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ABSTRACT 

Monitoring water quality is essential for human health and environmental sustainability. 

Traditional methods relying on laboratory analysis and point-based sampling often lack sufficient 

spatial and temporal coverage. This study assessed water quality along the Sabarmati Riverfront 

in Ahmedabad, India, using Google Earth Engine (GEE) and Sentinel-2 satellite imagery. Key 

parameters such as pH, turbidity (Tur), Electrical Conductivity (EC), Total Suspended Solids 

(TSS), Total Solids (TS), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Total 
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Phosphorus (TP), Fecal Coliform (FC), and Ammonia (NH₃) were estimated through remote 

sensing. An empirical regression model was developed to relate in-situ data to satellite-derived 

spectral indices. The results revealed significant seasonal and spatial variations, with some areas 

displaying favorable levels of TSS, BOD, and FC. The model exhibited strong predictive 

accuracy for pH, TSS, and TP (R² = 0.80, R² = 0.76, R² = 0.75 respectively), and moderate 

performance for turbidity (R² = 0.62). The integration of remote sensing and GIS enables scalable, 

cost-effective, real-time water quality monitoring, offering critical insights for pollution control 

and water resource management. Future research should explore hyperspectral imaging and 

machine learning to enhance predictive accuracy and broaden the applicability of satellite-based 

monitoring models. 

 

INTRODUCTION 

1.1 Background information 

Water is a vital resource for sustaining life on Earth and significantly contributes to the 

economic and social development of nations (Ingrao et al. 2023). It plays a central role across 

various sectors, including industrial and domestic infrastructure, agriculture, recreation, 

navigation, and water storage systems (Bănăduc et al. 2022). Ensuring water quality through 

regular and continuous monitoring is essential for informed and timely decision-making in 

water resource management (Kapalanga et al. 2021). However, water quality can vary 

substantially across geographical regions, necessitating the consideration of both its quantity 

and quality in strategic planning processes (Kumar et al. 2024). Accurate and real-time data 

accessibility is therefore crucial for the effective distribution and planning of water resources 

at regional scales (Imiya et al. 2023). 

The integration of cloud computing platforms with advanced predictive models has 

demonstrated the potential to enhance decision-making efficiency in water management 

systems (Sherjah et al. 2023). Traditional water quality monitoring approaches, which rely 

heavily on point-based sampling and laboratory analyses, are limited by their spatial and 

temporal coverage. These methods are not only time-intensive and costly but also inadequate 

for capturing the dynamic behaviour of water bodies, particularly in remote or large-scale areas 

(Adjovu et al. 2023; Essamlali et al. 2024). Consequently, there is a growing need for more 

comprehensive, real-time monitoring systems capable of supporting effective environmental 

governance. 

Water quality is typically determined by a range of chemical, physical, and biological 

parameters (Misman et al. 2023). Among these, certain physical and chemical attributes such 
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as chlorophyll-a, turbidity, and coloured dissolved organic matter (CDOM) are classified as 

optically active parameters (Fu et al. 2022), while others—including dissolved oxygen (DO), 

total nitrogen (TN), and total phosphorus (TP)—are considered non-optical parameters (Gao et 

al. 2024). Remote sensing (RS) platforms equipped with optical and thermal sensors—mounted 

on boats, aircraft, or satellites—offer both spatial and temporal data for environmental 

monitoring (Kanjir et al. 2018). These technologies have increasingly been applied to monitor 

variations in water quality and to support the development of improved water management 

strategies (Adjovu et al. 2023). 

Recent studies have advanced the development of algorithms aimed at estimating optically 

active water quality parameters using RS data (Yang et al. 2022). For example, (Maciel et al. 

2023) compared regional retrieval algorithms with established models, evaluating the efficacy 

of Sentinel-2 MultiSpectral Instrument (MSI) indices in extracting chlorophyll-a concentrations 

in optically complex aquatic environments. Similarly, (Bonansea et al. 2019) demonstrated that 

satellite-derived spectral indices exhibit strong correlations within situ measurements of 

optically active water quality parameters. These findings underscore the potential of satellite 

data for operational water quality assessment, particularly when coupled with machine learning 

techniques (Najafzadeh et al. 2023). 

The continuous evolution of cloud computing, machine learning, and big data analytics 

has marked a transformative shift in environmental monitoring practices (Chi et al. 2016; Di et 

al. 2023). Authors (Chen et al. 2022) have provided a comprehensive evaluation of remote 

sensing big data frameworks and techniques, focusing on water extraction and quantitative 

water quality estimation. These advances enable the characterization of multispectral signals, 

which reflect the hydrological, biological, and chemical attributes of water bodies as well as 

the physical properties of the surrounding environment. Spectral data in the 0.36 µm to 2.36 

µm range, particularly within the visible and near-infrared bands (0.4–0.9 µm), have shown 

promising capabilities for detecting water contaminants via their spectral signatures (Seyhan et 

al. 1986). Further exploration of machine learning applications for estimating non-optically 

active parameters is discussed in the subsequent literature review section. 

