

Original Research

# A Modified Neural Network for Predicting the Solar Photovoltaic Power Generation Using Weather and Operational Parameter

Jindaporn Ongate<sup>1†</sup>, Khumphicha Tantisantisom<sup>1</sup> and Vilaythong Aemixay<sup>2</sup>

<sup>1</sup>Department of Information Technology, Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet, Thailand

<sup>2</sup>Research Institute for Energy and Mines (RIEM), Vientiane, Laos

†Corresponding author: Jindaporn Ongate; [jindaporn\\_o@kpru.ac.th](mailto:jindaporn_o@kpru.ac.th)  
0000-0003-2767-3312

|                        |                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key Words              | Solar PV, Power forecasting, Modified neural network, Training and testing, Error metrics                                                                                                                                                                                                                                                                       |
| DOI                    | <a href="https://doi.org/10.4649/NEPT.2026.v25i01.D1822">https://doi.org/10.4649/NEPT.2026.v25i01.D1822</a> (DOI will be active only after the final publication of the paper)                                                                                                                                                                                  |
| Citation for the Paper | Ongate, J., Tantisantisom, K. and Aemixay, V., 2026. A modified neural network for predicting the solar photovoltaic power generation using weather and operational parameter. <i>Nature Environment and Pollution Technology</i> , 25(1), D1822. <a href="https://doi.org/10.46488/NEPT.2026.v25i01.D1822">https://doi.org/10.46488/NEPT.2026.v25i01.D1822</a> |

## ABSTRACT

Solar PV systems often face issues feeding power to the local grid due to weather dependence. Although the solar PV system's power generation is not stable, it is predictable and can help maintain grid stability. In this study, a modified neural network is developed to predict the power generation for a 500-kW solar farm under Thailand's climatic conditions. Year-round solar PV plant operational data are used to train the forecasting model, and over 15% of the period is used to predict power generation and validate the actual power profile. Keras provides an effective interface, and TensorFlow is the backend engine for Keras, which is well-suited for high-computation processes. To perform the training and testing, a batch size of 32 and 50 epochs are used as standard parameters, which helps avoid overfitting and increases computational efficiency. It was found that during 75% of the sunshine period, the solar PV system was able to generate 50% of its nominal DC capacity, indicating that the system is operating efficiently. A 0.22 kW average power generation difference is noted between the forecasting model and the actual power profile, indicating that the forecasting is accurate at 99.86% over the testing period. A 2.88 kW to -4.67 kW difference is noted between the actual and predicted power, and the corresponding MAE, MSE, and

RMSE were 0.87, 1.32, and 1.15, respectively. Furthermore, it is concluded that the developed ANN-based forecasting model is highly recommended for commercial purposes to avoid penalties from the grid authority and enhance grid stability.

## INTRODUCTION

The last three decades have been the most significant periods in technological advancement, and electrical energy has become an integral part of human lifestyle. In the 1990s, energy production relied heavily on fossil fuels, such as coal and petroleum. Following coal, natural gas became the predominant energy source in the United States and other developing countries in the 2000s. The limitations of fossil fuel resources, increased costs, and environmental pollution have led to a reduction in the use of conventional energy sources (Jitoko et al., 2021). Furthermore, it was forced to move to renewable energy-based power generation in the late 2010s. Coal and other conventional energy sources have declined significantly, with an increase in renewable energy sources (Dhanraj et al., 2022; Karthikeyan et al., 2022). Several forms of renewable energy systems are available to meet global energy demand, particularly solar energy, which is widely recognised as an alternative energy source to reduce fossil fuel consumption due to its simplicity in operation and its ability to meet conventional loads, ranging from smaller electronic gadgets to spaceships. Solar Photovoltaic (PV) modules are silicon cells that convert photons into electrical energy through the photovoltaic effect (Karthikeyan et al., 2018; Velmurugan et al., 2022). A solar cell is a p-type and n-type semiconductor that favours exciting electrons and creating electron-hole pairs. The solar cell's internal electric field separates electrons and holes, driving them towards the p-type and n-type junctions. This results in electrons flowing to the external circuit, producing current. The electron flow towards the external circuit relies on the photon energy falling on the solar cells (Techo et al., 2024; Chand et al., 2022). That is the primary concern in solar PV power, as solar irradiance is not continuous and power production follows the trend of solar irradiance, leading to grid instability (Mehmood & Al Kalbani, 2025; Chandra et al., 2025). A large-scale solar PV system often faces penalties from the grid authority division due to lower or higher power feed than the expected range (Gandhi et al. 2024).

To improve grid stability and maintain the lifespan of the load, the local grid authority monitors alternative energy sources on a day-ahead and hourly basis, using forecasting tools (Sankari & Kumar, 2023). In recent years, solar PV power forecasting has become essential for medium- and large-scale solar PV power plants. Several forecasting methods exist, including conventional mathematical modelling, machine learning, deep learning, and Artificial Neural Networks (ANNs) (Ahmed et al., 2020; Liu & Du, 2023). Faizan Tahir et al. developed a bi-directional long- and short-term memory model to predict solar PV power generation for the 10 MW Masdar project in the UAE. The Bayesian optimisation technique is adopted to maintain higher accuracy in the prediction. The historical data, including solar irradiance, PV module temperature, ambient temperature, angle of incidence, sun zenith angle, sun altitude, and air mass ratio, are used to train the forecasting model. Notably, hyperparameter tuning played a significant role in improving the accuracy of the power prediction, with Root Mean Square Error (RMSE), Mean Square Error (MSE) and Mean Absolute Error (MAE) being

