Prepublished Nature EnVlronment & This is a peer-reviewed prepublished version of the paper
copy Pollution Technology to be published in Vol. 25, No. 1, March 2026 issue

Original Research

Assessing Water Quality through Remote Sensing: A
Regression-Based Approach with Sentinel-2 Data

Mridul S. Seth'f, Mrugen B. Dholakia', Sanjay D. Dhiman?, Umesh. K. Khare®, Jignesh A. Amin*,

Pranavkumar Bhangaonkar® and Dipika Shah®

!Gujarat Technological University, Ahmedabad-382424, Gujarat, India

?Birla Vishvakarma Mahavidyalaya, Vallabh Vidyanagar, Anand-388120, Gujarat, India
3Government Engineering College, Shamlaji Road, Aravali District, Modasa-383315, Gujarat, India
4GTU-School of Engineering and Technology, Ahmedabad-382424, Gujarat, India
Neotech Faculty of Diploma Engineering, Vadodara-384435, Gujarat, India

%Shree Swaminarayan Institute of Technology, Gandhinagar-382428, Gujarat, India
tCorresponding author: Mridul S. Seth; wowsethg@gmail.com

ORCID IDs of Authors

Mridul S Seth: https://orcid.org/0000-0003-4662-6175

Dr. Sanjay D Dhiman: https://orcid.org/0000-0002-4392-6503

Dr. Jignesh A Amin: https://orcid.org/0000-0002-9374-6092

Dr. Pranavkumar Bhangaonkar: https://orcid.org/0000-0001-6925-8796

Key Words Remote sensing, Google earth engine, Regression modeling, GIS, Water quality
monitoring
DOI https://doi.org/10.46488/NEPT.2026.v25101.B4340 (DOI will be active
only after the final publication of the paper)
Citation for Seth, M.S., Dholakia, M.B., Dhiman, S., Khare, U.K., Amin, J., Bhangaonkar, P.
the Paper and Shah, D., 2026. Assessing water quality through remote sensing: A regression-
based approach with Sentinel-2 data. Nature Environment and Pollution
Technology, 25(1), p. B4340. https://doi.org/10.46488/NEPT.2026.v25i01.B4340

ABSTRACT

Monitoring water quality is essential for human health and environmental sustainability.
Traditional methods relying on laboratory analysis and point-based sampling often lack sufficient
spatial and temporal coverage. This study assessed water quality along the Sabarmati Riverfront
in Ahmedabad, India, using Google Earth Engine (GEE) and Sentinel-2 satellite imagery. Key
parameters such as pH, turbidity (Tur), Electrical Conductivity (EC), Total Suspended Solids
(TSS), Total Solids (TS), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Total


https://orcid.org/0000-0001-6925-8796

Phosphorus (TP), Fecal Coliform (FC), and Ammonia (NHs) were estimated through remote
sensing. An empirical regression model was developed to relate in-situ data to satellite-derived
spectral indices. The results revealed significant seasonal and spatial variations, with some areas
displaying favorable levels of TSS, BOD, and FC. The model exhibited strong predictive
accuracy for pH, TSS, and TP (R? = 0.80, R? = 0.76, R?> = 0.75 respectively), and moderate
performance for turbidity (R*= 0.62). The integration of remote sensing and GIS enables scalable,
cost-effective, real-time water quality monitoring, offering critical insights for pollution control
and water resource management. Future research should explore hyperspectral imaging and
machine learning to enhance predictive accuracy and broaden the applicability of satellite-based

monitoring models.

INTRODUCTION
1.1Background information

Water is a vital resource for sustaining life on Earth and significantly contributes to the
economic and social development of nations (Ingrao et al. 2023). It plays a central role across
various sectors, including industrial and domestic infrastructure, agriculture, recreation,
navigation, and water storage systems (Banaduc et al. 2022). Ensuring water quality through
regular and continuous monitoring is essential for informed and timely decision-making in
water resource management (Kapalanga er al. 2021). However, water quality can vary
substantially across geographical regions, necessitating the consideration of both its quantity
and quality in strategic planning processes (Kumar et al. 2024). Accurate and real-time data
accessibility is therefore crucial for the effective distribution and planning of water resources

at regional scales (Imiya et al. 2023).

The integration of cloud computing platforms with advanced predictive models has
demonstrated the potential to enhance decision-making efficiency in water management
systems (Sherjah et al. 2023). Traditional water quality monitoring approaches, which rely
heavily on point-based sampling and laboratory analyses, are limited by their spatial and
temporal coverage. These methods are not only time-intensive and costly but also inadequate
for capturing the dynamic behaviour of water bodies, particularly in remote or large-scale areas
(Adjovu et al. 2023; Essamlali et al. 2024). Consequently, there is a growing need for more
comprehensive, real-time monitoring systems capable of supporting effective environmental

governance.

