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ABSTRACT  

Climate change poses significant challenges to food security worldwide, particularly within the fisheries sector, 

where fish production is highly sensitive to climatic variables. This study investigates the long-run and short-run 

impacts of climate change on fish production in four major fish-producing countries, China, India, Vietnam, and 

Bangladesh, using annual time series data from 1990 to 2020. Here, an Autoregressive Distributed Lag (ARDL) 

model was employed to explore the long-run equilibrium relationships between climate factors (precipitation, min-

imum, mean, and maximum temperatures, CO2 emissions) and total fish production, as well as their adjustments to 

short-run deviations. The findings reveal distinct patterns across countries: CO2 emissions positively influence long-

term fish production in China, India, and Bangladesh, while precipitation boosts fish production in China and Bang-

ladesh. In contrast, Vietnam shows no long-run equilibrium, indicating a higher sensitivity to short-term climatic 

fluctuations. In the short run, CO2 emissions significantly enhance fish production in Bangladesh, with regional 

temperature effects varying. Minimum temperature positively impacts long-term fish production in China but neg-

atively affects it in Bangladesh. In Vietnam, increased maximum temperature enhance short-run production, while 

minimum temperature reduces it. This study examines the critical role of CO2 emissions, precipitation, and temper-

ature in influencing fish production, offering key insights for policymakers to develop adaptive strategies for sus-

tainable fish production amid climate change. 
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INTRODUCTION 

Global fisheries and aquaculture are vital to economies around the world, contributing significantly to GDP 

and supporting global food security (FAO, 2024). Approximately 3 billion people worldwide depend on fish 

and fishery products to meet 20 percent of their animal protein intake (FAO, 2024). However, these sectors are 

increasingly at risk from changing climate patterns. By the definition of  Intergovernmental Panel on Climate 

Change (IPCC), climate change is the statistically significant alterations in climate properties that persist for 

decades or longer, resulting from both natural variability and human activities. This phenomenon is widely 

acknowledged as an inevitable outcome of over 200 years of greenhouse gas emissions from various sources 

(Lee et al., 2023). The impacts of climate change are irreversible (Masson-Delmotte et al., 2021) and have led 

to significant declines in the diversity and productivity of aquatic systems. Climate change poses significant 

risks to marine and freshwater species, as well as the ecosystems they inhabit, globally (Allan, Palmer and Poff, 

2005; FAO, 2024). Tropical regions, particularly South Asia, are especially vulnerable to these impacts (Pörtner 

et al., 2014). Key climate change impacts, such as rising temperatures, global warming, change in precipitation, 

sea level rise, harmful algal blooms, increased diseases, ocean acidification and extreme weather events directly 

influence fish production by altering the biological productivity of fish stocks, as evidenced by various studies 

(O’Reilly et al., 2003; Perry et al., 2005; Vollmer et al., 2005; Arnason, 2007; Cochrane et al., 2009; Eboh, 

2009; Gamito et al., 2013; Muthoka et al., 2024). These changes pose risks not only to coastal regions that 

sustain fisheries and aquaculture but also to the livelihoods, productivity, and well-being of the communities 

that rely on them (Daw et al., 2009; Badjeck et al., 2010), the consequent rise in prices is expected to have 

substantial impacts on food security (Agnishwaran et al., 2024). An estimated 3.3 to 3.6 billion people face high 

vulnerability to the effects of climate change, with the most severe risks concentrated in underdeveloped and 

developing regions. Climate change disrupts critical processes in fish species, such as feeding, migration, and 

breeding behaviours, further intensifying its impacts on fisheries (Brander, 2010). The impact of climate varia-

bles such as temperature, precipitation, and CO2 emissions on fish production is both complex and regionally 

variable, necessitating a detailed understanding of their effects across different contexts. 

Climate change is inducing considerable hydrological changes in aquatic ecosystems. Since 1850, global 

temperatures have increased by 1.1°C, primarily driven by human-induced global warming, which has led to 

adverse effects (Lee et al., 2023). These shifts are affecting the physical and chemical properties of water bodies, 

including temperature, salinity, and pH, which in turn influence the physiological, biological, and genetic traits 

of aquatic species (Menon et al., 2023). Temperature fluctuations are contributing to thermal stratification and 

the development of oxygen minimum zones in water bodies, posing challenges to the survival of various organ-

isms (Ng’onga et al., 2019; Mugwanya et al., 2022). Elevated CO2 levels are contributing to changes in ocean 

pH, leading to ocean acidification and coral bleaching, which can affect aquatic biodiversity (Thomas, Ramku-

mar and Shanmugam, 2022). Furthermore, the combination of climate change and overexploitation may exert 

additional pressure on fish populations (Perry et al., 2010; Planque et al., 2010). Water scarcity, exacerbated by 
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rising temperatures and fluctuating rainfall patterns, presents further challenges for freshwater and marine eco-

systems, potentially intensifying the impacts of existing pollution (Alsaleh, 2024). 

Despite obvious evidence of climate change effects on aquatic ecosystems and fisheries, these impacts are 

often overlooked in climate adaptation policies (Badjeck et al., 2010). Analyzing long-run equilibrium relation-

ships between climate variables and fish production, as well as understanding adjustments to short-run devia-

tions, is critical for effective evidence-based decision-making and resource allocation. Among the key fish-

producing countries, China, India, Vietnam, and Bangladesh are pivotal to the global fisheries sector and are 

susceptible to the impacts of climate change. Although substantial research has been conducted on the relation-

ship between climate change and fisheries globally (Cheung et al., 2009; Das et al., 2020; Doney et al., 2012; 

Fernandes et al., 2016; Lam et al., 2012; Mohanty et al., 2017; Ninawe et al., 2018; Raubenheimer & Phiri, 

2023; Suh & Pomeroy, 2020; Vass et al., 2009), the application of advanced econometric techniques such as 

the Autoregressive Distributed Lag (ARDL) approach within the fisheries sector remains limited. Most empir-

ical studies employing ARDL models have focused predominantly on the agricultural sector (Janjua, Samad 

and Khan, 2014; Zhai et al., 2017; Ahsan, Chandio and Fang, 2020; Chandio, Magsi and Ozturk, 2020; 

Demirhan, 2020; Nasrullah et al., 2021; Warsame et al., 2021; Ramzan et al., 2022; Tagwi, 2022; Waris et al., 

2023). Addressing this gap, the present study utilizes the ARDL model to explore the long-run co-integration 

relationships between climate variables and fish production in leading fish economies, thereby offering new 

insights into the fisheries sector’s response to climate change. The ARDL model is particularly adept at analyz-

ing long-run relationships and performs well with small sample sizes, providing reliable results in regression 

contexts (Bhuyan, Mohanty and Patra, 2023). 

