–480. Available at: <https://doi.org/10.1890/03-5326>.

93. Vogelsang, T.J. and Wagner, M. (2013) 'A fixed-b perspective on the Phillips–Perron unit root tests', *Econometric Theory*, 29(3), pp. 609–628.

94. Volkoff, H. and Rønnestad, I. (2020) 'Effects of temperature on feeding and digestive processes in fish', *Temperature*, 7(4), pp. 307–320. Available at: <https://doi.org/10.1080/23328940.2020.1765950>.

95. Vollmer, M.K. *et al.* (2005) 'Deep-water warming trend in Lake Malawi, East Africa', *Limnology and Oceanography*, 50(2), pp. 727–732. Available at: <https://doi.org/10.4319/lo.2005.50.2.0727>.

96. Waris, U. *et al.* (2023) 'Exploring potential impacts of climatic variability on production of maize in Pakistan using ARDL approach', *Acta Geophysica*, 71(5), pp. 2545–2561. Available at: <https://doi.org/10.1007/s11600-023-01118-0>.

97. Warsame, A.A. *et al.* (2021) 'Climate change and crop production nexus in Somalia: an empirical evidence from ARDL technique', *Environmental Science and Pollution Research*, 28(16), pp. 19838–19850. Available at: <https://doi.org/10.1007/s11356-020-11739-3>.

98. Wilbanks, T. (2003) 'Integrating climate change and sustainable development in a place-based context', *Climate Policy*, 3, pp. S147–S154. Available at: <https://doi.org/10.1016/j.clipol.2003.10.013>.

99. Zhai, S. *et al.* (2017) 'Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach', *PloS one*, 12(9), p. e0184474