Unlike previous studies that focused on regional or global models, this study uniquely 

integrates Google Earth Engine (GEE) with regression analysis to estimate water quality 

parameters for the Sabarmati River, enabling scalable and efficient monitoring in a data-limited 

context. 

1.2 Literature Review 



Page 4 of 23 
 

Effective monitoring of inland water quality is essential for managing eutrophication, 

pollution, and ecological degradation, especially in areas experiencing intensified 

anthropogenic activity and climate variability. In recent years, remote sensing (RS) has 

emerged as a valuable tool for observing water quality parameters (WQPs) over broad spatial 

and temporal scales, complementing or even replacing traditional in-situ methods in certain 

contexts. The integration of RS with field measurements has proven effective in capturing 

spatially distributed information on key indicators such as Total Suspended Solids (TSS), Total 

Nitrogen (TN), Total Phosphorus (TP), Chemical Oxygen Demand (COD), and chlorophyll-a. 

For example, (Muhoyi et al. 2022) demonstrated the use of Sentinel-2 imagery in conjunction 

with in-situ sampling to map eutrophication-related contaminants in Zimbabwe’s Lower 

Manyame Sub-catchment (LMS), identifying upstream sources of pollution and highlighting 

nutrient-driven degradation. Similar approaches have been applied in Egypt’s Timsah Lake 

(Seleem et al. 2022) and India’s Renuka Lake (Jally et al. 2024), revealing long-term eutrophic 

conditions exacerbated by anthropogenic pressures. 

Despite these advances, satellite-based monitoring of inland water systems faces technical 

limitations, such as low signal-to-noise ratios, atmospheric interference, and coarse resolution 

in narrow or heterogeneous water bodies. To mitigate these issues, researchers have 

incorporated proximal remote sensing techniques. For instance, (Sun et al. 2022) developed 

empirical algorithms based on spectral reflectance and in-situ concentrations of COD, TN, and 

TP from multiple sites in China, achieving model accuracies exceeding 80–90%. These hybrid 

techniques improve precision while retaining broader observational advantages. Parallel to 

sensor improvements, the adoption of statistical and machine learning methods has enhanced 

retrieval accuracy and interpretability of WQPs. Studies employing multivariate analyses, such 

as principal component analysis (PCA) and varimax rotation, have been instrumental in 

identifying dominant pollution factors, including industrial discharge and ion exchange 

dynamics, as seen in the Daman Ganga River (Seth et al. 2025) and groundwater systems in 

Patna (Zafar et al. 2024). Moreover, artificial intelligence models, including recurrent neural 

networks (RNNs) and ARIMA forecasting methods, have been proposed to dynamically predict 

coastal water quality using RS data (Bodapati 2023). 

Comprehensive reviews as presented in Table 1 further illustrate the expanding role of RS 

in water quality monitoring. These studies categorize RS methods into empirical, semi-

empirical, analytical, and machine learning-based approaches and emphasize the use of both 

optical and microwave sensors for retrieving parameters such as colored dissolved organic 

matter (CDOM), turbidity, TSM, and chlorophyll-a (Yang et al. 2022; Adjovu et al. 2023). The 



Page 5 of 23 
 

increased availability of hyperspectral sensors and unmanned aerial vehicles (UAVs) has 

further enhanced spatial and spectral resolution, enabling near-real-time assessments. 

However, standardization challenges remain. Variability in Water Quality Index (WQI) 

computation methods—such as those applied in the Aksu and Kali rivers (Şener et al. 2017; 

Said et al. 2021) — limits cross-regional comparisons and the operational use of RS data in 

policymaking. Addressing these inconsistencies requires improved model calibration, regional 

adaptation of algorithms, and harmonized data reporting frameworks. Recent assessments (e.g., 

(Tsitsi et al. 2024) ) advocate for deeper integration of RS with ground observations, enhanced 

sensor calibration, and algorithm optimization. These steps are crucial to overcome current 

limitations and realize the full potential of RS for continuous, accurate, and scalable water 

quality monitoring in support of environmental sustainability. 