2. MATERIALS AND METHODS 

2.1. Data and variables  

The annual dataset contains statistics on time series data from 1990 to 2020 covering the four Asian coun-

tries namely China, India, Vietnam and Bangladesh. The key variables of interest were total fish production 

(TFP) which includes both marine and inland measured in million tons, climatic variables such as Precipitation 

measured in mm, min temperature, mean temperature, max temperature is expressed in terms of degree celcius, 

CO2 emission measured in metric tons per capita. The dataset was gathered from the FishStatJ, Food and Agri-

cultural Organization (FishStatJ, 2021) for total fish production, Climate Change Knowledge Portal (CCKP) 

and World Development Indicators (WDI) for climate variables (See Table 1). This study used total fish pro-

duction as the explained variable, whereas Precipitation, min temperature, mean temperature, max temperature 

and CO2 emissions were employed as explanatory variables. The selection of climate variables in this study is 

grounded in their critical influence on marine and inland ecosystems, particularly concerning fish production. 

Precipitation is a key variable due to its direct impact on freshwater inputs into coastal and marine environments, 

altering salinity, nutrient levels, and habitat conditions, which are crucial for the distribution and productivity 
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of fish populations (Nye et al., 2009). The minimum temperature is justified by its role in defining the lower 

thermal limit for fish, where sudden drops can cause thermal stress, reducing metabolic rates and impairing 

growth, reproduction, and survival, thereby revealing species' vulnerability to cold extremes (Volkoff and Røn-

nestad, 2020). Mean temperature is crucial for understanding the long-term thermal environment affecting met-

abolic functions, growth, and reproduction, with shifts potentially altering species distribution and ecosystem 

dynamics (Mugwanya et al., 2022). Maximum temperature is selected for its importance in assessing the impacts 

of extreme heat on fish, where exceeding thermal thresholds can lead to heat stress, habitat loss, and mortality, 

driving shifts in species distributions and community structure (Neubauer and Andersen, 2019). CO2 emissions, 

a key driver of global warming and ocean acidification, are selected for their extensive impact on marine and 

inland ecosystems, as elevated CO2 levels lead to rising surface temperatures that influence fish physiology, 

behavior, and habitat availability (Harley et al., 2006; Fabry et al., 2008). By including these variables, this 

study aims to provide a comprehensive assessment of how various aspects of climate change collectively influ-

ence fish production. To address multicollinearity (Mansfield and Helms, 1982) and heteroscedasticity (Engle, 

1982) in the annual time series data, we have applied natural logarithmic transformations to all variables. This 

logarithmic transformation stabilizes data variance and produce more reliable and precise results (Dumrul and 

Kilicaslan, 2017).  

2.2. Econometric methodology  

2.2.1. Model specification 

The empirical framework for this study is outlined in the following implicit form: 

𝑇𝐹𝑃𝑡 = 𝑓(𝑃𝑅𝐸𝐶𝑡 , 𝑀𝐼𝑁𝑇𝐸𝑀𝑡 , 𝑀𝐸𝐴𝑁𝑇𝐸𝑀𝑡 , 𝑀𝐴𝑋𝑇𝐸𝑀𝑡 , 𝐶𝑂2𝑡)                (1) 

The relationship in its fitted form can be expressed as follows: 

𝐿𝑛𝑇𝐹𝑃𝑡 = 𝛼0 + 𝛼1𝐿𝑛𝑃𝑅𝐸𝐶𝑡 + 𝛼2𝐿𝑛𝑀𝐼𝑁𝑇𝐸𝑀𝑡 + 𝛼3𝐿𝑛𝑀𝐸𝐴𝑁𝑇𝐸𝑀𝑡 + 𝛼4𝐿𝑛𝑀𝐴𝑋𝑇𝐸𝑀𝑡 + 𝛼5𝐿𝑛𝐶𝑂2𝑡 + 𝜀𝑡                                                                                                        

(2) 

where 𝐿𝑛𝑇𝐹𝑃𝑡  denotes the logarithm of total fish production, 𝐿𝑛𝑃𝑅𝐸𝐶𝑡  stands for the logarithm of precip-

itation, 𝐿𝑛𝑀𝐼𝑁𝑇𝐸𝑀𝑡  represents the logarithm of minimum temperature, 𝐿𝑛𝑀𝐸𝐴𝑁𝑇𝐸𝑀𝑡  indicates the loga-

rithm of mean temperature, 𝐿𝑛𝑀𝐴𝑋𝑇𝐸𝑀𝑡  signifies the logarithm of maximum temperature, and 𝐿𝑛𝐶𝑂2𝑡   refers 

to the logarithm of CO2 emissions. 

2.2.2. AutoRegressive Distributed Lag (ARDL) 

We have employed Autoregressive Distributed Lag (ARDL) model to analyze the short - run and long -

run relationship between total fish production and climatic variables (Pesaran and Shin, 1995; Pesaran, Shin and 

Smith, 2001). The choice of the ARDL model is driven by its suitability for examining cointegration and short-

term relationships and its effectiveness as an alternative to the more commonly employed Johansen test 

(Asumadu-Sarkodie and Owusu, 2016; Abbas, 2020; Chandio, Magsi and Ozturk, 2020; Warsame et al., 2021). 

This model is particularly advantageous as it offers unbiased long-run estimates even when some endogenous 

variables are treated as regressors (Adom, Bekoe and Akoena, 2012). The ARDL approach estimates both short- 
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and long-run coefficients using Ordinary Least Squares (OLS) and accommodates regressors that may be either 

integrated at I(0), I(1), or mutually cointegrated. Unlike many other cointegration methods, the ARDL model 

delivers consistent results even with smaller sample sizes (Pesaran and Shin, 1995; Pesaran, Shin and Smith, 

2001; Adom, Bekoe and Akoena, 2012). In this context, the ARDL model is well-suited in our study for esti-

mating the impact of climate change on total fish production.  

2.2.3. Unit root tests 

To accurately assess the impact of climate change on total fish production in Asian countries, it is crucial 

to first verify the stationarity of the variables to prevent biased outcomes. To ensure the stationarity in the time 

series data, we applied unit root tests, specifically Augmented Dickey-Fuller “ADF” (1979) and Phillips-Perron 

“PP” (1988) tests. The ADF test was conducted based on the following regression equation: 

∆𝑌𝑡 =  𝛼 + 𝛽𝑡 + 𝛾𝑌𝑡−1 + ∑ 𝛿𝑖∆𝑌𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡                                                                           (3) 

where, ∆𝑌𝑡  represents the first difference of the variable 𝑌𝑡 ,  α denotes a constant term, 𝛽𝑡  is the coefficient 

associated with the time trend t, γ is the coefficient of the lagged level of the series, 𝛿𝑖  are the coefficients 

corresponding to the lagged first differences, p indicates the number of lagged terms, and 𝜀𝑡   represents the error 

term. 

The Phillips-Perron (PP) test was also employed to complement the ADF test. This addresses serial corre-

lation and heteroscedasticity in the error terms through non-parametric adjustments to the test statistics (Vogel-

sang and Wagner, 2013). The PP test equation is expressed as: 

𝑌𝑡 =  𝛼 + 𝛽𝑡 + 𝛾𝑌𝑡−1 + 𝜀𝑡                                                                                                      (4) 

For both tests, the presence of a unit root in the time series is determined by examining whether the p-value 

is below 0.05. If the null hypothesis (H0), which suggests non-stationarity, is rejected, it favours the acceptance 

of the alternative hypothesis (H1), indicating that the series is stationary. 