3.2560%, 21.252%, and 1.2310%, respectively (Tahir et al. 2024). Distributed solar PV power forecasting is conducted for the Netherlands location for the day ahead using 12 different models. Ensembles and deep-learning forecasting models were found to attain lower MAE, effectively eliminate unnecessary parameters, and capture efficient information from predictor variables. Secondly, the physical model shows its importance for day-ahead energy trading by delivering higher profits. Comparatively, random forest and LSTM models are effective for technical performance and reliable for both single and aggregated solar PV systems (Visser et al., 2022). Unlike the other forecasting models, ANN is simpler to compute and requires less computational power. The faster training time makes this prediction model efficient for solar PV power forecasting and applicable to real-time applications (Tavares et al., 2022; Pazikadin et al., 2020). Ledmaouoi et al. developed a hybrid system in which solar power forecasting is performed by an Artificial Neural Network (ANN), and the energy meter is connected to the Internet of Things (IoT) to monitor the forecasting power and real-time power feeding into the grid. The IoT is integrated with energy meters, as the solar PV system is located in the industrial area of Benguerir, Morocco, where energy demand is high. The developed ANN model exhibits accurate power prediction, making the ANN model versatile for energy trading and increasing the power plant's income. The correlation, MAE, and RMSE were found to be 0.694, 9.913, and 13.447, respectively (Ledmaoui et al. 2023). Forecasting power production for bifacial solar PV systems is challenging, as computing the bifacial solar PV and cooling roof system for different albedos is required. The examined system features a roof cooling system, as the bifacial solar system is situated in a desert region with higher PV module temperatures than in other tropical regions. With the help of the ANN model, the microgrid power system operates efficiently and reduces power curtailment with balanced demand-side management. The albedo surface significantly impacts power production; for example, an albedo range of 0.2 to 0.5 resulted in a 7.75% power enhancement, and further increasing the albedo to 0.8 resulted in a 14.96% power enhancement. The MSE for the different albedos of 0.2, 0.5, and 0.8 was  $1.19540e^{-1}$ ,  $1.95796e^{-1}$ , and  $1.60751e^{-1}$ , respectively, and the correlation coefficients were  $9.92416e^{-1}$ ,  $9.88912e^{-1}$ , and  $9.91884e^{-1}$ , respectively (Ghenai et al., 2022). Further, to analyse the forecasting accuracy for hot climatic conditions, a 4 kW solar PV system from Shaqra, Saudi Arabia, was used to predict the DC power and PV module operating temperature. The hybrid model combines Multilayer Feedforward Neural Networks (MFFNNs) with a Genetic Algorithm (GA) and a Multiverse Optimiser (MVO) to enhance forecasting accuracy. Secondly, GA and MVO with MFFNNs favour controlling local minima and optimising the network parameters. It was found that the Normalised Root Mean Square Error (NRMSE), MSE, MAE, and coefficients of determination were  $2.78e^{-3}$ ,  $1.30e^{-1}$ ,  $1.07e^{-2}$ , and 0.997222 for MFFNNs-GA and  $7.11e^{-4}$ ,  $3.33e^{-2}$ ,  $7.22e^{-3}$  and 0.999289 for MFFNNs-MVO, respectively (Talaat et al. 2022). Sahin et al. examined a 500 kW solar PV power plant under Turkey's environmental conditions to find the relationship between weather and power production. Principal Component Analysis (PCA) improves the forecasting accuracy by controlling the feature dimension and ANN captures the complex relationship between features and efficiency. The developed ANN model achieved lower RMSE and MAE values of 23.89 and 25.09, respectively, compared to the Multiple Linear Regression (MLR) model, which had  $R^2$  values of 0.9628 and 0.901 (Sahin et al., 2023). According to the literature above, it is evident that forecasting solar PV power generation has become an essential process for

maintaining grid stability. Several forecasting models are in practice among the ANN models, which gained popularity due to their ease of computation, high prediction accuracy, and the ability to train the model with fewer parameters. The main objective of the present study is given below:

- This study developed a modified neural network called SPFNet, specifically designed to perform the regression task for Thailand's geographical conditions.
- A dynamic model architecture is created based on neural layers, activation functions, and kernel initializers to forecast solar PV power generation.
- The dependent and independent variables of solar PV systems are obtained from the NREL open-source data and analyzed statistically to understand their operational behavior.
- A comparative analysis is performed for the actual and predicted power generations, and the error metrics of MAE, MSE, and RMSE are used to validate the accuracy of the forecasting model.

## 2. MATERIALS AND METHODS

### 2.1 Study Description

This study developed the ANN forecasting model for a 500-kW solar PV power plant in Thailand equipped with monocrystalline PV modules and fixed array tracking systems. According to the geographical conditions, a 20-degree tilt angle and 180-degree azimuth angle are used for PV module mounting, which favours higher power generation and shorter payback periods. To perform solar power forecasting, meteorological and plant performance data are obtained from the NREL open-source data. The raw data contains 24-hour timestamps (hourly interval) of beam irradiance, diffuse irradiance, POA irradiance, ambient temperature, solar cell temperature, and DC array output for one year. Furthermore, to improve the accuracy of the forecasting, daylight periods are used to train the forecasting models.