Water quality is typically determined by a range of chemical, physical, and biological

parameters (Misman ef al. 2023). Among these, certain physical and chemical attributes such
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as chlorophyll-a, turbidity, and coloured dissolved organic matter (CDOM) are classified as
optically active parameters (Fu et al. 2022), while others—including dissolved oxygen (DO),
total nitrogen (TN), and total phosphorus (TP)—are considered non-optical parameters (Gao et
al. 2024). Remote sensing (RS) platforms equipped with optical and thermal sensors—mounted
on boats, aircraft, or satellites—offer both spatial and temporal data for environmental
monitoring (Kanjir ef al. 2018). These technologies have increasingly been applied to monitor
variations in water quality and to support the development of improved water management

strategies (Adjovu et al. 2023).

Recent studies have advanced the development of algorithms aimed at estimating optically
active water quality parameters using RS data (Yang et al. 2022). For example, (Maciel et al.
2023) compared regional retrieval algorithms with established models, evaluating the efficacy
of Sentinel-2 MultiSpectral Instrument (MSI) indices in extracting chlorophyll-a concentrations
in optically complex aquatic environments. Similarly, (Bonansea ez al. 2019) demonstrated that
satellite-derived spectral indices exhibit strong correlations within situ measurements of
optically active water quality parameters. These findings underscore the potential of satellite
data for operational water quality assessment, particularly when coupled with machine learning

techniques (Najafzadeh et al. 2023).

The continuous evolution of cloud computing, machine learning, and big data analytics
has marked a transformative shift in environmental monitoring practices (Chi et al. 2016; Di et
al. 2023). Authors (Chen et al. 2022) have provided a comprehensive evaluation of remote
sensing big data frameworks and techniques, focusing on water extraction and quantitative
water quality estimation. These advances enable the characterization of multispectral signals,
which reflect the hydrological, biological, and chemical attributes of water bodies as well as
the physical properties of the surrounding environment. Spectral data in the 0.36 pm to 2.36
pum range, particularly within the visible and near-infrared bands (0.4—0.9 pm), have shown
promising capabilities for detecting water contaminants via their spectral signatures (Seyhan et
al. 1986). Further exploration of machine learning applications for estimating non-optically

active parameters is discussed in the subsequent literature review section.

Unlike previous studies that focused on regional or global models, this study uniquely
integrates Google Earth Engine (GEE) with regression analysis to estimate water quality
parameters for the Sabarmati River, enabling scalable and efficient monitoring in a data-limited

context.

1.2Literature Review
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Effective monitoring of inland water quality is essential for managing eutrophication,
pollution, and ecological degradation, especially in areas experiencing intensified
anthropogenic activity and climate variability. In recent years, remote sensing (RS) has
emerged as a valuable tool for observing water quality parameters (WQPs) over broad spatial
and temporal scales, complementing or even replacing traditional in-situ methods in certain
contexts. The integration of RS with field measurements has proven effective in capturing
spatially distributed information on key indicators such as Total Suspended Solids (TSS), Total
Nitrogen (TN), Total Phosphorus (TP), Chemical Oxygen Demand (COD), and chlorophyll-a.
For example, (Muhoyi et al. 2022) demonstrated the use of Sentinel-2 imagery in conjunction
with in-situ sampling to map eutrophication-related contaminants in Zimbabwe’s Lower
Manyame Sub-catchment (LMS), identifying upstream sources of pollution and highlighting
nutrient-driven degradation. Similar approaches have been applied in Egypt’s Timsah Lake
(Seleem et al. 2022) and India’s Renuka Lake (Jally et al. 2024), revealing long-term eutrophic

conditions exacerbated by anthropogenic pressures.

Despite these advances, satellite-based monitoring of inland water systems faces technical
limitations, such as low signal-to-noise ratios, atmospheric interference, and coarse resolution
in narrow or heterogeneous water bodies. To mitigate these issues, researchers have
incorporated proximal remote sensing techniques. For instance, (Sun ef al. 2022) developed
empirical algorithms based on spectral reflectance and in-situ concentrations of COD, TN, and
TP from multiple sites in China, achieving model accuracies exceeding 80-90%. These hybrid
techniques improve precision while retaining broader observational advantages. Parallel to
sensor improvements, the adoption of statistical and machine learning methods has enhanced
retrieval accuracy and interpretability of WQPs. Studies employing multivariate analyses, such
as principal component analysis (PCA) and varimax rotation, have been instrumental in
identifying dominant pollution factors, including industrial discharge and ion exchange
dynamics, as seen in the Daman Ganga River (Seth ef al. 2025) and groundwater systems in
Patna (Zafar et al. 2024). Moreover, artificial intelligence models, including recurrent neural
networks (RNNs) and ARIMA forecasting methods, have been proposed to dynamically predict
coastal water quality using RS data (Bodapati 2023).