Table 1: Represents the comparative literature review 

Source Approach WQ Parameters 
Accuracy 

Assessment 
Method 

(Muhoyi et 
al. 2022) 

RS: Sentinel-2 TSS, TP, TN, COD R2 Range: 0.63 – 0.78 Empirical Models 

(Sun et al. 
2022) 

Proximal 
Remote Sensing 

TN, TP, COD R2 Range: 0.84–0.93 

Empirical & 

Machine 

Learning Models 

(Seleem et 
al. 2022) 

RS: Sentinel-2 
and Landsat-8 

Total Suspended 
Matter, Chlorophyll-a 

Ground truth data 
was not available 

Empirical and 

Semi-Analytical 

Models 

(Maciel et 
al. 2023) 

RS: Sentinel 2 Chlorophyll-a R2 Range: 0.77 – 0.98 Empirical Models 

(Zhang et 

al. 2021) 

RS: Sentinel 2 

and Sentinel 3 
Water Quality Index R2 Range: 0.69 - 0.81 

Machine 

Learning Models 

(Jally et al. 

2024) 

RS: Landsat 8 & 

LISS III 

Secchi Disk 
Transparency & 

Trophic State Index 

R2 = 0.94 
Regression 

Models 

(Zafar et al. 

2024) 

GIS with 
Conventional 

Approach  

11 WQ Parameters Poor WQI 
PCA, HCA and 
Interpolation 

Technique 

(Seth et al. 

2025) 

Conventional 

Approach 
17 WQ Parameters Poor WQI 

PCA followed by 

Factor Analysis 

RS: Remote Sensing 

1.3 Contextualizing the objectives 

The main objective of this work is to present a methodology that requires remote sensing 

for the evaluation of the variation in water characteristic as pH, Electrical Conductivity (EC), 

Turbidity (Tur), Total Suspended Solids (TSS), Total Solids (TS), Biochemical Oxygen 

Demand (BOD), Dissolved Oxygen (DO), Total Phosphorus (TP), Fecal Coliform (FC), and 

Ammonia (NH₃) via a regression model and the GEE platform. With that purpose, the intention 

was as follows: 
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• To use different indices and band ratios for water quality determination via Sentinel–2 

satellite images, 

• The Google Earth Engine (GEE) platform is used to obtain satellite images and their 

processing is used to evaluate the water characteristics, 

• Analysis of inland water body located in the Sabarmati Riverfront, Ahmedabad, Gujarat, 

India, 

• Regression model is used to determine the relationships among field data and remote 

sensing data. 

2. MATERIALS AND DATA 

2.1 Study Area 

The Sabarmati Riverfront is located at the coordinates of Latitude: 23.0341367°N and 

Longitude:72.5723255°E. The Sabarmati Riverfront is a waterfront developed along the banks 

of the Sabarmati River in Ahmedabad, India as shown in Figure 1. Since 2012 the waterfront 

has been gradually opened to public as facilities are constructed. The riverbed land is reclaimed 

on both the east and west banks to construct an around 11.25 kilometer long riverfront. The 

project aims to provide Ahmedabad with a meaningful waterfront environment along the banks 

of the Sabarmati River and to redefine the identity of Ahmedabad around the river. The average 

annual rainfall in Ahmedabad city is approximately 782 mm. 

2.2 Field Data 

Field data were collected from 5 sites along the Sabarmati Riverfront as shown in Figure 

2 at a depth of 1 m from the water surface. The samples were collected by keeping the standards 

to follow from collection to transportation to storage until the experiment was conducted. The 

physical and chemical characteristics of water, such as pH, Electrical Conductivity (EC), 

Turbidity (Tur), Total Suspended Solids (TSS), Total Solids (TS), Biochemical Oxygen 

Demand (BOD), Dissolved Oxygen (DO), Total Phosphorus (TP), Fecal Coliform (FC), and 

Ammonia (NH₃) were determined in the NABL Accredited laboratory at Ahmedabad, India. 

The samples were collected on three dates of the months February-March-April 2024 as 

represented in Table 2. 
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2.3 Satellite Data (Google Earth Engine) 

Google Earth Engine (GEE) is used by various researchers and integrates real-world 

applications and visualizations of geospatial datasets through the application of algorithms to 

map, identify and measure variations on Earth’s surface, for real world applications (Haifa et 

al. 2020; Pham-Duc et al. 2023; Velastegui-Montoya et al. 2023). In a study conducted by the 

(Pérez-Cutillas et al. 2023), the most prevalent methodological uses of GEE (22%) were for the 

evaluation and prediction of water resources. The imagery data collected from the Sentinel-2 

satellite with spatial resolution of 10m for B2 (Band 2 with Blue Color bandwidth) , B3 (Band 

3 with Green Color bandwidth), B4 (Band 4 with Red Color bandwidth) and B8 (Band 8 with 

 

Figure 1: Study Area Map of Sabarmati Riverfront showing with Sentinel – 2 FCC satellite image of Sabarmati 

Riverfront. 

 
Figure 2: Representing the sample collection sites over approximately 10 km Sabarmati Riverfront, 

Ahmedabad as a region of interest. 
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Near Infrared bandwidth) were used, to evaluate the water characteristics in line with the field 

collection data sample dates, as shown in Table 3. 