2.2.4. Estimation procedure 

The ARDL model was used to assess the relationships among variables by initially examining the presence 

of a long-run association. In this study, the long-term association between lnTFP, lnPREC, lnMINTEM, 

lnMEANTEM, lnMAXTEM, and lnCO2 evaluated through the bounds testing approach. The ARDL bounds 

testing model for our study can be described as:  

∆𝐿𝑛𝑇𝐹𝑃𝑡 =  𝛼0 + 𝛼1 ∑ ∆𝐿𝑛𝑇𝐹𝑃𝑡−𝑖
𝑝
𝑖=1 + 𝛼2 ∑ ∆𝐿𝑛𝑃𝑅𝐸𝐶𝑡−𝑖

𝑞1
𝑖=1 + 𝛼3 ∑ ∆𝐿𝑛𝑀𝐼𝑁𝑇𝐸𝑀𝑡−𝑖

𝑞2
𝑖=1 +

 𝛼4 ∑ ∆𝐿𝑛𝑀𝐸𝐴𝑁𝑇𝐸𝑀𝑡−𝑖
𝑞3
𝑖=1 + 𝛼5 ∑ ∆𝐿𝑛𝑀𝐴𝑋𝑇𝐸𝑀𝑡−𝑖

𝑞4
𝑖=1 + 𝛼6 ∑ ∆𝐿𝑛𝐶𝑂2𝑡−𝑖

𝑞5
𝑖=1 +  𝛾1𝐿𝑛𝑇𝐹𝑃𝑡−𝑖 +

𝛾1𝐿𝑛𝑃𝑅𝐸𝐶𝑡−𝑖 + 𝛾1𝐿𝑛𝑀𝐼𝑁𝑇𝐸𝑀𝑡−𝑖 + 𝛾1𝐿𝑛𝑀𝐸𝐴𝑁𝑇𝐸𝑀𝑡−𝑖 + 𝛾1𝐿𝑛𝑀𝐴𝑋𝑇𝐸𝑀𝑡−𝑖 + 𝛾1𝐿𝑛𝐶𝑂2𝑡−𝑖 + 𝜀𝑡                                                                                                 

(5) 

Where, 𝛼𝑖 and 𝛾𝑖 are short- and long-run coefficients, 𝛼0 is the constant, 𝑝 and 𝑞𝑖 are optimal lag orders of 

regressand and regressors, ∆ represents the first difference operator and 𝜀𝑡  is the white noise error term.  

To assess the long-run relationship among the variables, we formulated the following hypotheses: the null 

hypothesis (H0) assumes no long-run association among the variables (α1 = α2 = α3 = α4 = α5 = α6), while the 
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alternative hypothesis (H1) indicates differing parameters (α1 ≠ α2 ≠ α3 ≠ α4 ≠ α5 ≠ α6). The ARDL bounds-

testing method employs F-statistics to determine long-term cointegration among the selected variables. Accord-

ing to Pesaran et al., 2001, the F-test statistics involves two key thresholds: the lower limit and the upper limit. 

An F-statistic falling below the lower bound indicates that there is no significant long-term relationship, whereas 

a statistic exceeding the upper bound suggests the presence of a long-term association. If the F-test statistic is 

between these bounds, the results are deemed inconclusive. 

To capture the short-term dynamics between variables, an ARDL-based Error Correction Model (ECM) 

was then employed, as detailed below. 

∆𝐿𝑛𝑇𝐹𝑃𝑡 =  ∅0 + ∅1 ∑ ∆𝐿𝑛𝑇𝐹𝑃𝑡−𝑖
𝑝
𝑖=1 + ∅2 ∑ ∆𝐿𝑛𝑃𝑅𝐸𝐶𝑡−𝑖

𝑞−1
𝑖=1 + ∅3 ∑ ∆𝐿𝑛𝑀𝐼𝑁𝑇𝐸𝑀𝑡−𝑖

𝑞−1
𝑖=1 +

 ∅4 ∑ ∆𝐿𝑛𝑀𝐸𝐴𝑁𝑇𝐸𝑀𝑡−𝑖
𝑞−1
𝑖=1 + ∅5 ∑ ∆𝐿𝑛𝑀𝐴𝑋𝑇𝐸𝑀𝑡−𝑖

𝑞−1
𝑖=1 + ∅6 ∑ ∆𝐿𝑛𝐶𝑂2𝑡−𝑖

𝑞−1
𝑖=1 + ∅ 𝐸𝐶𝑇𝑡−1 + 𝜖𝑡                                                                                    

(6) 

Where, ∅0 represents the intercept, ∅𝑖 denotes the short-run coefficient, 𝜖𝑡  is the error term, and 𝐸𝐶𝑇𝑡−1   

indicates the lagged residual from the model that determines the long-term relationship. The error correction 

method describes the speed at which adjustment occurs to restore long-term equilibrium after a short-term shock. 

Equation (6) illustrates that total fish production is influenced by its past values, current and lagged values 

of the regressors, and the lagged error term. The parameter ∅ is anticipated to be negative (between 0 and -1), 

as this indicates the extent to which equilibrium is restored in absolute terms. A positive ∅ would indicate that 

the model is out of equilibrium and unstable, with no tendency to return to the long-run equilibrium. The optimal 

lag lengths for each variable were established using the Akaike Information Criterion (AIC). 

2.2.5. Diagnostic and stability tests 

This study conducted a series of diagnostic tests to evaluate the model's reliability and validity, following 

the methodology outlined by Pesaran et al., 2001. To detect serial correlation, the Breusch-Godfrey Serial Cor-

relation LM Test was applied, recognized for its ability to accommodate lagged dependent variables, thus en-

hancing the model's reliability (Breusch, 1978; Godfrey, 1978).  Heteroscedasticity was assessed using the 

Breusch-Pagan-Godfrey (BPG) test, which ensures accurate variance in the residuals and the robustness of the 

model's estimates (Breusch and Pagan, 1979). The normality of the residuals was assessed using the Jarque-

Bera (JB) test, which evaluates the skewness and kurtosis of the residuals to determine if they follow a normal 

distribution, thereby confirming the appropriateness of the model (Jarque and Bera, 1987). To examine the 

stability of both long and short-run coefficients, the cumulative sum of recursive residuals (CUSUM) test was 

conducted, as proposed by Brown et al., 1975. 

3. RESULTS 

3.1.  Descriptive statistics 
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Table 2 reports the descriptive statistics for the study variables corresponding to each country from 1990 to 

2020. Total fish production reveals significant disparities, with China exhibiting the highest mean production at 

53.19 million metric tons (MT), followed by India (7.48 MT), Vietnam (3.83 MT), and Bangladesh (2.40 MT). The 

skewness values indicate that China's production distribution is slightly left-skewed (-0.20), while India, Vietnam, 

and Bangladesh display right-skewed distributions, indicating the presence of occasional high production figures. 