Comprehensive reviews as presented in Table 1 further illustrate the expanding role of RS
in water quality monitoring. These studies categorize RS methods into empirical, semi-
empirical, analytical, and machine learning-based approaches and emphasize the use of both
optical and microwave sensors for retrieving parameters such as colored dissolved organic

matter (CDOM), turbidity, TSM, and chlorophyll-a (Yang ef al. 2022; Adjovu et al. 2023). The
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increased availability of hyperspectral sensors and unmanned aerial vehicles (UAVs) has

further enhanced spatial and spectral resolution, enabling near-real-time assessments.

However, standardization challenges remain. Variability in Water Quality Index (WQI)
computation methods—such as those applied in the Aksu and Kali rivers (Sener et al. 2017;
Said et al. 2021) — limits cross-regional comparisons and the operational use of RS data in
policymaking. Addressing these inconsistencies requires improved model calibration, regional
adaptation of algorithms, and harmonized data reporting frameworks. Recent assessments (e.g.,
(Tsitsi et al. 2024) ) advocate for deeper integration of RS with ground observations, enhanced
sensor calibration, and algorithm optimization. These steps are crucial to overcome current

limitations and realize the full potential of RS for continuous, accurate, and scalable water

quality monitoring in support of environmental sustainability.

Table 1: Represents the comparative literature review

Accuracy

Source Approach WQ Parameters Assessment Method
S}/[g}(;(gl) et RS: Sentinel-2 TSS, TP, TN, COD R? Range: 0.63 — 0.78 | Empirical Models

, Empirical &
(Sun et al. | Proximal TN, TP, COD R? Range: 0.84-0.93 | Machine
2022) Remote Sensing .

Learning Models
(Seleem et | RS: Sentinel-2 Total Suspended | Ground truth data E?IE:TIACSLI tichlld
al. 2022) and Landsat-8 Matter, Chlorophyll-a | was not available Models y
2713%1%) ¢’ | RS: Sentinel 2 Chlorophyll-a R? Range: 0.77 — 0.98 | Empirical Models
(Zhang et | RS: Sentinel 2 . ) ) i Machine
al. 2021) and Sentinel 3 Water Quality Index R” Range: 0.69 - 0.81 Learning Models
Secchi Disk .
(Jally et al. | RS: Landsat 8§ & 2_ Regression
Transparency & | R"=0.94
2024) LISS TIT Trophic State Index Models
(Zafar et al GIS with PCA, HCA and
" | Conventional 11 WQ Parameters Poor WQI Interpolation
2024) X
Approach Technique

(Seth et al. | Conventional PCA followed by
2025) Approach 17" WQ Parameters Poor WQI Factor Analysis

RS: Remote Sensing

1.3 Contextualizing the objectives

The main objective of this work is to present a methodology that requires remote sensing

for the evaluation of the variation in water characteristic as pH, Electrical Conductivity (EC),
Turbidity (Tur), Total Suspended Solids (TSS), Total Solids (TS), Biochemical Oxygen
Demand (BOD), Dissolved Oxygen (DO), Total Phosphorus (TP), Fecal Coliform (FC), and
Ammonia (NHs) via a regression model and the GEE platform. With that purpose, the intention

was as follows:
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e To use different indices and band ratios for water quality determination via Sentinel-2

satellite images,

e The Google Earth Engine (GEE) platform is used to obtain satellite images and their

processing is used to evaluate the water characteristics,

e Analysis of inland water body located in the Sabarmati Riverfront, Ahmedabad, Gujarat,

India,

e Regression model is used to determine the relationships among field data and remote

sensing data.

2. MATERIALS AND DATA

2.1Study Area

The Sabarmati Riverfront is located at the coordinates of Latitude: 23.0341367°N and
Longitude:72.5723255°E. The Sabarmati Riverfront is a waterfront developed along the banks
of the Sabarmati River in Ahmedabad, India as shown in Figure 1. Since 2012 the waterfront
has been gradually opened to public as facilities are constructed. The riverbed land is reclaimed
on both the east and west banks to construct an around 11.25 kilometer long riverfront. The
project aims to provide Ahmedabad with a meaningful waterfront environment along the banks
of the Sabarmati River and to redefine the identity of Ahmedabad around the river. The average

annual rainfall in Ahmedabad city is approximately 782 mm.