Table 2: Represents the sample collected for the water quality parameters 

S. No. Abbreviation  Parameters Unit 

1 pH pH pH Units 

2 Tur Turbidity mg/L 

3 EC Electrical Conductivity µmho/cm 

4 TSS Total Suspended Solids mg/L 

5 TS Total Solids mg/L 

6 BOD5 Biochemical Oxygen 

Demand of 5 days 

mg/L 

7 DO Dissolved Oxygen mg/L 

8 TP Total Phosphorous mg/L 

9 FC Fecal Coliform mg/L 

10 NH3 Ammonia mg/L 

 
Table 3: Representing the dates of sample collection through Field and Satellite 

Field Sample Collection Date 08th Feb 2024 09th March 2024 10th April 2024 

Satellite Image Collection Date 06th Feb 2024 07th March 2024 06th April 2024 

3. METHODOLOGY 

3.1 Approach (Relationships between remote-sensing and field-based water quality 

parameters) 

Many studies have been conducted with combinations of various bands either individually 

or as ratios of the entire visible wavelength region to monitor the variation in the spectral 

response (Doxaran et al. 2005; Vakili and Jamil 2020). The present study was performed with 

the band range from Blue to NIR to monitor the variation in the spectral response due to a 

change in the various water parameters. 

The methodology can be categorized into three major stages as represented in Table 4 and 

Figure 3. This study illustrated a decision-making system for water quality monitoring with 

Sentinel-2 satellite images using Google Earth Engine (GEE) platform, with a particular 

emphasis on temporal and spatial fluctuations along Ahmedabad's Sabarmati Riverfront. The 

Sentinel-2 data were obtained in February, March, and April of 2024, ensuring that the dates of 

the imagery corresponded with the dates of the collection of water samples. This made it 

possible to precisely record seasonal fluctuations in the quality of the water. Five different 
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locations along the Sabarmati Riverfront were used for the study to capture the spatial 

heterogeneity in the river's water properties as shown in Figure -2. 

Table 4: Represents the main stages for the determination of Water Quality Parameter. 

Stage Description 

1 Use the GEE platform to filter images from Sentinel 2 collections of February 2024, March 

2024 and April 2024 sync with the in-situ sample collection dates. 

2 Applying water index NDWI to automatically identify the water surface that qualifies for 

processing using the GEE platform. 

3 Evaluate the water quality parameters value for each valid image by applying the developed 

correlation expression using pixel values of various bands and their combination with field 

measured data through regression model. 

The primary phase of the procedure is to access and pre-process Sentinel-2 imagery for 

the chosen months of 2024 via the Google Earth Engine (GEE) platform. With its 13 spectral 

bands, Sentinel-2's Multispectral Instrument (MSI) is especially well-suited for tracking 

important water quality metrics, with this study focusing on 10 water quality parameters as 

shown in Table 2. 

 
Figure 3: A broad framework of methodology 

3.2 Regression model using spectral properties 

By examining the spectral reflectance characteristics of satellite images, remote sensing 

technology offers an effective way to estimate water quality indicators. Sentinel-2 provides 

useful information for developing correlations between spectral indices and indicators of water 

quality because of its multispectral bands. The spectral properties of the water body are 

extracted and analyzed using zonal statistics, which compute the statistical values as the mean, 

median, standard deviation, variance, minimum and maximum of the reflectance values for the 

various bands as B2, B3, B4, and B8 bands along with the combination of bands such as B2/B3, 
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Normalized Differential Water Index (NDWI) & Normalized Differential Turbidity Index 

(NDTI) spectral band at all 5 stations. The zonal statistics were extracted based on the 

considered region near each station of sample collection as shown in Table 5. 

                                                               NDWI = (B3 - B8) / (B3 + B8)    …(i)  

                                                                NDTI = (B4 – B3) / (B4 + B3)    …(ii) 

Table 5: Representing the area of polygon plotted to extract zonal statistics at various stations 

Polygon Station S1 S2 S3 S4 S5 

Area (m2) 41063.853 40519.885 28578.369 50656.604 46731.693 

These mean values of reflectance were used as data inputs to create empirical models. 

Furthermore, a correlation study was performed to determine the relationship between the 

spectral data obtained from the satellite and the 10 water characteristics measured in the 

laboratory. Field samples were taken at each of the five locations along the Sabarmati 

Riverfront throughout the designated months to obtain ground truth data for water 

characteristics.  

The linear regression model can be created via the Data Analysis tool in Microsoft Excel 

after the data has been organized, with each parameter being modeled separately. The output 

consists of an R² value that indicates the goodness of fit of the model and regression coefficients 

that show how each spectral band contributes to the prediction of the water quality metrics. 