Annual precipitation is highest in Bangladesh, averaging 2185.55 mm, followed by Vietnam (1769.98 mm), India 

(1114.37 mm), and China (610.70 mm). The distribution of precipitation data is nearly symmetric in all countries, 

with minimal skewness, reflecting stable precipitation patterns. However, Bangladesh shows the highest variability 

in precipitation, as indicated by the standard deviation of 275.91 mm, while China exhibits the lowest variability 

(32.53 mm). Temperature variables (annual minimum, mean, and maximum temperatures) present distinct climatic 

profiles across the countries. Bangladesh and Vietnam experience the highest temperatures, with mean tempera-

tures of 25.71°C and 24.80°C, respectively, while China has the lowest mean temperature at 7.59°C. The temper-

ature distributions across all countries are generally near-normal, with skewness values close to zero, indicating 

stable and consistent temperature trends. CO2 emissions are significantly higher in China, with a mean of 4.66 

metric tons per capita, compared to India (1.13 MT), Vietnam (1.32 MT), and Bangladesh (0.28 MT). The distri-

bution of CO2 emissions is slightly positively skewed in all countries, with China showing a modest skewness 

(0.15) and lower kurtosis (1.34), suggesting a relatively normal distribution with occasional periods of higher emis-

sions. Vietnam exhibits the highest variability in emissions (standard deviation of 0.96 MT), while Bangladesh 

shows the least variability (0.15 MT). Figure 1 (a, b, c, d) reveals a consistent upward trajectory in total fish pro-

duction and CO2 emissions across China, India, Vietnam, and Bangladesh from 1990 to 2020. Temperature and 

precipitation trends exhibit considerable variability, with distinct fluctuations in each country, reflecting the com-

plex interplay between climatic conditions and fish production over time. 

3.2. Unit root tests 

The results of the unit root tests shown in Table 3a and 3b for China, India, Vietnam, and Bangladesh indicate 

that the variables under study predominantly exhibit stationarity at first difference, as evidenced by both the Phil-

lips-Perron (PP) and Augmented Dickey-Fuller (ADF) tests. Specifically, for China and India, all variables, includ-

ing total fish production (TFP), precipitation, temperature-related variables, and CO2 emissions, are non-stationary 

at level but become stationary after differencing, implying an order of integration of I(1). In Vietnam and Bangla-

desh, most variables also follow a similar pattern, with the exception of minimum temperature and precipitation 

variables that exhibit stationarity at both levels and first difference, indicating they are integrated of order I(0) or 

I(1). The stationarity of these variables at mixed levels of integration, I(0) and I(1) making it suitable for the ARDL 

approach. Furthermore, allowing for comprehensive analysis of long-run relationships between fish production and 

climate indicators in these countries. 

3.3. Co-integration testing  
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The ARDL bounds test was employed to confirm the existence of a long-run relationship between total fish 

production and selected climatic factors, and the  results are presented in Table 4 for the four countries under study. 

For China and Bangladesh, the F-statistic values of 6.99 and 6.50, respectively, exceed the upper critical bounds at 

both 5% and 1% significance levels, indicating the existence of a long-run relationship or cointegration among the 

variables. In India, the F-statistic of 5.46 surpasses the upper bound at 5% significance level, further supporting the 

presence of a long-term relationship. However, in Vietnam, the F-statistic of 1.26 falls below the lower critical 

bound, suggesting the absence of long-run relationship or cointegration among the variables in this case. These 

findings indicate long-run relationships between total fish production (lnTFP) and precipitation (lnPREC), mini-

mum temperature (lnMINTEM), mean temperature (lnMEANTEM), maximum temperature (lnMAXTEM), CO2 

emission (lnCO2) in China, India, and Bangladesh, while Vietnam shows no evidence of cointegration. Figure 2 

(a, b, c, d) details the model selection process based on the Akaike Information Criterion (AIC). The optimal ARDL 

model for each country was determined by identifying the model with the lowest AIC value. Specifically, the 

selected models are ARDL (1, 2, 1, 1, 1, 2) for China, ARDL (1, 0, 0, 0, 0, 0) for India, ARDL (1, 0, 1, 0, 2, 0) for 

Vietnam, and ARDL (1, 2, 2, 2, 2, 2) for Bangladesh. 

3.4. ARDL long-run and short-run estimation 

After confirming cointegration among the variables, the ARDL model is employed to assess the long-run and 

short-run impact of climatic variables on total fish production across each country. 

China:  Table 5, highlight the long-run and short-run relationships between climatic variables and total fish pro-

duction in China over time. In contrast to mean temperature, we observed a significant and positive long-run impact 

of precipitation, minimum temperature, and CO2 emissions on fish production. Specifically, the long-run coeffi-

cient for precipitation (2.44) is highly significant (p < 0.001), indicating its strong positive influence on fish pro-

duction. The relationship between CO2 emissions and fish production is positive, with a coefficient of 0.45, and is 

significant at the 1% level (p < 0.001). The minimum temperature also shows a positive effect (1.38, p = 0.063), 

although it is marginally significant at 10% level. Meanwhile, the long-run coefficients for mean temperature and 

maximum temperature are not statistically significant, with the former showing a negative effect (-13.12, p = 0.139) 

and the latter showing a positive effect (11.36, p = 0.241). The stability of the long-run coefficients was assessed 

through the short-run dynamics. This analysis involved estimating an error correction model (ECM) in conjunction 

with the long-run estimates. The error correction term (ECT) represents the speed at which the regressand, total 

fish production, returns to its long-run equilibrium after a change in the regressors. The speed of adjustment in this 

case is 0.24, indicating a 24% correction towards equilibrium within one period. In the short run, total fish produc-

tion is significantly influenced by current precipitation, which has a positive impact with a coefficient of 0.26 (p < 

0.001), and lagged CO2 emissions, which also show a significant positive effect with a coefficient of 0.16 (p = 

0.010). In contrast, immediate CO2 emissions, as well as minimum, mean, and maximum temperatures, do not 

have statistically significant effects on fish production in the short run, as indicated by their high p-values (P > 

0.05). 
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India: The ARDL model results (Table 6) revealed that in the long run, only CO2 emissions have a significant and 

positive impact on total fish production, with a coefficient of 1.08 (p < 0.001), whereas, precipitation and temper-

ature variables - minimum, mean, and maximum temperatures - do not exhibit significant relationships with fish 

production. Precipitation shows a coefficient of 0.09 (p = 0.833), while minimum, mean, and maximum tempera-

tures present coefficients of 26.30, -42.97, and 10.35, respectively, with corresponding high p-values (0.777, 0.856, 

and 0.944), indicating a lack of significant impact. After long run cointegration was established, the short run 

dynamics among the variables was subsequently calculated. The climatic variables, including precipitation, mini-

mum temperature, mean temperature, maximum temperature, and CO₂ emissions, exhibit a lag of 0, indicating that 

changes in these variables do not immediately affect fish production in the short run. The error correction term 

(ECT) of -0.24 suggests that approximately 24% of any deviation from the long-run equilibrium is adjusted in each 

period. This implies that fish production is more influenced by long-term climate patterns rather than by immediate 

fluctuations.  