2.2Field Data

Field data were collected from 5 sites along the Sabarmati Riverfront as shown in Figure
2 at a depth of 1 m from the water surface. The samples were collected by keeping the standards
to follow from collection to transportation to storage until the experiment was conducted. The
physical and chemical characteristics of water, such as pH, Electrical Conductivity (EC),
Turbidity (Tur), Total Suspended Solids (TSS), Total Solids (TS), Biochemical Oxygen
Demand (BOD), Dissolved Oxygen (DO), Total Phosphorus (TP), Fecal Coliform (FC), and
Ammonia (NHs) were determined in the NABL Accredited laboratory at Ahmedabad, India.
The samples were collected on three dates of the months February-March-April 2024 as

represented in Table 2.
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Figure 1: Study Area Map of Sabarmati Riverfront showing with Sentinel — 2 FCC satellite image of Sabarmati

Riverfront.
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Figure 2: Representing the sample collection sites over approximately 10 km Sabarmati Riverfront,

Ahmedabad as a region of interest.

2.3Satellite Data (Google Earth Engine)

Google Earth Engine (GEE) is used by various researchers and integrates real-world

applications and visualizations of geospatial datasets through the application of algorithms to

map, identify and measure variations on Earth’s surface, for real world applications (Haifa et
al. 2020; Pham-Duc et al. 2023; Velastegui-Montoya et al. 2023). In a study conducted by the
(Pérez-Cutillas et al. 2023), the most prevalent methodological uses of GEE (22%) were for the

evaluation and prediction of water resources. The imagery data collected from the Sentinel-2
satellite with spatial resolution of 10m for B2 (Band 2 with Blue Color bandwidth) , B3 (Band
3 with Green Color bandwidth), B4 (Band 4 with Red Color bandwidth) and B8 (Band 8 with
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Near Infrared bandwidth) were used, to evaluate the water characteristics in line with the field

collection data sample dates, as shown in Table 3.

Table 2: Represents the sample collected for the water quality parameters

S. No. Abbreviation Parameters Unit
1 pH pH pH Units
2 Tur Turbidity mg/L
3 EC Electrical Conductivity pmho/cm
4 TSS Total Suspended Solids mg/L
5 TS Total Solids mg/L
6 BODs Biochemical Oxygen mg/L

Demand of 5 days

7 DO Dissolved Oxygen mg/L
8 TP Total Phosphorous mg/L
9 FC Fecal Coliform mg/L
10 NH;3; Ammonia mg/L

Table 3: Representing the dates of sample collection through Field and Satellite
Field Sample Collection Date 08th Feb 2024 09th March 2024 | 10th April 2024

Satellite Image Collection Date | 06th Feb 2024 07th March 2024 | 06th April 2024

3. METHODOLOGY

3.1Approach (Relationships between remote-sensing and field-based water quality

parameters)

Many studies have been conducted with combinations of various bands either individually
or as ratios of the entire visible wavelength region to monitor the variation in the spectral
response (Doxaran et al. 2005; Vakili and Jamil 2020). The present study was performed with
the band range from Blue to NIR to monitor the variation in the spectral response due to a

change in the various water parameters.

The methodology can be categorized into three major stages as represented in Table 4 and
Figure 3. This study illustrated a decision-making system for water quality monitoring with
Sentinel-2 satellite images using Google Earth Engine (GEE) platform, with a particular
emphasis on temporal and spatial fluctuations along Ahmedabad's Sabarmati Riverfront. The
Sentinel-2 data were obtained in February, March, and April of 2024, ensuring that the dates of
the imagery corresponded with the dates of the collection of water samples. This made it

possible to precisely record seasonal fluctuations in the quality of the water. Five different
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locations along the Sabarmati Riverfront were used for the study to capture the spatial

heterogeneity in the river's water properties as shown in Figure -2.

Table 4: Represents the main stages for the determination of Water Quality Parameter.

Stage Description

1 Use the GEE platform to filter images from Sentinel 2 collections of February 2024, March
2024 and April 2024 sync with the in-situ sample collection dates.

2 Applying water index NDWI to automatically identify the water surface that qualifies for
processing using the GEE platform.

3 Evaluate the water quality parameters value for each valid image by applying the developed
correlation expression using pixel values of various bands and their combination with field

measured data through regression model.

The primary phase of the procedure is to access and pre-process Sentinel-2 imagery for
the chosen months of 2024 via the Google Earth Engine (GEE) platform. With its 13 spectral
bands, Sentinel-2's Multispectral Instrument (MSI) is especially well-suited for tracking
important water quality metrics, with this study focusing on 10 water quality parameters as

shown in Table 2.

Cloud Computing based approach to determine WQ Parameter,
Sabarmati Riverfront, Ahmedabad

| ]

Optical RS using GEE to Satellite Image processing Spectral Band Extraction
to extract water body using from Sentinel 2

NDWI

process Sentinel 2 satellite
image.