### 2.2 ANN Model Training

#### 2.2.1 Importing Libraries

Solar PV power forecasting uses open-licensed Anaconda Navigator to create a controlled environment. Furthermore, the Jupyter Notebook processed the data and performed the modelling. Initially, libraries are imported to perform the ANN modelling to predict solar power. Pandas and NumPy are employed to process data manipulation and handle large datasets for numerical operations. TensorFlow and Keras are used to leverage the layers for building and training the ANN model. TensorFlow is more suitable for complex computations and offers higher built-in deployment support compared to PyTorch. Secondly, Scikit-learn is widely used for linear regression but is less effective for deep learning models, and has poor scalability, especially in PV system power forecasting. Furthermore, Matplotlib and Seaborn are used to visualize the dataset, as they are widely

used for solar PV power forecasting. After assigning the libraries, a dataset is imported using the ‘d.read\_csv’ function for preprocessing and modelling tasks.

### **2.2.2 Dataset**

A one-year dataset of solar PV power plant data is imported to build and train the ANN model at an hourly frequency. The main parameters in the dataset include beam irradiance, diffuse irradiance, and the plane of array irradiance, as well as ambient temperature, PV cell temperature, and power output. Other than power output, all the parameters are independent variables, as the power generation depends on the irradiance and temperature profile. Further, the dataframe to numpy array favours splitting the dataset into X and y, where X contains the independent variable and y contain the dependent variable.

### **2.2.3 Splitting, Training and Test Sets**

For training and testing the dataset, the `train_test_split` function from `sklearn.model` is used, which splits X and y into X\_train and y\_train for training, and X\_test and y\_test for testing the model. In this model, 15% of the data is used for testing by setting the parameter to 0.15, which ensures the robustness of the developed forecasting model. The `random_state` parameter was set to 42 to guarantee the reproducibility of the split. To ensure data distribution across the training and testing sets, shapes are printed as `X_train.shape` and `y_train.shape`, `X_test.shape`, and `y_test.shape`.

### **2.2.4 Feature Scaling**

To normalise the data, `StandardScaler` from the ‘`sklearn.preprocessing`’ module is used, as it is essential for determining the features and preparing the variables in a comparable state. In this case, the `standardscaler` is employed for both the input and output variables of the forecasting. The training data are fitted and transformed to have a mean of 0 and a standard deviation of 1; the same conditions are applied to the testing data, respectively.

### **2.2.5 Creating a Neural Network**

The neural network forecasting model is developed using the `create_spfnet` function, and solar PV power plant generation is predicted with Tensorflow and Keras. The list of neuron counts for each layer, activation function, and kernel initialisers plays a significant role in initialising the functions. Dense layers are added to the neuron count, and the input dimensions are initialised. As a result of the forecasting, a final dense layer is added to the neuron and predicts the power output.

### **2.2.6 Train and Test**

Following the development of the neural network, data training is performed with a batch size of 32 and running 50 epochs. A batch size of 32 indicates the number of samples used at a time for computing the gradient and updating the model. The epoch 50 means the model will learn the training data pattern 50 times. The primary reason for selecting 50 epochs is to prevent overfitting. Secondly, increasing the epochs beyond 50 could lead

to higher accuracy in solar power forecasting, but the computational cost is comparatively higher. As an effective method, several studies have adopted 50 epochs as the standard setpoint. Validation occurs for each training session to evaluate the neural network's performance and continually monitors the outcome. The verbose and history functions ensure the display of the progress and error metrics for each epoch, indicating performance and convergence over time.

### 2.2.7 Error metrics

The error metrics are important parameters in solar PV power forecasting, which help indicate the accuracy of the forecasting model and helps to understand how it differs from the actual power generation. Generally, MAE, MSE, and RMSE are primary error metrics that need to be evaluated to quantify the accuracy and robustness of a forecasting model.

**Mean Absolute Error:** MAE is directionless and does not indicate that the predicted values are higher or lower than the actual value. It simplifies the average error magnitude, and the absolute value of the error is taken to treat all errors as a positive contribution, as expressed in Eq. (1).

$$MAE = \frac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i| \quad \dots(1)$$

where,  $y_i$  = actual value,  $\hat{y}_i$  = predicted value, and  $n$  = total number of predictions.

**Mean Square Error (MSE):** MSE is one of the standard error metrics widely used for analysing the prediction error following MAE. It is the square of the errors and is often validated against the actual power generation, as expressed in Eq. (2). The MSE is sensitive to outliers, where larger errors are penalised more, and is often used to train the regression model.