Vietnam:  The ARDL model, as indicated by the F-statistic from the bounds test, suggests there is no long-run 

equilibrium in Vietnam, implying only short-run relationships exist. The results of the short-run coefficients are 

presented in Table 7. Precipitation, mean temperature, maximum temperature, and CO2 emissions - do not exhibit 

significant relationships with total fish production in the short run, as reflected by their high p-values. However, 

the first lag of minimum temperature and the first lag of maximum temperature affects total fish production at the 

10% significance level.  The outcome of short run coefficients revealed that 1% increase in minimum temperature 

leads to a 2.19% decrease in total fish production, whereas a 1% increase in maximum temperature leads to a 3.02% 

increase in total fish production. Although precipitation and mean temperature have a positive relationship with 

fish production, and CO2 emissions have a negative relationship, these effects are not statistically significant (P > 

0.05). 

Bangladesh:  In the long run, CO2 emissions exert a strong positive influence on fish production, with a coefficient 

of 0.87 (p < 0.001), while precipitation also shows a significant positive impact, with a coefficient of 1.39 (p = 

0.001) see Table 8. Temperature variables show mixed results with the minimum temperature showing a negative 

effect at -158.96 (p = 0.083), indicating marginal significance, whereas mean and maximum temperatures do not 

exhibit statistically significant impact on total fish production. In the case of short run, precipitation continues to 

play a critical role, with its immediate effect showing a significant positive coefficient of 0.14 (p < 0.001). However, 

the lagged effect of precipitation is negative and significant, with a coefficient of -0.12 (p = 0.001), indicating that 

an increase in precipitation may have a delayed adverse impact on total fish production. Furthermore, the first lags 

of minimum and maximum temperatures are also significant, with coefficients of 27.14 (p = 0.001) and 35.26 (p = 

0.002), respectively, suggesting that past temperature variations influence current production levels. Meanwhile 

the immediate effect of CO2 emissions is not statistically significant (0.03, p = 0.576), the lagged effect is signifi-

cant and negative, with a coefficient of -0.23 (p = 0.002), indicating that previous increases in CO2 emissions may 

lead to a reduction in fish production over time.  In addition, the ECM coefficient is - 0.31 and is significant at the 
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1% level. This suggest that deviations from equilibrium in the short run was adjusted at a rate of about 31% annu-

ally, progressively aligning towards the long-run equilibrium. 

3.5. Diagnostic inspection 

The diagnostic tests for the model as shown in table 9 revealed no significant issues of serial correlation, 

heteroskedasticity, or non-normality of residuals across different countries under study.  The Breusch-Godfrey 

Serial Correlation LM Test indicates no significant evidence of serial correlation in the residuals, with F-statistics 

of 0.23 (p = 0.79) for China, 1.32 (p = 0.36) for India, 2.62 (p = 0.12) for Bangladesh, and 1.63 (p = 0.22) for 

Vietnam. The Breusch-Pagan-Godfrey Heteroskedasticity Test further supports the model's validity by showing no 

significant presence of heteroskedasticity, as evidenced by the p - values for all countries, which are greater than 

0.05. Additionally, the Jarque-Bera Normality Test confirms that the residuals are normally distributed, with χ² 

values of 0.25 (p = 0.87) for China, 0.78 (p = 0.67) for India, 0.55 (p = 0.75) for Bangladesh, and 0.31 (p = 0.85) 

for Vietnam. Furthermore, the stability of the model was assessed using the cumulative sum of recursive residuals 

(CUSUM) test. As illustrated in Figures 3 (a, b, c, d), the trajectories of total fish production remain within the 5% 

significance level throughout the period, thereby validating the stability of the ARDL model in all the studied 

countries. 

3.6. Figures 

Figure 1a. Trends in fish production and climate 

indicators for China during 1990–2020 
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Figure 1b. Trends in fish production and climate 

indicators for India during 1990–2020 

 

 
 

Figure 1c. Trends in fish production and climate 

indicators for Vietnam during 1990–2020 

 

 

Figure 1d. Trends in fish production and climate 

indicators for Bangladesh during 1990–2020 
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Fig. 1: Trends in fish production and climate indicators for different countries 

 

Figure 2a. AIC model selection for China 

-7.28

-7.26

-7.24

-7.22

-7.20

-7.18

-7.16

-7.14

-7.12

A
R

D
L

(1
, 
2

, 
1

, 
1

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
0

, 
0

, 
0

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
1

, 
0

, 
2

)

A
R

D
L

(1
, 
1

, 
1

, 
1

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
2

, 
1

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
1

, 
2

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
2

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
0

, 
0

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
0

, 
1

, 
0

, 
2

)

A
R

D
L

(1
, 
2

, 
2

, 
2

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
2

, 
1

, 
0

, 
2

)

A
R

D
L

(1
, 
2

, 
2

, 
1

, 
2

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
0

, 
0

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
0

, 
1

, 
2

)

A
R

D
L

(1
, 
2

, 
2

, 
2

, 
2

, 
2

)

A
R

D
L

(1
, 
1

, 
2

, 
2

, 
2

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
2

, 
0

, 
2

)

A
R

D
L

(1
, 
2

, 
1

, 
2

, 
2

, 
2

)

A
R

D
L

(1
, 
2

, 
2

, 
2

, 
0

, 
2

)

A
R

D
L

(1
, 
1

, 
2

, 
1

, 
1

, 
2

)

Akaike Information Criteria (top 20 models)

 

 

Figure 2b. AIC model selection for India 
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Figure 2c. AIC model selection for Vietnam 
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Figure 2d. AIC model selection for Bangladesh 
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Fig. 2: AIC model selection for different countries 

Figure 3a. Plot of CUSUM test for China 
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Figure 3b. Plot of CUSUM test for India 
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Figure 3c. Plot of CUSUM test for Vietnam 
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Figure 3d. Plot of CUSUM test for Bangladesh 
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Fig. 3: Plot of CUSUM test for different countries 

3.7. Tables 

Table 1: Variable description and data sources. Source: Author’s collection from various databases  

 Variable Code Measurement Unit Source 

Dependent Variable Total Fish Production TFP Million tons FishStatJ, FAO 

Independent Variables 

 

  

Annual Precipitation  PREC Millimeter CCKP 

Annual Minimum Temperature MINTEM Degree Celcius CCKP 

Annual Mean Temperature MEANTEM Degree Celcius CCKP 

Annual Maximum Temperature MAXTEM Degree Celcius CCKP 

CO2 emission CO2 Metric Tons per capita WDI 
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Table 2: Descriptive Statistics 

 

Table 3a: Unit Root Tests 

  PP ADF 

  At level 1st Diff Implied order of integration At level 1st Diff Implied order of integration 

China LN_TFP 3.07 -1.68* I (1) 1.41 -1.67* I (1) 

 LN_PREC 0.06 -30.69*** I (1) 0.20 -12.66*** I (1) 

 LN_MIN_TEMP -0.81 -7.30*** I (1) 0.39 -8.59*** I (1) 

 LN_MEAN_TEMP 0.69 -9.60*** I (1) 0.14 -6.55*** I (1) 

 LN_MAX_TEMP 0.69 -12.61*** I (1) 0.13 -7.44*** I (1) 

 LN_CO2 2.46 -1.84* I (1) 1.20 -1.90* I (1) 

India LN_TFP 11.25 -4.50*** I (1) 6.82 -9.79*** I (1) 

 LN_PREC -0.02 -9.82*** I (1) 0.40 -9.19*** I (1) 

 LN_MIN_TEMP 0.40 -10.69*** I (1) 0.22 -7.13*** I (1) 

Country Variables Mean 
Me-

dian 

Maxi-

mum 

Mini-

mum 

Std. 