Correlation of satellite

Field based Water bands and field-based water
Collection data.
Water Quality value from Validation and prediction
Laboratory WQ parameter

Figure 3: A broad framework of methodology
3.2Regression model using spectral properties

By examining the spectral reflectance characteristics of satellite images, remote sensing
technology offers an effective way to estimate water quality indicators. Sentinel-2 provides
useful information for developing correlations between spectral indices and indicators of water
quality because of its multispectral bands. The spectral properties of the water body are
extracted and analyzed using zonal statistics, which compute the statistical values as the mean,
median, standard deviation, variance, minimum and maximum of the reflectance values for the

various bands as B2, B3, B4, and B8 bands along with the combination of bands such as B2/B3,
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Normalized Differential Water Index (NDWI) & Normalized Differential Turbidity Index
(NDTI) spectral band at all 5 stations. The zonal statistics were extracted based on the

considered region near each station of sample collection as shown in Table 5.

NDWI= (B3 -B8)/ (B3 +BS) ...(1)
NDTI = (B4 -B3)/ (B4 + B3) ...(i1)
Table 5: Representing the area of polygon plotted to extract zonal statistics at various stations
Polygon Station S1 S2 S3 S4 S5
Area (m%) 41063.853 40519.885 28578.369 50656.604 46731.693

These mean values of reflectance were used as data inputs to create empirical models.
Furthermore, a correlation study was performed to determine the relationship between the
spectral data obtained from the satellite and the 10 water characteristics measured in the
laboratory. Field samples were taken at each of the five locations along the Sabarmati
Riverfront throughout the designated months to obtain ground truth data for water

characteristics.

The linear regression model can be created via the Data Analysis tool in Microsoft Excel
after the data has been organized, with each parameter being modeled separately. The output
consists of an R? value that indicates the goodness of fit of the model and regression coefficients
that show how each spectral band contributes to the prediction of the water quality metrics.
Higher R? values indicate a more robust correlation between the reflectance data and the
parameter being modeled for water quality as shown in Table 6. Empirical models based on this
association are then used to forecast water characteristic concentrations throughout the study
area by applying them to spectral data. The created expressions are utilized to estimate water
characteristic concentrations within the GEE, and the results are mapped and displayed to

produce spatially explicit water quality information.

By comparing the estimates obtained from satellite data with independent ground truth
data of water characteristics, the precision of these predictions is validated. The models'
performance is evaluated by computing the statistical metric Rz Modifications are applied as
needed to improve the models' prediction power. Using Sentinel-2 imagery through the Google
Earth Engine, this system captures both spatial fluctuations along Ahmedabad's Sabarmati
Riverfront and temporal fluctuations over the designated months, demonstrating the effective
and scalable application of these tools for water quality monitoring. This approach offers

insightful information for regional environmental management and decision-making.

Table 6: Representing the correlation expression developed using measured ground truth data and mean spectral

reflectance values

S.No. Parameters Expressions
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31.46 — 0.0296 x B2 + 0.0584 x B3 — 0.0226 x B4 — 0.0088 x B8 —

1. pH B3
22.446 X (E) —16.97 x NDWI + 52.249 x NDTI
—2311.71 + 2.0317 X B2 — 2.284 X B3 + 0.60877 X B4 — 0.0448 X
2. Turbidity B3
B8 + 1968.82 x (E) — 441.042 x NDWI — 2052.5 x NDTI
3 Electrical 9007.85 — 7.87 X B2 + 10.2 X B3 — 3.86 X B4 + 0.529 X B8 —
" Conductivity 7764.93 x (%) +1207.43 x NDWI + 9502.98 x NDTI
Total —536.082 + 0.68294 X B2 — 1.45326 X B3 + 3.21347 X B4 —
4. Suspended  2.2606 x B8 — 5338.93 x NDWI — 7511.93 x NDWI — 7511.8
Solids NDTI + 392.034 X (=)
—791.931 — 45318.7 x NDTI — 15.8 X B8 — 40432 x NDWI +
5. Total Solids
16.65 x B4
159.613 — 0.2488 X B2 — 0.52 X B3 + 1.577 x B4 — 0.802 x B8 —
6.  BODs os
177.88 x (5) —2053.87 x NDWI — 4061.06 X NDTI
, oo —2681.63 + 233X B2 — 3524 x B3 + 1.879 X B4 — 0.3 x B8 +
' 2249.49 x B3/B2 — 945.11 x NDWI — 4727.05 x NDTI
. Total 419.5 — 0.372 x B2 + 0.624 x B3 + 0.0057 X B4 — 0.31 X B8 —
" Phosphorous  358.8 x B3/B2 — 760.23 x NDWI — 71.325 x NDTI
Fecal 1090.826 — 1.14 x B2 + 1.414 x B3 + 1.56 x B4 — 1.97 x B8 —
9.
Coliform 944.97 x 22 — 4997.83 x NDWI — 4323.97 x NDTI
" Ammonia  628.69 — 0.577 X B2 + 0.655 x B3 — 0.036 x B4 — 0.114 x B8 —
" (NHy) 547.31 x B3/B2 — 303.51 x NDWI + 36.87 x NDTI