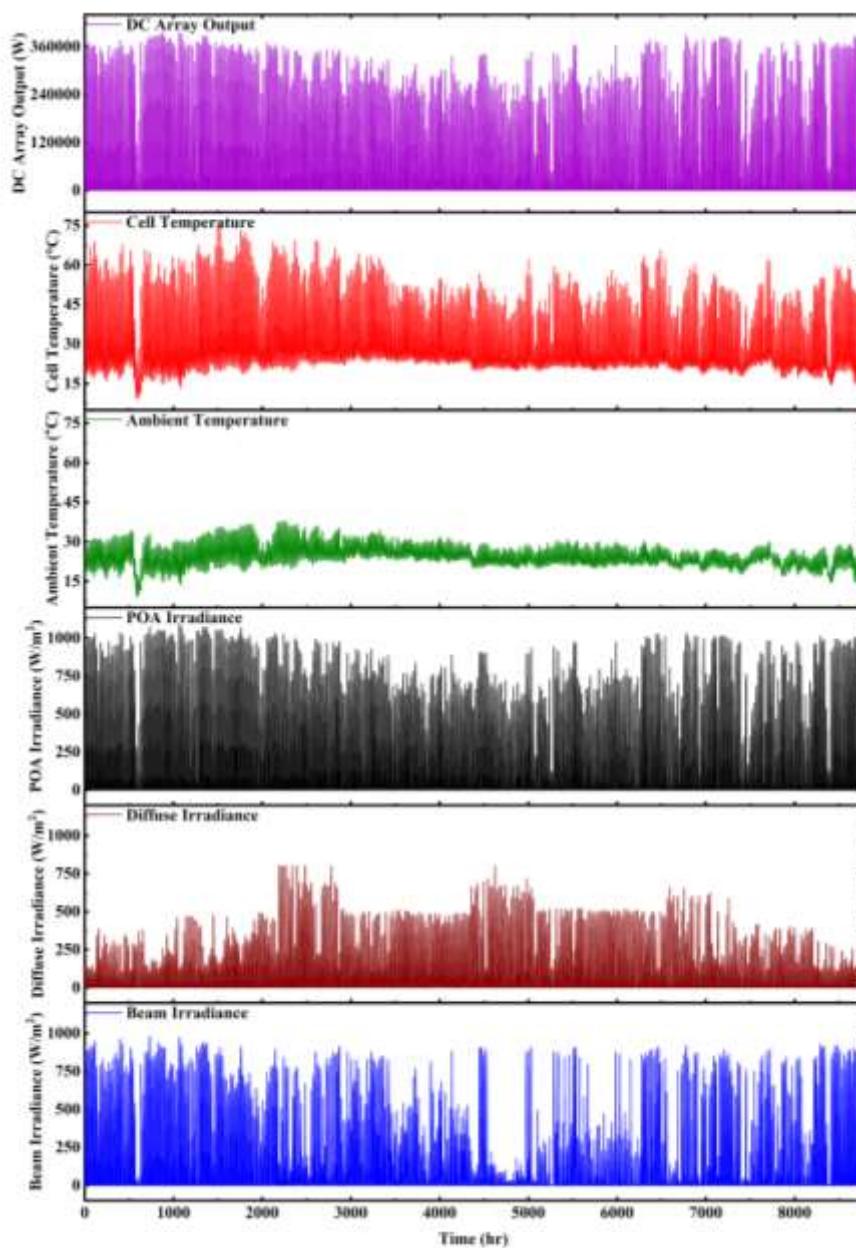
$$MSE = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \quad \dots(2)$$

**Root Mean Square error (RMSE):** RMSE is the square root of MSE as expressed in Eq. (3). RMSE is sensitive to the large errors following MSE because large errors can significantly change the outliers of the error pattern, leading to lower forecasting accuracy. It is noted that the RMSE is non-negative, and when the value is zero, the prediction and actual values are identical.

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2} \quad \dots(3)$$

## 3. RESULTS AND DISCUSSIONS

### 3.1. Input Parameters



**Fig. 1:** Meteorological and plant performance data

This study predicts 500 kW of solar PV power production for the Thailand location. For predicting power production, one year of meteorological data, including irradiance and ambient temperature, as well as plant performance data such as solar cell temperature and power production (as shown in Figure 1), is considered for training the ANN forecasting model. To achieve higher accuracy in forecasting, beam, diffuse, and Plane of Array (POA) irradiance are utilised. Figure 1 depicts raw data in a 24-hour format and is further processed to 12 hours for training the forecasting model. In Thailand, daylight periods naturally start at 6:00 AM on most days of the year. The annual average diffuse irradiance at the examined site is 54.05 W/m<sup>2</sup> and 112.55 W/m<sup>2</sup>, which is lower than the beam irradiance and POA, respectively, due to fewer clouds and other physical obstacles. On the other hand, peak POA irradiance is recorded at 1096.85 W/m<sup>2</sup>, which gives solar PV farms a greater potential to generate higher electrical energy. Under tropical climatic conditions, an increase in solar irradiance

generates higher power, but also increases the solar cell temperature due to the high ambient temperature. Notably, peak ambient and solar cell temperatures reached 38.1 °C and 75.26 °C, which is higher than standard test conditions and considerably deteriorates the power generation. It is well known that solar PV power generation is discontinuous and an increase in solar cell temperature worsens the plant's operation and economic stability. In this case, a high ambient temperature significantly reduces the DC power output during the summer. This study does not focus on reducing the temperature of solar cells. However, solar cell temperature patterns are trained with the ANN model to achieve a temperature-corrected power prediction.

### 3.2. Statistical analysis

As mentioned above, the raw solar PV power plant data are processed into a 12-hour format, which contains a total of 4,408 irradiance values, ambient temperatures, cell temperatures, and DC array power outputs used to train the ANN forecasting model to predict the DC power output. The mean POA irradiance was recorded as 431.41 W/m<sup>2</sup>, and the corresponding DC power was 165.07 kW. In year-round performance, for 25% of the period, the solar farm generates 56.90 kW; notably, the mean and 50% attained 165 kW. Notably, over 75% of the time, the solar farm generates more than 50% of the installed DC capacity, indicating that it is operating on a profitable scale. Diffuse irradiance is lower than beam and POA irradiance in all conditions due to the best absorption. The solar cell is a current generator; an increase in solar irradiance increases both the current profile and the power profile simultaneously. Due to the nature of the solar irradiance pattern, power generation is sinusoidal, and a wide variation is observed over the 12 hours of daytime operation, with a standard deviation (SD) of 114224.17. The difference between beam and POA irradiance is 1.56, but a higher difference in SD is noted with diffuse irradiance. Comparatively, the ambient temperature attained a 3.88 °C deviation, indicating that the solar farm operates under severe thermal stress, resulting in a higher solar cell temperature with a deviation of 11.88 °C.