Dev. 

Skew-

ness 

Kurto-

sis 

China Total Fish production 53.19 53.79 83.93 15.11 20.14 -0.20 2.08 

 Annual Precipitation  610.70 614.41 676.47 531.98 32.53 -0.14 2.84 

 

Annual Minimum Tempera-

ture 1.65 1.73 2.18 0.81 0.38 -0.59 2.47 

 Annual Mean Temperature 7.59 7.62 8.18 6.82 0.37 -0.49 2.32 

 

Annual Maximum Tempera-

ture 13.54 13.63 14.21 12.84 0.39 -0.41 2.24 

 CO2 emission 4.66 4.47 7.76 1.91 2.18 0.15 1.34 

India Total Fish production 7.48 6.70 13.41 3.88 2.77 0.76 2.51 

 Annual Precipitation  

1114.3

7 

1120.4

9 1322.44 908.97 93.05 0.12 2.74 

 

Annual Minimum Tempera-

ture 18.99 18.98 19.59 18.46 0.27 0.28 2.84 

 Annual Mean Temperature 24.92 24.92 25.59 24.30 0.29 0.16 3.04 

 

Annual Maximum Tempera-

ture 30.91 30.93 31.63 30.19 0.32 0.03 3.20 

 CO2 emission 1.13 0.98 1.80 0.65 0.38 0.40 1.64 

Vietnam  Total Fish production 3.83 3.44 8.19 0.94 2.32 0.37 1.80 

 Annual Precipitation  
1769.9

8 
1762.8

3 1945.05 1621.31 104.95 0.07 1.67 

 

Annual Minimum Tempera-

ture 21.03 21.01 21.58 20.48 0.32 0.04 2.23 

 Annual Mean Temperature 24.80 24.80 25.43 24.14 0.31 0.08 2.94 

 

Annual Maximum Tempera-

ture 28.62 28.59 29.38 27.85 0.34 0.09 3.58 

 CO2 emission 1.32 1.11 3.68 0.29 0.96 0.95 3.09 

Bangla-

desh Total Fish production 2.40 2.22 4.50 0.85 1.17 0.32 1.82 

 Annual Precipitation  

2185.5

5 

2156.0

7 2674.16 1710.40 275.91 0.01 1.92 

 

Annual Minimum Tempera-

ture 21.01 21.11 21.73 20.37 0.37 0.04 2.11 

 Annual Mean Temperature 25.71 25.67 26.60 25.09 0.39 0.43 2.62 

 

Annual Maximum Tempera-

ture 30.45 30.45 31.57 29.81 0.44 0.66 3.04 

 CO2 emission 0.28 0.23 0.59 0.10 0.15 0.59 2.03 
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 LN_MEAN_TEMP 0.39 -9.81*** I (1) 0.26 -7.48*** I (1) 

 LN_MAX_TEMP 0.28 -8.70*** I (1) 0.28 -7.83*** I (1) 

 LN_CO2 -0.62 -2.03** I (1) -0.98 -2.03** I (1) 

 

Table 3b: Unit Root Tests 

  
PP ADF 

  At level 1st Diff Implied order of integration At level 1st Diff Implied order of integration 

Vietnam LN_TFP -0.22 -4.44*** I (1) -0.77 -4.37*** I (1) 

 LN_PREC -6.81*** -21.29*** I (0), I (1) -4.69*** -5.38*** I (0), I (1) 

 LN_MIN_TEMP -4.92*** -22.32*** I (0), I (1) -4.92*** -5.93*** I (0), I (1) 

 LN_MEAN_TEMP -4.99*** -18.75*** I (0), I (1) -5.00*** -8.03*** I (0), I (1) 

 LN_MAX_TEMP -5.04*** -17.90*** I (0), I (1) -5.19*** -7.88*** I (0), I (1) 

 LN_CO2 -2.30 -5.32*** I (1) -2.30 -4.92*** I (1) 

Bangladesh LN_TFP 0.04 -4.28*** I (1) 0.24 -4.35*** I (1) 

 LN_PREC -7.19*** -19.28*** I (0), I (1) -7.19*** -6.91*** I (0), I (1) 

 LN_MIN_TEMP -3.24* -14.81*** I (0), I (1) -3.24* -6.50*** I (0), I (1) 

 LN_MEAN_TEMP -2.87 -16.82*** I (1) -2.94 -6.46*** I (1) 

 LN_MAX_TEMP -2.94 -16.06*** I (1) -3.00 -6.54*** I (1) 

 LN_CO2 -3.05 -5.37*** I (1) -3.15 -5.30*** I (1) 

 

Note: (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1% level   

Table 4: Bounds Cointegration Test 

   Critical value 

Country F-statistic Value Significance level Lower bound Upper bound 

China 6.99 5%   2.62 3.79 

  1%   3.41 4.68 

India 5.46 5%   2.39 3.38 

  1%   3.06 4.15 

Vietnam 1.26 5%   2.62 3.79 

  1%   3.41 4.68 

Bangladesh 6.50 5%   2.62 3.79 

  1%   3.41 4.68 

 

Table 5: Results of long and short-run coefficients using the ARDL model for China 

Long run 

 Coefficient Std. Error t-Statistic Prob.    

LN_PREC 2.44 0.53 4.57 0.000 

LN_MIN_TEMP 1.38 0.68 2.01 0.063 

LN_MEAN_TEMP -13.12 8.40 -1.56 0.139 

LN_MAX_TEMP 11.36 9.30 1.22 0.241 

LN_CO2 0.45 0.04 10.35 0.000 

     

Short run 

 Coefficient Std. Error t-Statistic Prob.    

C -0.21 0.01 -21.34 0.000 

D(LN_PREC) 0.26 0.05 5.46 0.000 



NEPT 15 of 29 
 

D(LN_PREC(-1)) -0.09 0.05 -2.03 0.061 

D(LN_MIN_TEMP) 0.10 0.08 1.29 0.216 

D(LN_MEAN_TEMP) -0.80 0.82 -0.98 0.343 

D(LN_MAX_TEMP) 0.61 0.83 0.74 0.469 

D(LN_CO2) 0.06 0.06 1.09 0.294 

D(LN_CO2(-1)) 0.16 0.06 2.97 0.010 

ECM(-1)* -0.24 0.01 -23.65 0.000 

     

ARDL (1, 2, 1, 1, 1, 2)    

 

Table 6: Results of long and short-run coefficients using the ARDL model for India 

Long Run  

 Coefficient Std. Error t-Statistic Prob.    

LN_PREC 0.09 0.43 0.21 0.833 

LN_MIN_TEMP 26.30 91.88 0.29 0.777 

LN_MEAN_TEMP -42.97 234.62 -0.18 0.856 

LN_MAX_TEMP 10.35 144.33 0.07 0.944 

LN_CO2 1.08 0.13 8.07 0.000 

C 17.56 11.28 1.56 0.133 

Short run     

 Coefficient Std. Error t-Statistic Prob.    