4. RESULTS AND DISCUSSION

4.1 Relationships between remote-sensing data and field-based water quality parameters

The geospatial images of the Sentinel-2 satellite data are utilized to depict the geographical
distributions of the water quality metrics in three separate months (2024): February, March, and
April. A crucial resource for evaluating the temporal and geographical changes in the river's
water quality along the Sabarmati Riverfront is provided in this section. Figure 4 for Optically
Active Water Characteristics & Figure 5 for Non-Optically Active Water Characteristics, depict
the distributions of these images, which show important patterns associated with both natural
and human-caused processes, as well as fluctuations in each water characteristic. A deeper and
thorough examination of each figure is given in Table 7 for Optically Active Water
Characteristics and in Table 8 for the Non-Optically Active Water Characteristics, with
particular attention given to the trends in spatial distribution and any possible ramifications for

the management of water resources.
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Table 7: Represents the comparative analysis of Optically Active Water Characterstics.
Parameter | Months Observations Key Insights
Increased EC readings in several river e Salinity and pollution from
February | segments, point to the possible presence | dissolved ions are well-
of dissolved salts. indicated by EC.
The conductivity somewhat decreased, l Management methods should
EC March presumably because of early‘ rainfall | concentrate on reducing salt
dilution, although there are still some | levels, particularly during peak
isolated hotspots. runoff times, as reflected by
Increased EC readings in several river | the seasonal changes in EC.
April segments, point to the possible presence
of dissolved salts.
February | Significant increases in  suspended ® Excessive turbidity frequently
ry particle matter. mgngls p.roblen.ls with water
quality, including decreased
L The turbidity level has somewhat light penetration, which
Turbidity March decreased, indicating that some | endangers aquatic life.
sedimentation has taken place. e Decreasing  level indicating
. The turbidity values are relatively | that some sedimentation had
April .
modest, suggesting cleaner water taken place.
eDecrease in TSS have the
February potential to less severely harm
TSS levels exhibit a decreasing trend | aquatic ecosystems by
TSS March from February to April, peaking in | suffocating habitats, increasing
certain zones, especially in February. photosynthesis, and causing
April nutrient overload (Bilotta and
Brazier 2008).
The high TS levels are indicative of |TS distribution also exhibits a
February runoff and pollution sources' suspended | pattern similar to that of the
particulates as well as their dissolved | TSS
salts eHigh TS can deteriorate the
TS M The chart for March shows some respite | quality of water for ecological
arch . . S
in the dissolved loads. and drinking reasons
Hotspot zones, especially in April, might | (Saalidong et al. 2022).
April be related to runoff or human activity
upstream of the riverfront.
February 2024 March 2024 April 2024
| (a) 7 } I (b) / ] | (c) /

EC |

Page 12 of 23

o



Turbidity A | | —
== =
| @ / 1 1w /

TSS | A | I _t
: ) = =
| ) y 1 1w /

TS |

w8

/

4—' i

Figure 4: Represents the spatial distribution of Optically Active Water Characterstics

Table 8: Represents the comparative analysis of Non-Optically Active Water Characterstics.
Parameter | Months Observations Key Insights
The pH distribution seems very regularin |epH levels fluctuate, ranging
February | February, indicating a steady chemical | from almost neutral to slightly
composition on the other side of the river. | alkaline.
Shows some geographical variation, eSmall pH variations indicate
u March especially in places where urban runoff | chemical contamination or
p could affect the quality of the water increased runoff in the early
Slight alkalinity increases in temperature stages, thus places exhibiting
Aori ; . these changes should be
pril as April approaches may be a sign of
. . . . regularly watched to prevent
increased biological activity "
additional damage.
Rising BOD levels point to organic |e The observed BOD levels are
February - . . .
material entering the river low, and, in few cases, they are
below the detection level
March according to the data collected
. . . . | from the field.
BOD In summer time organic pollution is . .
suggested by the low March and April *Aquatic  lives —are  not
. endangered by decreased BOD
: readings. e
April levels because they maintain
the amount of oxygen in the
water (Chapra ef al. 2021).
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BOD |