Higher R² values indicate a more robust correlation between the reflectance data and the 

parameter being modeled for water quality as shown in Table 6. Empirical models based on this 

association are then used to forecast water characteristic concentrations throughout the study 

area by applying them to spectral data. The created expressions are utilized to estimate water 

characteristic concentrations within the GEE, and the results are mapped and displayed to 

produce spatially explicit water quality information. 

By comparing the estimates obtained from satellite data with independent ground truth 

data of water characteristics, the precision of these predictions is validated. The models' 

performance is evaluated by computing the statistical metric R². Modifications are applied as 

needed to improve the models' prediction power. Using Sentinel-2 imagery through the Google 

Earth Engine, this system captures both spatial fluctuations along Ahmedabad's Sabarmati 

Riverfront and temporal fluctuations over the designated months, demonstrating the effective 

and scalable application of these tools for water quality monitoring. This approach offers 

insightful information for regional environmental management and decision-making. 

Table 6: Representing the correlation expression developed using measured ground truth data and mean spectral 

reflectance values 

S. No. Parameters Expressions 
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1. pH 

31.46 − 0.0296 × 𝐵2 + 0.0584 × 𝐵3 − 0.0226 × 𝐵4 − 0.0088 × 𝐵8 −

22.446 × (
B3

B2
) − 16.97 × 𝑁𝐷𝑊𝐼 + 52.249 × 𝑁𝐷𝑇𝐼  

2. Turbidity 

−2311.71 + 2.0317 × 𝐵2 − 2.284 × 𝐵3 + 0.60877 × 𝐵4 − 0.0448 ×

𝐵8 + 1968.82 × (
𝐵3

𝐵2
) − 441.042 × 𝑁𝐷𝑊𝐼 − 2052.5 × 𝑁𝐷𝑇𝐼       

3. 
Electrical 

Conductivity 

9007.85 − 7.87 × 𝐵2 + 10.2 × 𝐵3 − 3.86 × 𝐵4 + 0.529 × 𝐵8 −

7764.93 × (
𝐵3

𝐵2
) + 1207.43 × 𝑁𝐷𝑊𝐼 + 9502.98 × 𝑁𝐷𝑇𝐼   

4. 

Total 

Suspended 

Solids 

−536.082 + 0.68294 × 𝐵2 − 1.45326 × 𝐵3 + 3.21347 × 𝐵4 −

2.2606 × 𝐵8 − 5338.93 × 𝑁𝐷𝑊𝐼 − 7511.93 × 𝑁𝐷𝑊𝐼 − 7511.8 ×

𝑁𝐷𝑇𝐼 + 392.034 × (
𝐵3

𝐵2
)  

5. Total Solids 
−791.931 − 45318.7 × 𝑁𝐷𝑇𝐼 − 15.8 × 𝐵8 − 40432 × 𝑁𝐷𝑊𝐼 +

16.65 × 𝐵4   

6. BOD5 

159.613 − 0.2488 × 𝐵2 − 0.52 × 𝐵3 + 1.577 × 𝐵4 − 0.802 × 𝐵8 −

177.88 × (
𝐵3

𝐵2
) − 2053.87 × 𝑁𝐷𝑊𝐼 − 4061.06 × 𝑁𝐷𝑇𝐼  

7. DO 
−2681.63 +  2.33 × 𝐵2 −  3.524 × 𝐵3 +  1.879 × 𝐵4 −  0.3 × 𝐵8 +

 2249.49 × 𝐵3/𝐵2 −  945.11 × 𝑁𝐷𝑊𝐼 −  4727.05 × 𝑁𝐷𝑇𝐼  

8. 
Total 

Phosphorous 

419.5 −  0.372 × 𝐵2 +  0.624 × 𝐵3 +  0.0057 × 𝐵4 −  0.31 × 𝐵8 −

 358.8 × 𝐵3/𝐵2 − 760.23 × 𝑁𝐷𝑊𝐼 −  71.325 × 𝑁𝐷𝑇𝐼  

9. 
Fecal 

Coliform 

1090.826 −  1.14 × 𝐵2 +  1.414 × 𝐵3 +  1.56 × 𝐵4 −  1.97 × 𝐵8 −

 944.97 ×
𝐵3

𝐵2
−  4997.83 × 𝑁𝐷𝑊𝐼 −  4323.97 × 𝑁𝐷𝑇𝐼  

10. 
Ammonia 

(NH3) 

628.69 −  0.577 × 𝐵2 +  0.655 × 𝐵3 −  0.036 × 𝐵4 −  0.114 × 𝐵8 −

 547.31 × 𝐵3/𝐵2 −  303.51 × 𝑁𝐷𝑊𝐼 +  36.87 × 𝑁𝐷𝑇𝐼  

4. RESULTS AND DISCUSSION 

4.1 Relationships between remote-sensing data and field-based water quality parameters 

The geospatial images of the Sentinel-2 satellite data are utilized to depict the geographical 

distributions of the water quality metrics in three separate months (2024): February, March, and 