**Table 1:** Statistical analysis of meteorological and solar farm data

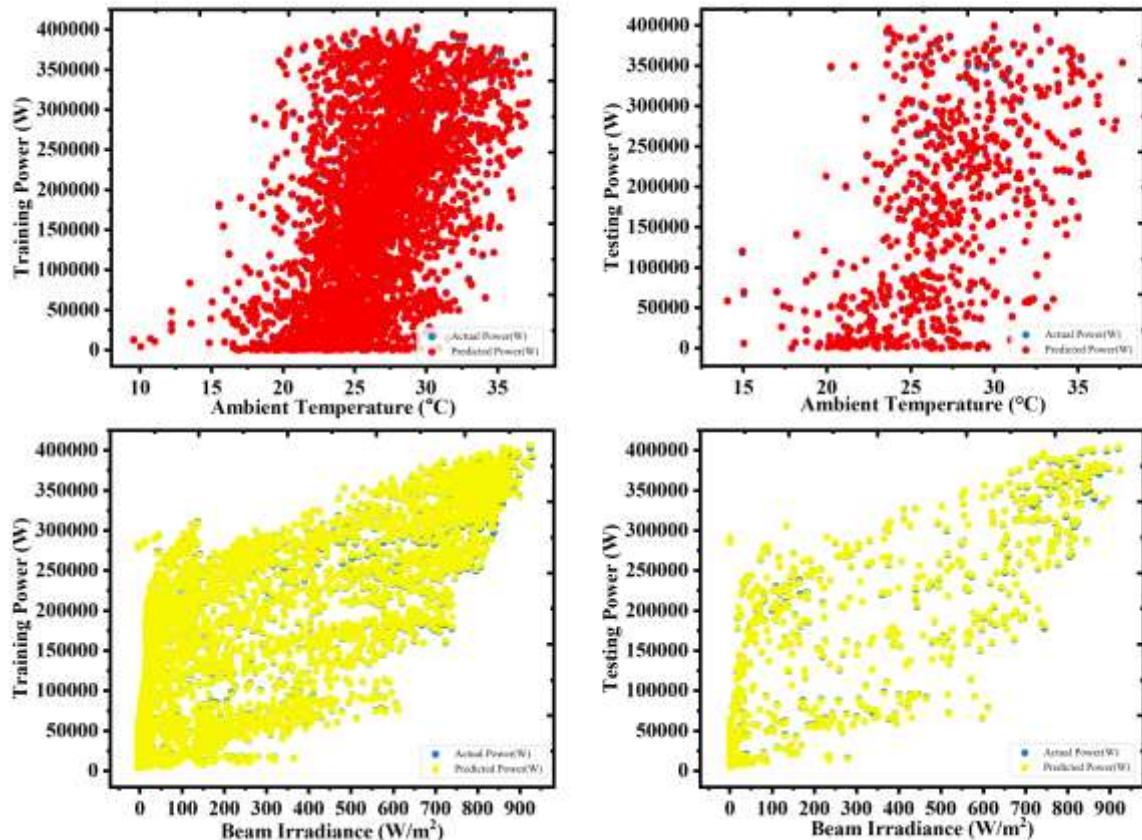
|       | Beam Irradiance (W/m <sup>2</sup> ) | Diffuse Irradiance (W/m <sup>2</sup> ) | Ambient temperature (°C) | Plane of Array Irradiance (W/m <sup>2</sup> ) | Cell Temperature (°C) | DC Array Output (W) |
|-------|-------------------------------------|----------------------------------------|--------------------------|-----------------------------------------------|-----------------------|---------------------|
| count | 4408.00                             | 4408.00                                | 4408.00                  | 4408.00                                       | 4408.00               | 4408.00             |
| mean  | 315.16                              | 207.74                                 | 26.92                    | 431.41                                        | 39.69                 | 165070.88           |
| min   | 0.00                                | 1.00                                   | 9.80                     | 0.93                                          | 10.48                 | 0.00                |
| 25%   | 34.00                               | 89.00                                  | 24.40                    | 147.71                                        | 29.60                 | 56909.29            |
| 50%   | 201.00                              | 159.00                                 | 26.80                    | 416.45                                        | 39.11                 | 165067.66           |
| 75%   | 592.00                              | 308.00                                 | 29.30                    | 674.66                                        | 48.63                 | 258488.94           |
| max   | 980.00                              | 800.00                                 | 38.10                    | 1096.85                                       | 75.27                 | 396421.24           |
| SD    | 304.12                              | 161.91                                 | 3.88                     | 305.66                                        | 11.88                 | 114224.17           |

### 3.3. Training model

In this ANN forecasting model, the dataset is split into training and testing subsets to ensure the robustness of the prediction. Over 365 days, 85% of the data is used for training the ANN model, and the remaining 15% is used to test and validate the model against actual data. Using 310-day dependent and independent variables from solar farm data favours learning the model and relationship of each parameter, delivering an accurate prediction in the testing model. Further, the mean and SD from the training data are applied for training and testing sets, which favours maintaining data leakage and consistency.