e Across the three months,
February | A lower BOD level can correlate with | higher DO levels correlated
higher DO levels as lower organic matter | with lower BOD levels.
DO breaks down and less oxygen is (e (Nugraha et al 2020). suggests
March consumed, resulting in the spatially | lower organic input treatments
defined oxygen zones observed in these | are necessary, particularly in
April months. warmer rnqnths when oxygen
depletion might be more severe
February e Elevated total phosphorus
Comparatively more levels of TP levels are a major cause of
TP March di . b din Feb algal blooms, which can
ispersion are observed in February. : :
severely deteriorate the quality
April of water (Li et al. 2022).
A considerable increase in fecal coliform [@These results highlight how
levels was observed, especially in | crucial it is to enhance water
February | upstream areas, which suggests that | treatment  strategies  and
rainwater runoff or raw sewage are the | management, where intake
main possible causes structures are planned to be
FC March's comparatively low FC readings | Placed to avoid overloading
March indicate that contamination may have pollutlon.. ] )
been lower during the month's dry spell. [*Seasonal increases in FC point
to possible threats to human
April A considerable increase in fecal coliform heflth’ particularly in locations
levels was observed. where the river is used for
leisure (Guangzhi et al. 2022).
The elevated levels in February might eAquatic life may be poisoned
February | indicate increasing nutrient | by  high ammonia levels
NH; contamination. (Edwards et al. 2024).
March Low spatial distribution of ammonia in
April the March & April month.
February 2024 March 2024 April 2024
[ (a) 7 7 1 o / 1 | «© 7
| = | | - | =
JE] JB JB
| (9) (/ 1 1 (e / 1 | /
~ | | /i"'.
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Figure 5: Represents the spatial distribution of Non-Optically Active Water Characterstics.

4.2 OVERALL ANALYSIS

The spatial representations highlight the distribution of important water quality indicators,
such as pH, turbidity, EC, Total Suspended Solids (TSS), Total Solids (TS), Total Phosphorous
(TP), Fecal Coliform (FC), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO),
and Ammonia (NH3). For tracking changes over time, each satellite image is shown for a
particular date of every three months. Effective management of water resources and
identification of pollution sources is made possible by this temporal analysis, which provides

thorough knowledge of how water quality metrics change over the course of many seasons.

e  The satellite imagery of February 2024 shows that certain metrics, such as pH and EC,

have rather uniform distributions, but other parameters, including TSS and turbidity,
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show more localized variability. The maps show places that need more research as

possible hotspots for pollution where specific characteristics differ from typical values.

e  There appears to be a shift in the distribution of water quality in the images from March
2024, which might be attributed to fluctuations in seasonal patterns, human activities, or
rainfall. The influence of runoff and biomass, for example, appears to be reflected in the
fluctuations in turbidity and TSS concentrations, particularly in populated areas along the

riverside.

e  The geographical patterns of water quality metrics continue to evolve by April. Desirable
levels of BOD, FC, and NH3 in particular regions might indicate stable or lower pollution
levels. On the other hand, certain regions have relatively high DO levels, suggesting the

potential for effective interventions or natural healing processes.

An extensive dataset for comprehending the spatial and temporal variations in the water
quality of the Sabarmati Riverfront is created on the basis of geospatial images of its
characteristics. Anthropogenic activities including biomass, and urban runoff are the main
causes of the notable seasonal fluctuations that are observed across numerous parameters,
notably between the months of February, March, and April. These deep insights identify regions
that need targeted management measures and highlight key times when water quality is most
in danger. The status of the river system can be considered healthy and may be maintained by
water resource management by addressing the causes of pollution and putting targeted measures
into place in the future.

4.3 ACCURACY ASSESSMENT

It is crucial to test the model's performance with a fresh dataset after it has been calibrated.
As a result, the model revealed positive forecast parameters related to water quality in various
scenarios such as pH with R* = 0.8; TP with R? = 0.75; and TSS with R? = 0.76. The model
offers an economical and effective way to continuously monitor water quality by applying it to

Sentinel-2 images taken at different times after it has been validated.

The estimations of various parameters produced from satellite data are compared with
experimentally observed values to validate the water quality prediction model. Graphics are
used as shown in Figure 6, to visualize the comparison and offer insights into the model's
performance across various parameters, including pH, Turbidity, Electrical Conductivity (EC),
Total Suspended Solids (TSS), Total Solids (TS), Dissolved Oxygen (DO), Biochemical
Oxygen Demand (BOD), Total Phosphorus (TP), Fecal Coliform (FC), and Ammonia (NH3).
When assessing the degree to which the model's predictions and the actual measurements agree,

the R? values are essential. The general connection between the expected and actual values is
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shown by the trend line in each graph, which provides information about the linearity and

dependability of the model.