April. A crucial resource for evaluating the temporal and geographical changes in the river's 

water quality along the Sabarmati Riverfront is provided in this section. Figure 4 for Optically 

Active Water Characteristics & Figure 5 for Non-Optically Active Water Characteristics, depict 

the distributions of these images, which show important patterns associated with both natural 

and human-caused processes, as well as fluctuations in each water characteristic. A deeper and 

thorough examination of each figure is given in Table 7 for Optically Active Water 

Characteristics and in Table 8 for the Non-Optically Active Water Characteristics, with 

particular attention given to the trends in spatial distribution and any possible ramifications for 

the management of water resources. 
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Table 7: Represents the comparative analysis of Optically Active Water Characterstics. 

Parameter Months Observations Key Insights 

EC 

February 
Increased EC readings in several river 
segments, point to the possible presence 

of dissolved salts. 

• Salinity and pollution from 

dissolved ions are well-
indicated by EC. 

• Management methods should 

concentrate on reducing salt 

levels, particularly during peak 

runoff times, as reflected by 
the seasonal changes in EC. 

March 

The conductivity somewhat decreased, 

presumably because of early rainfall 
dilution, although there are still some 

isolated hotspots. 

April 

Increased EC readings in several river 

segments, point to the possible presence 
of dissolved salts. 

Turbidity 

February 
Significant increases in suspended 

particle matter. 

• Excessive turbidity frequently 

signals problems with water 
quality, including decreased 

light penetration, which 

endangers aquatic life. 

• Decreasing level indicating 
that some sedimentation had 

taken place. 

March 

The turbidity level has somewhat 

decreased, indicating that some 

sedimentation has taken place. 

April 
The turbidity values are relatively 

modest, suggesting cleaner water 

TSS 

February 

TSS levels exhibit a decreasing trend 

from February to April, peaking in 
certain zones, especially in February. 

• Decrease in TSS have the 

potential to less severely harm 

aquatic ecosystems by 
suffocating habitats, increasing 

photosynthesis, and causing 

nutrient overload (Bilotta and 

Brazier 2008). 

March 

April 

TS 

February 

The high TS levels are indicative of 

runoff and pollution sources' suspended 

particulates as well as their dissolved 
salts 

•TS distribution also exhibits a 
pattern similar to that of the 

TSS 

•High TS can deteriorate the 

quality of water for ecological 
and drinking reasons 

(Saalidong et al. 2022). 

March 
The chart for March shows some respite 

in the dissolved loads. 

April 
Hotspot zones, especially in April, might 
be related to runoff or human activity 

upstream of the riverfront. 

 

 February 2024 March 2024 April 2024 

EC 

   

(b) (a) (c) 
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Turbidity 

   

TSS 

   

TS 

   

Figure 4: Represents the spatial distribution of Optically Active Water Characterstics 

 

 

 
Table 8: Represents the comparative analysis of Non-Optically Active Water Characterstics. 

Parameter Months Observations Key Insights 

pH 

February 

The pH distribution seems very regular in 

February, indicating a steady chemical 

composition on the other side of the river. 

•pH levels fluctuate, ranging 
from almost neutral to slightly 

alkaline. 

•Small pH variations indicate 

chemical contamination or 

increased runoff in the early 
stages, thus places exhibiting 

these changes should be 

regularly watched to prevent 
additional damage. 

March 
Shows some geographical variation, 
especially in places where urban runoff 

could affect the quality of the water 

April 

Slight alkalinity increases in temperature 

as April approaches may be a sign of 

increased biological activity 

BOD 

February 
Rising BOD levels point to organic 

material entering the river 
• The observed BOD levels are 

low, and, in few cases, they are 

below the detection level 

according to the data collected 
from the field. 

• Aquatic lives are not 

endangered by decreased BOD 

levels because they maintain 
the amount of oxygen in the 

water (Chapra et al. 2021).  

March 

In summer time organic pollution is 
suggested by the low March and April 

readings. 
April 

(d) 

(g) 

(j) 

(e) 

(h) 

(k) 

(f) 

(i) 

(l) 
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DO 

February A lower BOD level can correlate with 
higher DO levels as lower organic matter 

breaks down and less oxygen is 

consumed, resulting in the spatially 

defined oxygen zones observed in these 
months. 

• Across the three months, 

higher DO levels correlated 
with lower BOD levels. 

• (Nugraha et al. 2020). suggests 

lower organic input treatments 

are necessary, particularly in 

warmer months when oxygen 
depletion might be more severe  

March 

April 

TP 

February 

Comparatively more levels of TP 
dispersion are observed in February. 