CointEq(-1)* -0.24884 0.035857 -6.93995 0 

     

ARDL (1, 0, 0, 0, 0, 0)    

 

Table 7: Results of Short run ARDL model for Vietnam 

Short run 

 Coefficient Std. Error t-Statistic Prob.*   

LN_TFP(-1) 1.05 0.12 8.40 0.000 

LN_PREC 0.30 0.23 1.34 0.197 

LN_MIN_TEMP -3.63 22.29 -0.16 0.872 

LN_MIN_TEMP(-1) -2.19 1.21 -1.80 0.088 

LN_MEAN_TEMP 6.01 54.62 0.11 0.914 

LN_MAX_TEMP -1.83 32.68 -0.06 0.956 

LN_MAX_TEMP(-1) 3.03 1.55 1.96 0.065 

LN_MAX_TEMP(-2) 1.34 0.84 1.59 0.128 

LN_CO2 -0.04 0.11 -0.35 0.732 

C -5.62 4.39 -1.28 0.216 

     

ARDL (1, 0, 1, 0, 2, 0)    

 

Table 8: Results of long and short-run coefficients using the ARDL model for Bangladesh 

Long run 
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 Coefficient Std. Error t-Statistic Prob.    

LN_PREC 1.39 0.33 4.15 0.001 

LN_MIN_TEMP -158.96 84.01 -1.89 0.083 

LN_MEAN_TEMP 351.15 201.62 1.74 0.107 

LN_MAX_TEMP -183.29 117.26 -1.56 0.144 

LN_CO2 0.87 0.02 40.16 0.000 

Short run     

 Coefficient Std. Error t-Statistic Prob.    

C -3.34 0.45 -7.39 0.000 

D(LN_PREC) 0.14 0.03 5.17 0.000 

D(LN_PREC(-1)) -0.12 0.03 -4.57 0.001 

D(LN_MIN_TEMP) -8.26 6.14 -1.35 0.203 

D(LN_MIN_TEMP(-1)) 27.14 6.07 4.48 0.001 

D(LN_MEAN_TEMP) 16.60 14.75 1.13 0.282 

D(LN_MEAN_TEMP(-1)) -62.85 14.70 -4.27 0.001 

D(LN_MAX_TEMP) -6.60 8.57 -0.77 0.456 

D(LN_MAX_TEMP(-1)) 35.26 8.61 4.09 0.002 

D(LN_CO2) 0.03 0.05 0.57 0.576 

D(LN_CO2(-1)) -0.23 0.06 -3.99 0.002 

CointEq(-1)* -0.31 0.04 -7.43 0.000 

ARDL (1, 2, 2, 2, 2, 2)     

 

Table 9: Diagnostic tests of the model 

 China India   Bangladesh 

 F - Statistics P - value F - Statistics P - value Vietnam P - value F - Statistics P - value 

Breusch-Godfrey Serial Corre-

lation LM Test 0.23 0.79 1.32 0.36 1.63 0.22 2.62 0.12 

Heteroskedasticity Test: 

Breusch-Pagan-Godfrey 1.01 0.47 1.33 0.28 1.78 0.13 0.67 0.77 

Normality test: Jarque-Bera  0.25 0.87 0.78 0.67 0.31 0.85 0.55 0.75 

 

4. DISCUSSION 

Globally, climate change affects marine and freshwater fish species by shifting their distribution and alter-

ing habitats, which in turn reduces their productivity (Allan, Palmer and Poff, 2005; FAO, 2024). Tropical 

ecosystems, especially in the Asian region, are particularly vulnerable to these changes (Pörtner et al., 2014). 

The present study examined the impact of climate change on fisheries in the case of top fish-producing countries. 

4.1. CHINA 

Based on this study, precipitation has a long-term impact on total fish production in China. We observed 

that 1% increase in annual precipitation can raise total fish production by 2.44%. Several studies provide insights 
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into these relationships. For instance, (Holst and Yu, 2010) found that precipitation positively impacts aquacul-

ture outputs, while a 1°C increase in annual average temperature was associated with a rise in national mean 

output by 1.47 million tons. Similarly, (Meynecke et al., 2006) identified a significant positive correlation be-

tween annual rainfall and total fish production in Australia, highlighting the importance of precipitation for 

fishery yields. The study indicated seasonality with trend in annual temperature over time, ranging from 1.6°C 

to 13.5°C. China's seas have generally warmed over the past few decades, with the East China Sea experiencing 

the most significant rise and the South China Sea the least, leading to varying impacts on fisheries (Belkin, 

2009; Liang, Xian and Pauly, 2018). Consistent with these findings, our analysis demonstrated that mean tem-

perature exerts a negative impact on fish production, suggesting that rising temperatures may pose challenges 

to sustaining fisheries in the region. China's national climate commitment, aiming for carbon neutrality by 2060 

and an emissions peak by 2030, highlights the significance of understanding the impact of climatic factors on 

fisheries outputs. Research by Chandio, et al., 2020 revealed that CO2 emissions have a significant positive 

effect on agricultural output in China in both long-run and short-run analyses. However, they also found that 

temperature exerts a negative effect on agricultural output in the long run, suggesting that the benefits of CO2 

fertilization may be offset by the adverse impacts of rising temperatures. This complexity is echoed in Janjua et 

al., 2014, who reported that CO2 and precipitation positively influenced wheat production in Pakistan over the 

long run, reinforcing the notion that different climatic variables can have varied effects on agricultural produc-

tivity depending on the context and timescale. 

4.2. INDIA 

India is increasingly grappling with the impacts of climate change, which have intensified in both frequency 

and severity, affecting its natural environment, economy, and society (Mall, Kumar and Bhatla, 2011; Kusha-

waha et al., 2021; Picciariello et al., 2021). The country is facing a range of extreme climate-related challenges, 

including heatwaves, floods, unpredictable monsoons, and declining groundwater reserves (Misra, 2013; Dhara 

and Koll, 2021; Charak, Ravi and Verma, 2024). Ranked as the 7th  most affected nation by climate change 

according to the (Global Climate Risk Index, 2021). India has committed to achieving net zero emissions by 

2070 and has made notable progress in decoupling its economic growth from its emissions. According to the 

(IPCC, 2022) report, India maintains a relatively low level of emissions per capita compared to other major 

global economies, demonstrating its commitment to sustainable development. Our study revealed a significant 

positive impact of CO2 emissions on long-term fish production. CO2 may enhance primary productivity by 

promoting the growth of aquatic vegetation and phytoplankton, key components of the food web, the short-term 

effects appear less pronounced (Geider et al., 2001; Tremblay et al., 2015). These findings are consistent with 

trends observed in the agricultural sector, where CO2 emissions have also been found to positively influence 

long-term productivity. Ahmed & Saha, 2023 reported a positive association between per capita CO2 emissions 

and agricultural GDP in India over the long term, though no significant short-term effect was detected. This 

parallel between fisheries and agriculture highlights the complex nature of CO2's role in enhancing productivity 
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over extended periods. Moreover, climate change-induced physical changes, such as increased water tempera-

tures and altered dissolved oxygen levels, have been linked to higher risks of disease outbreaks in aquatic sys-

tems (Harvell et al., 2002; Vilchis et al., 2005). These changes, driven by warming waters, could further exac-

erbate challenges to India’s fisheries and aquaculture sectors that are critical to food security and livelihoods.  