A strong match is shown by the R? value of 0.802, which shows that the model explains
80.2% of the variation in pH. Past studies have shown a positive relationship and high accuracy
in evaluating the Remote Sensing based derived pH (Pereira et al. 2020; Jiang et al. 2022).
With an R? of 0.38, the EC graph indicates that 38% of the variation in EC can be explained by
the model, demonstrating a weak connection between the observed and predicted values. The
turbidity graph, with R? of 0.58, indicates a moderate correlation between the observed and
expected values. The model accounts for 58% of the turbidity variability, suggesting that it
accurately describes the overall trend but has difficulty explaining very murky waters. The
model accounts for 76.5% of the variability in the TSS, according to the TSS validation graph,
which has a strong R2 of 0.765. The Total Solids (TS) graph's R? value is 0.621. Although the
trend line is almost straight, it exhibits a slightly underestimated at higher TS levels, much like
the TSS. The model's inability to fully capture the extent of organic pollution is indicated by
the BOD graph, which has R* of 0.362 and indicates lower predictive accuracy. The trend line
in the validation graph for DO underestimates the concentration of Dissolved Oxygen in low-
oxygen areas but fits rather well at higher oxygen levels, with a modest R* value of 0.614. R?
of 0.747 indicates a strong association in the TP validation graph. The model accounts for
45.1% of the variability in FC levels, according to the Fecal Coliform graph, which has an R?
of 0.451. The validation graph for Ammonia (NH3) has a R? value of 0.31, again suggesting a

lower level of model performance.
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Figure 6: R? values for accuracy assessment of Remote-Sensing derived V/s Experimental water quality concentrations.
Table 9: Summarizing R? for all parameters
S. R. No. Parameters R’ Range | Classification
1. pH, TSS, TP, >(0.7 Good
2. Turbidity, TS, DO, 0.5-0.7 Moderate
3. EC, BOD, FC, NH; <0.5 Weak
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The validation findings demonstrate as in Table 9, that the model performs well for a

variety of parameters, including pH, TSS, and TP, with R? values often over 0.7, suggesting a

robust match. Nevertheless, the model displays more notable departures from the trend line for

parameters such as NHi;, BOD, FC, and DO, with R? values ranging from 0.31 to 0.62,

indicating the need for greater refinement. The trend line study shows that although the model

performs well in most situations when there is a high concentration of physical contaminants,
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it finds it difficult to represent linear connections in other instances. As a result, even if the
model works well for assessing water quality generally, further calibration or the use of
nonlinear modeling approaches would be required to enhance forecasts in regions with more
severe environmental circumstances. The model's prediction accuracy over a wider variety of
scenarios might be greatly improved by including more advanced regression techniques or

machine learning algorithms.

5. CONCLUSIONS

This study validated the efficacy of an integrated strategy to assess water quality at
Ahmedabad's Sabarmati Riverfront, utilizing both in situ measurements and remote sensing
derived data. By using multitemporal, remote sensing data, natural resource managers can
benefit from the integrated approach, which is an affordable technology that has been
demonstrated to be a valuable source of data for defining the water quality status of
Ahmedabad's Sabarmati Riverfront. Additionally, changes in water quality can be analyzed
through cloud-based accessibility of the data, that can quickly aid in the assessment of
environmental issues and possible health hazards. Municipal authorities may face challenges in
selecting locations to develop water intake structures that supply water to treatment plants. The
chosen location should ideally be on a river stretch with lower levels of pollution. Through this
approach using GIS visualizations, authorities can identify spatial water quality indicators and

select sites with the lowest pollution levels, ensuring a more effective and safer water supply.

The following future scope can be considered as the possibility, to develop a time series
of monitoring water quality parameter data integrated with precipitation data and change
detection in land-use-land-cover patterns for better decision making regarding the variation in
water characteristics. Also, to enhance prediction accuracy, future studies can integrate machine
learning algorithms such as Random Forest (RF) and Support Vector Regression (SVR) for
handling high-dimensional spectral data with nonlinear relationships modeling between
spectral indices and water quality parameters. Using remote sensing techniques, sediment
transport and erosion patterns can also be studied to understand their effects on turbidity and
total suspended solids. On the other hand, the limitations faced during the study are that the
measured spectral reflectance data should be obtained after thorough spectroscopic
experimental comparisons. However, the spectral range was considered to be multispectral
Sentinel-2, whereas the correlation can be developed via hyperspectral remote sensing images.
Real-time monitoring and analysis of water quality can help prevent pollution, safeguard

ecosystems, and protect public health by enabling early detection of issues. This approach not
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only aids in water quality assessment but also supports decision-making related to site

suitability, offering a valuable tool for regional planning and management.
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