• Elevated total phosphorus 

levels are a major cause of 

algal blooms, which can 
severely deteriorate the quality 

of water (Li et al. 2022). 

March 

April 

FC 

February 

A considerable increase in fecal coliform 

levels was observed, especially in 
upstream areas, which suggests that 

rainwater runoff or raw sewage are the 

main possible causes 

•These results highlight how 

crucial it is to enhance water 

treatment strategies and 
management, where intake 

structures are planned to be 

placed to avoid overloading 
pollution. 

•Seasonal increases in FC point 

to possible threats to human 

health, particularly in locations 

where the river is used for 
leisure (Guangzhi et al. 2022).  

March 
March's comparatively low FC readings 
indicate that contamination may have 

been lower during the month's dry spell. 

April 
A considerable increase in fecal coliform 
levels was observed. 

NH3 

February 

The elevated levels in February might 

indicate increasing nutrient 
contamination. 

•Aquatic life may be poisoned 

by high ammonia levels 

(Edwards et al. 2024). 
March Low spatial distribution of ammonia in 

the March & April month. April 

 

 

 

 

 February 2024 March 2024 April 2024 

pH 

   

BOD 

   

(a) (b) (c) 

(d) (e) (f) 



Page 15 of 23 
 

DO 

   

TP 

   

FC 
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Figure 5: Represents the spatial distribution of Non-Optically Active Water Characterstics. 

 

 

 

4.2 OVERALL ANALYSIS 

The spatial representations highlight the distribution of important water quality indicators, 

such as pH, turbidity, EC, Total Suspended Solids (TSS), Total Solids (TS), Total Phosphorous 

(TP), Fecal Coliform (FC), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), 

and Ammonia (NH3). For tracking changes over time, each satellite image is shown for a 

particular date of every three months. Effective management of water resources and 

identification of pollution sources is made possible by this temporal analysis, which provides 

thorough knowledge of how water quality metrics change over the course of many seasons. 

• The satellite imagery of February 2024 shows that certain metrics, such as pH and EC, 

have rather uniform distributions, but other parameters, including TSS and turbidity, 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 

(p) (q) (r) 
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show more localized variability. The maps show places that need more research as 

possible hotspots for pollution where specific characteristics differ from typical values. 

• There appears to be a shift in the distribution of water quality in the images from March 

2024, which might be attributed to fluctuations in seasonal patterns, human activities, or 

rainfall. The influence of runoff and biomass, for example, appears to be reflected in the 

fluctuations in turbidity and TSS concentrations, particularly in populated areas along the 

riverside. 

• The geographical patterns of water quality metrics continue to evolve by April. Desirable 

levels of BOD, FC, and NH₃ in particular regions might indicate stable or lower pollution 

levels. On the other hand, certain regions have relatively high DO levels, suggesting the 

potential for effective interventions or natural healing processes. 

An extensive dataset for comprehending the spatial and temporal variations in the water 

quality of the Sabarmati Riverfront is created on the basis of geospatial images of its 

characteristics. Anthropogenic activities including biomass, and urban runoff are the main 

causes of the notable seasonal fluctuations that are observed across numerous parameters, 

notably between the months of February, March, and April. These deep insights identify regions 

that need targeted management measures and highlight key times when water quality is most 

in danger. The status of the river system can be considered healthy and may be maintained by 

water resource management by addressing the causes of pollution and putting targeted measures 

into place in the future. 

4.3 ACCURACY ASSESSMENT 

It is crucial to test the model's performance with a fresh dataset after it has been calibrated. 

As a result, the model revealed positive forecast parameters related to water quality in various 

scenarios such as pH with R2 = 0.8; TP with R² = 0.75; and TSS with R² = 0.76. The model 

offers an economical and effective way to continuously monitor water quality by applying it to 

Sentinel-2 images taken at different times after it has been validated. 

The estimations of various parameters produced from satellite data are compared with 

experimentally observed values to validate the water quality prediction model. Graphics are 

used as shown in Figure 6, to visualize the comparison and offer insights into the model's 

performance across various parameters, including pH, Turbidity, Electrical Conductivity (EC), 

Total Suspended Solids (TSS), Total Solids (TS), Dissolved Oxygen (DO), Biochemical 

Oxygen Demand (BOD), Total Phosphorus (TP), Fecal Coliform (FC), and Ammonia (NH₃). 

When assessing the degree to which the model's predictions and the actual measurements agree, 

the R2 values are essential. The general connection between the expected and actual values is 
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shown by the trend line in each graph, which provides information about the linearity and 

dependability of the model. 