4.3. VIETNAM 

The results from the ARDL model for Vietnam reveal that no long-run equilibrium exists between climatic 

variables and total fish production, suggesting that only short-run relationships are significant. This aligns with 

findings from Pham, 2012, which similarly reported no significant relationship between temperature and shrimp 

productivity across multiple ecological regions in Vietnam. However, regional differences were noted, with 

temperature affecting shrimp production in the North Central Coastal region, while rainfall had no notable im-

pact. Cao et al., 2013 identified an inverse correlation between temperature and shrimp production, further sup-

porting the complex relationship between climate and fisheries in Vietnam. The absence of long-run effects 

could be attributed to Vietnam's vulnerability to extreme climate events, which disrupts the consistency of rela-

tionships between climatic variables and fish production. Vietnam is among the nations most severely impacted 

by climate change, as reported by the Ministry of Natural Resources and Environment (MoNRE, 2016).  Fre-

quent and extreme climate occurrences, such as typhoons, floods, and rising sea levels, have a profound effect 

on the fisheries sector, disrupting long-term trends and making it difficult to establish stable, long-run relation-

ships between climate factors and production outputs. This unpredictable nature of extreme climate events may 

obscure long-run trends, as fish production systems adapt to short-term fluctuations rather than establishing 

long-term equilibria. In response to these challenges, the Vietnamese government has implemented meticu-

lously designed policies aimed at mitigating the impacts of climate change. Vietnam's comprehensive strategies, 

such as the National Target Program to Respond to Climate Change (NTP-RCC), the Vietnam Green Growth 

Strategy (VGGS), the Law on Environmental Protection (2020), and the National Action Plan on Climate 

Change (NAPCC), have been instrumental in mitigating the impacts of climate change on various sectors, in-

cluding fisheries. These policies align with Vietnam’s commitment to the Sustainable Development Goals 

(SDGs), which emphasize responsible production practices, the protection of coastal and marine ecosystems, 

and climate resilience (Ministry of Planning and Investment, 2018). Wilbanks, 2003 highlights that climate 

change serves as both a challenge and a catalyst for advancing sustainable development, and this duality is 

evident in Vietnam’s proactive approach. Through carefully designed government interventions, the country is 

managing the short-term impacts of climate change, helping to maintain the resilience of its fisheries sector. 

4.4. BANGLADESH 

The ARDL model results for this country highlight a relationship between climatic variables, and total fish 

production, with significant impacts observed both in the short and long run. Bangladesh ranks 7th  in long-

term climate vulnerability from 2000 to 2019 (Global carbon atlas, 2022), reflecting its susceptibility to climate 
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change, which appears to influence the fisheries sector in both time frames. The long-run analysis showed that 

CO2 emissions have a strong positive influence on fish production, which is explained by the rise in  per capita 

carbon emissions, from 0.107 metric tons in 1990 to 0.510 metric tons in 2020. Although Bangladesh ranks 39th 

in per capita CO2 emissions globally (Global carbon atlas, 2022), its relatively low industrial greenhouse gas 

(GHG) emissions (Islam, Kundu and Khan, 2020) suggest that this positive long-run association could be linked 

to the ecological dynamics of CO2 enhancing primary productivity. This is consistent with findings by Begum 

et al., 2022, who also reported a positive relationship between CO2 emissions and marine fish production in 

Bangladesh over the long term. Precipitation also exhibited a significant positive impact on fish production in 

both the long and short run, reinforcing the notion that rainfall plays a vital role in Bangladesh’s fisheries sector. 

Begum et al., 2022 found that a 1% increase in average rainfall could increase marine fish production by 1.65%, 

a result consistent with our study where precipitation had a sustained positive influence on fish output. This 

relationship aligns with research showing that increased rainfall often coincides with upwelling events that bring 

nutrient-rich waters to the surface, significantly boosting fish catches (Atindana, Ofori-Danson and Brucet, 

2019). Similar positive associations between rainfall and fish productivity have been observed in other regions, 

such as Malaysia (Madihah Jafar-Sidik, Aung Than and Awnesh Singh, 2010) and Pakistan (Ayub, 2010), fur-

ther substantiating the critical role of precipitation in driving marine fish production. The short-run results re-

vealed a more nuanced picture. While precipitation continues to be a significant factor, its lagged effect turns 

negative, suggesting that excessive rainfall may initially benefit fish production but could have adverse delayed 

effects. This phenomenon may be attributed to ecological disruptions, such as the increased risk of undesirable 

phytoplankton blooms during periods of high atmospheric CO2, which can negatively impact marine ecosystems 

(Schippers, Lürling and Scheffer, 2004). Temperature variables also display significant short-run effects on fish 

production. Ho et al., 2013 observed that fish landings increase with rising temperatures. However, as temper-

atures continue to rise, increased stratification is expected to restrict the flow of nutrients to the surface, poten-

tially reducing productivity (Kay, Caesar and Janes, 2018). Bangladesh's proactive climate policies, including 

the Bangladesh Climate Change Strategy and Action Plan (BCCSAP, 2009), the National Adaptation Program 

of Action (National Adaptation Programme of Action (NAPA), 2005) and the National Fisheries Policy (NFP), 

reflect the country’s commitment to addressing the multifaceted challenges posed by climate change. These 

frameworks, alongside the Bangladesh Delta Plan 2100, aim to mitigate the long-term impacts of climate change 

on the fisheries sector, ensuring its sustainability amidst increasing climate variability.   

5. CONCLUSIONS 

This study provides a fresh perspective on understanding the impact of climate change on fisheries in four 

leading fish-producing countries: China, India, Vietnam, and Bangladesh. The results revealed long-run associa-

tions for all countries except Vietnam, where only short-run relationships were identified. In China and Bangladesh, 

precipitation and CO₂ emissions exhibited significant positive long-run impacts on fish production, highlighting 

the role of favorable weather patterns and carbon availability in supporting aquatic ecosystems. The results for 
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India, however, showed that only CO2 emissions have a significant long-run effect, while temperature and precip-

itation do not display any significant impacts. In Vietnam, the absence of long-run equilibrium suggests that fish 

production is influenced only by short-term climatic changes, particularly the lagged effects of minimum and max-

imum temperatures. Diagnostic tests confirmed the model's robustness, with no evidence of serial correlation, het-

eroskedasticity, or non-normality in the residuals. The policy implications of this study are substantial. In China, 

promoting green aquaculture and reducing emissions through innovative technologies can enhance resilience to 

climate change. India should focus on low-carbon fishing practices and adaptive aquaculture systems to mitigate 

the adverse effects of rising temperatures while improving water resource management to benefit from precipitation 

changes. Vietnam requires enhanced strategies for flood management and the development of climate-resilient 

aquaculture to cope with precipitation variability. Bangladesh, with its vulnerability to climate-induced floods, 

must prioritize sustainable water practices and species diversification to safeguard fish production. Each country 

should integrate climate resilience into fisheries policies to ensure sustainable development and food security, mit-

igating risks posed by rising temperatures and shifting precipitation patterns. 
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