### 3.3.1 Error and epochs

Each layer of the developed neural network is iteratively performed, whereas the first layer is configured with a specific number of nodes, activation function, and initialiser. The final layer is appended with a single node to produce the predicted DC array power output. In this case, a neural network with two hidden layers, each containing 32 and 64 nodes, is used. Training data is processed over 50 epochs with a batch size of 32 to fit the model during the training process. Throughout 50 training epochs, the training and validation RMSE value substantially improves. Initially, the training set's RMSE stood at 0.4569, indicating higher prediction errors. However, as training continued, the RMSE consistently decreased, reaching a final value of 0.0093 by epoch 50. Similarly, the validation RMSE experienced a significant reduction, starting at 0.0842 and ending at 0.0101.



**Fig. 2:** Power training/testing model for ambient temperature and beam irradiance

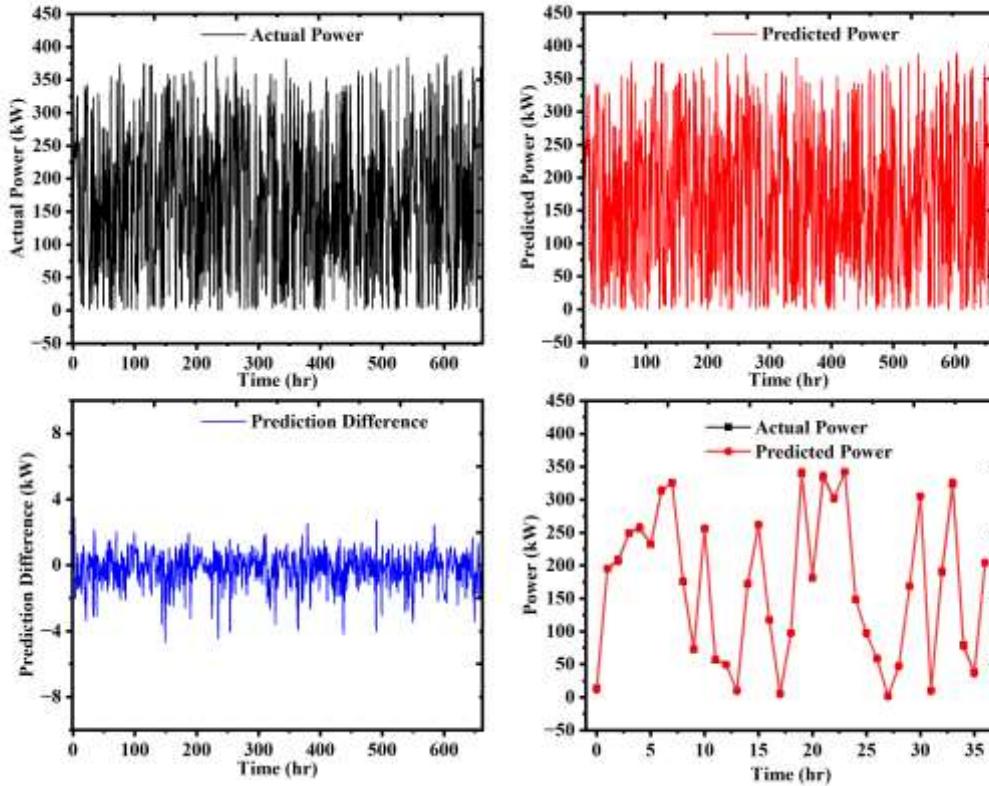
### 3.3.2 Training and testing the model with ambient temperature and beam irradiance

As mentioned earlier, ambient temperature plays a crucial role in power generation as an increase in ambient temperature naturally restricts heat dissipation from the PV module, thereby increasing the temperature of the solar cell. Power training and testing models are plotted for ambient temperature, considering the importance of its correlation with power generation. It is found that higher power production periods are widely observed at ambient temperatures above 20 °C, as temperatures below this threshold typically occur before effective sunshine hours (a typical day in winter). Comparatively, a negligible difference was noted between the actual and predicted power, as the developed ANN model was trained using 310 days of solar power generation data, along with other plant performance and meteorological data, which provided an accurate prediction, as shown in Figure 2. A similar pattern is observed when testing the model against the correlation with ambient temperature. Furthermore, a training and testing model is performed against the beam irradiance to understand energy generation, as the beam irradiance represents the amount of solar irradiance received by the Earth. Although the higher count of power generation noted was less than 200 W/m<sup>2</sup>, solar farms failed to meet 50% of the total installed DC capacity, as solar cells are current generators, and higher solar irradiance favors higher power generation. Secondly, an increase in irradiance higher than 600 W/m<sup>2</sup> favours delivering 350 kW, and beneficially, a second higher power generation count is noted between 750-850 W/m<sup>2</sup>. This indicates that the solar farm effectively converts the solar irradiance into electrical energy and attains higher performance efficiency. The training and testing model of the power profile shows that beam irradiance and ambient temperature follow a similar pattern. The dependent variable, DC power output, maintained a similar pattern to the independent variables of beam irradiance and ambient temperature. These findings indicate that the developed ANN forecasting model accurately predicts the power generation for Thailand's location.