A strong match is shown by the R2 value of 0.802, which shows that the model explains 

80.2% of the variation in pH. Past studies have shown a positive relationship and high accuracy 

in evaluating the Remote Sensing based derived pH (Pereira et al. 2020; Jiang et al. 2022). 

With an R2 of 0.38, the EC graph indicates that 38% of the variation in EC can be explained by 

the model, demonstrating a weak connection between the observed and predicted values. The 

turbidity graph, with R2 of 0.58, indicates a moderate correlation between the observed and 

expected values. The model accounts for 58% of the turbidity variability, suggesting that it 

accurately describes the overall trend but has difficulty explaining very murky waters. The 

model accounts for 76.5% of the variability in the TSS, according to the TSS validation graph, 

which has a strong R² of 0.765. The Total Solids (TS) graph's R2 value is 0.621. Although the 

trend line is almost straight, it exhibits a slightly underestimated at higher TS levels, much like 

the TSS. The model's inability to fully capture the extent of organic pollution is indicated by 

the BOD graph, which has R2 of 0.362 and indicates lower predictive accuracy. The trend line 

in the validation graph for DO underestimates the concentration of Dissolved Oxygen in low-

oxygen areas but fits rather well at higher oxygen levels, with a modest R2 value of 0.614. R2 

of 0.747 indicates a strong association in the TP validation graph. The model accounts for 

45.1% of the variability in FC levels, according to the Fecal Coliform graph, which has an R2 

of 0.451. The validation graph for Ammonia (NH3) has a R2 value of 0.31, again suggesting a 

lower level of model performance. 
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Figure 6: R2 values for accuracy assessment of Remote-Sensing derived V/s Experimental water quality concentrations. 

 Table 9: Summarizing R² for all parameters 

S. R. No. Parameters R
2
 Range Classification 

1. pH, TSS, TP,  >0.7 Good 

2. Turbidity, TS, DO,  0.5 – 0.7 Moderate 

3. EC, BOD, FC, NH3 <0.5 Weak 

The validation findings demonstrate as in Table 9, that the model performs well for a 

variety of parameters, including pH, TSS, and TP, with R2 values often over 0.7, suggesting a 

robust match. Nevertheless, the model displays more notable departures from the trend line for 

parameters such as NH3, BOD, FC, and DO, with R2 values ranging from 0.31 to 0.62, 

indicating the need for greater refinement. The trend line study shows that although the model 

performs well in most situations when there is a high concentration of physical contaminants, 
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it finds it difficult to represent linear connections in other instances. As a result, even if the 

model works well for assessing water quality generally, further calibration or the use of 

nonlinear modeling approaches would be required to enhance forecasts in regions with more 

severe environmental circumstances. The model's prediction accuracy over a wider variety of 

scenarios might be greatly improved by including more advanced regression techniques or 

machine learning algorithms. 

5. CONCLUSIONS 

This study validated the efficacy of an integrated strategy to assess water quality at 

Ahmedabad's Sabarmati Riverfront, utilizing both in situ measurements and remote sensing 

derived data. By using multitemporal, remote sensing data, natural resource managers can 

benefit from the integrated approach, which is an affordable technology that has been 

demonstrated to be a valuable source of data for defining the water quality status of 

Ahmedabad's Sabarmati Riverfront. Additionally, changes in water quality can be analyzed 

through cloud-based accessibility of the data, that can quickly aid in the assessment of 

environmental issues and possible health hazards. Municipal authorities may face challenges in 

selecting locations to develop water intake structures that supply water to treatment plants. The 

chosen location should ideally be on a river stretch with lower levels of pollution. Through this 

approach using GIS visualizations, authorities can identify spatial water quality indicators and 

select sites with the lowest pollution levels, ensuring a more effective and safer water supply. 

The following future scope can be considered as the possibility, to develop a time series 

of monitoring water quality parameter data integrated with precipitation data and change 

detection in land-use-land-cover patterns for better decision making regarding the variation in 

water characteristics. Also, to enhance prediction accuracy, future studies can integrate machine 

learning algorithms such as Random Forest (RF) and Support Vector Regression (SVR) for 

handling high-dimensional spectral data with nonlinear relationships modeling between 

spectral indices and water quality parameters. Using remote sensing techniques, sediment 

transport and erosion patterns can also be studied to understand their effects on turbidity and 

total suspended solids. On the other hand, the limitations faced during the study are that the 

measured spectral reflectance data should be obtained after thorough spectroscopic 

experimental comparisons. However, the spectral range was considered to be multispectral 

Sentinel-2, whereas the correlation can be developed via hyperspectral remote sensing images. 

Real-time monitoring and analysis of water quality can help prevent pollution, safeguard 

ecosystems, and protect public health by enabling early detection of issues. This approach not 
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only aids in water quality assessment but also supports decision-making related to site 

suitability, offering a valuable tool for regional planning and management. 
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