### 3.3.3 Actual and Predicted Power

As mentioned earlier, 85 % of the dataset is used to train the ANN forecasting model, while the remaining 15% is used to test and validate the developed model. Figure 3 depicts actual and predicted power generation for the 500-kW solar farm. The actual average power output of the testing model was 166.296 kW, and the developed ANN forecasting model predicts the power generation of 166.516 kW, which is 0.22 kW higher than the actual power generation. According to the 663 hours of power prediction testing model, the forecasting is 99.86 % accurate and highly reliable for commercial solar farms to avoid penalties from grid authorities. The difference in power prediction was noted between 2.88 kW and -4.67 kW, which is reasonably negligible. Although the power prediction differences are negligible, the root cause behind the high oscillation was mainly attributed to sudden fluctuations in solar irradiance, such as an unexpected cloud passing. In Figure 3, a 36-hour insight view of actual and predicted power is plotted to visualise the error percentage in the developed ANN forecasting model, which is nearly zero or negligible error. Under certain unpredictable weather conditions,

forecasting errors can be observed, but these fluctuations are typically noted for only a short period and are often overlooked in real-time applications.



**Fig 3:** Actual and predicted power profile using ANN model

### 3.4 Error metrics

The error metrics for the developed ANN model indicate an MAE of 0.87, as the actual and predicted power follow a similar trend with minor variations in power generation. Following that, MSE and RMSE obtained 1.32 and 1.15, respectively. Comparatively, there was a minor difference between the MAE and RMSE, indicating that the developed forecasting model has higher efficiency and is less affected by outliers. However, MSE may yield a noticeable error, but it is negotiable, and the forecasting model operates in a stable mode. The RMSE is critical whenever significant outliers are present; in this case, an RMSE of 1.15 is considered a minor error in forecasting accuracy. These error metrics indicate that the prediction deviated slightly by 0.87 kW from the actual power generation profile. Overall, it is concluded that the developed ANN forecasting model is suitable for solar farms in Thailand, and it is recommended that it be utilised for large-scale solar PV systems to prevent incurring surplus charges from the grid authority.

## 4. CONCLUSIONS

In this study, the modified neural network is developed to predict the power generation for a 500-kW solar farm in Thailand. The raw data obtained from the solar farm is processed and converted into 12-hour intervals

to minimize prediction errors, as power generation is zero at night. The dataset is split into X and y variables, where X denotes the independent variables and y denotes the dependent variable. Both dependent and independent variables have undergone testing and training processes with a parameter setting of 0.15, indicating that 15% of the data has been reserved for prediction. The ANN model is trained with a batch size of 32 and 50 epochs, respectively, to enhance prediction accuracy through a series of iterative processes. The statistical analysis indicates that the maximum cell temperature reached 75.27 °C, which is above the STC. During 75% of the period, the DC power output exceeded 258488.94 W. It indicates that the solar farm is operating under severe thermal stress. It is found that the developed forecasting model predicts power generation with an average difference of 0.22 kW. Throughout 663 hours of testing, the model's actual and predicted power generation sums are 110088 kW and 110233.9 kW, respectively. Beneficially modified neural networks attained 0.87, 1.32, and 1.15 of MAE, MSE, and RMSE, respectively. According to the error metrics, the predictions are effective and reliable for large-scale and commercial implementation. Furthermore, it is recommended that future studies consider additional independent variables, such as humidity and atmospheric pressure, to enhance the accuracy of the forecasting model.

## FUNDING SOURCES

This research has received a grant from Kamphaeng Phet Rajabhat University, Thailand.

## ACKNOWLEDGEMENT

We would like to express our gratitude to Karthikeyan Velmurugan of the Smart Energy System Integration Research Unit, Department of Physics, Faculty of Science, Naresuan University, Phitsanulok, Thailand, for his valuable guidance and insightful advice throughout this research.

## NOMENCLATURE

|        |                                        |
|--------|----------------------------------------|
| ANN    | Artificial Neural Network              |
| DC     | Direct Current                         |
| GA     | Genetic Algorithm                      |
| IoT    | Internet of Things                     |
| kW     | kilowatt                               |
| LSTM   | Long Short-Term Memory                 |
| MFFNNs | Multilayer Feedforward Neural Networks |
| MVO    | Multiverse Optimiser                   |
| MAE    | Mean Absolute Error                    |
| MSE    | Mean Square Error                      |
| MLR    | Multiple Linear Regression             |
| NRMSE  | Normalised Root Mean Square Error      |
| NREL   | National Renewable Energy Laboratory   |

|             |                              |
|-------------|------------------------------|
| n           | total number of predictions  |
| PCA         | Principal Component Analysis |
| PV          | Photovoltaic                 |
| POA         | Plane of Array               |
| RMSE        | Root Mean Square Error       |
| SD          | Standard deviation           |
| UAE         | United Arab Emirates         |
| $y_i$       | actual value                 |
| $\hat{y}_i$ | predicted value              |

## REFERENCES

Ahmed, R., Sreeram, V., Mishra, Y and Arif, M.D., 2020. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimisation. *Renewable and Sustainable Energy Reviews*, 124, pp. 109792.

Chandra, K.A., S. Narayan, K.A. Maman, A.A. Chand, D. Prasad, and M.R. Ahmed, A Review of Footstep Energy Harvesting Systems. *IEEE Access*, 2025. 13: p. 87149-87174. DOI: 10.1109/ACCESS.2025.3570963.

Chand, A.A., P.P. Lal, K.A. Prasad, and N.M. Kumar, Chapter 11 - Economics and environmental impacts of solar energy technologies, in Solar Energy Advancements in Agriculture and Food Production Systems, S. Gorjian and P.E. Campana, Editors. 2022, *Academic Press*. p. 391-423.

Dhanraj, J.A., Alkhawaldeh, R.S., De, P.V., Sugumaran, V., Ali, N., Lakshmaiya, N., Chaurasiya, P.K., Priyadharsini,S., Karthikeyan, V, Chowdhury, M.S., Channumsin, S., Sreesawet, S. and Fayaz, H., 2022. Appraising machine learning classifiers for discriminating rotor condition in 50W–12V operational wind turbine for maximising wind energy production through feature extraction and selection process. *Frontiers in Energy Research*, 10.

Gandhi, O., Zhang, W., Kumar, D.S., Rodríguez-Gallegos, C.D., Yagli, G.M., Yang, D., Reindl, T. and Srinivasan, D., 2024. The value of solar forecasts and the cost of their errors: A review. *Renewable and Sustainable Energy Reviews*, 189, pp. 113915.

Ghenai, C., Ahmad, F.F., Rejeb, O. and Bettayeb, M., 2022. Artificial neural networks for power output forecasting from bifacial solar PV system with enhanced building roof surface Albedo. *Journal of Building Engineering*, 56, pp. 104799.

Jitoko, P., E. Kama, U. Mehta, and A. Chand, Vision Based Self-Guided Quadcopter Landing on Moving Platform During Fault Detection. *International Journal of Intelligent Communication, Computing and Networks*, 2021. 2: p. 116-128. DOI: 10.51735/ijiccn/001/24

Karthikeyan, V., Prasanna, P., Sathishkumar, N., Emsaeng, K., Sukchai, S. and Sirisamphanwong, C., 2019. Selection and preparation of suitable composite phase change material for PV module cooling. *International Journal on Emerging Technologies*, 10(4), pp. 385-394.

Karthikeyan, V., Sirisamphanwong, C. and Sukchai, S., 2018. Investigation on Thermal Absorptivity of PCM Matrix Material for Photovoltaic Module Temperature Reduction. *Key Engineering Materials*, 777, pp. 97-101.

Ledmaoui, Y., Fahli, A.E., Chehri, A., Elmaghraoui, A., Aroussi, M.E. and Saadane, R., 2023. Monitoring Solar Energy Production based on Internet of Things with Artificial Neural Networks Forecasting. *Procedia Computer Science*, 225, pp. 88-97.

Liu, Z. and Du, Y., 2023. Evolution towards dispatchable PV using forecasting, storage, and curtailment: A review. *Electric Power Systems Research*, 223, pp. 109554.

Mehmood, A., & Al Kalbani, W. S. A. H. (2025). Design and Impact Analysis of a Grid-Connected Solar Photovoltaic System in Ibri, Oman. *Nature Environment and Pollution Technology*, 24, 1-18.

Pazikadin, A.R., Rifai, D., Ali, K., Malik, M.Z., Abdalla, A.N. and Faraj, M.A., 2020. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. *Science of The Total Environment*, 715, pp. 136848.

Sankari, S. S., & Kumar, P. S. (2023). A Review of Deep Transfer Learning Strategy for Energy Forecasting. *Nature Environment and Pollution Technology*, 22(4), 1781-1793.

Sahin, G., Isik, G. and van Sark, W.G.J.H.M., 2023. Predictive modeling of PV solar power plant efficiency considering weather conditions: A comparative analysis of artificial neural networks and multiple linear regression. *Energy Reports*, 10, pp. 2837-2849.

Tahir, M.F., Tzes, A. and Yousaf, M.Z., 2024. Enhancing PV power forecasting with deep learning and optimising solar PV project performance with economic viability: A multi-case analysis of 10 MW Masdar project in UAE. *Energy Conversion and Management*, 311, pp. 118549.

Talaat, M., Said, T., Essa, M.A. and Hatata, A.Y., 2022. Integrated MFFNN-MVO approach for PV solar power forecasting considering thermal effects and environmental conditions. *International Journal of Electrical Power & Energy Systems*, 135, pp. 107570.

Tavares, I., Manfredini, R., Almeida, J., Soares, J., Ramos, S., Foroozandeh, Z. and Vale, Z., 2022. Comparison of PV Power Generation Forecasting in a Residential Building using ANN and DNN. *IFAC-PapersOnLine*, 55(9), pp. 291-296.

Techo, J., S. Techo, A. Palamanit, E. Saniso, A. Chand, and P. Prasannaa, Enhanced Solar Photovoltaic Power Production Approach for Electric Vehicle Charging Station: Economic and Environmental Aspects. *Nature Environment and Pollution Technology*, 2024. 23: p. 215-223. DOI: 10.46488/NEPT.2024.v23i01.017.

Velmurugan, K., Karthikeyan, V., Sharma, K., Korukonda, T.B., Kannan, V., Balasubramanian, D. and Wongwuttanasantian, T., 2022. Contactless phase change material based photovoltaic module cooling: A statistical approach by clustering and correlation algorithm. *Journal of Energy Storage*, 53, pp. 105139.

Visser, L., AlSkaif, T. and Van Sark, W., 2022. Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution. *Renewable energy*, 183, pp. 267-282.