

Review Article

Effects of Climate Change on Drought: A Systematic Review of Drought Indices and Climate Change

Chebrolu Madhu Sudhan¹, Seenu P. Z.^{1†}, Sri Lakshmi Sesha Vani Jayanthi², D. Harinder¹, Mahaboob Peera Kamatalam³

¹Department of Civil Engineering, VNRVJIET, Hyderabad, India

²Department of Civil Engineering, NIT, Warangal, India

³Srinivasa Ramanujan Institute of Technology, Ananthapuram, India

†Corresponding author: Seenu P Z; seenu.pz1503@gmail.com

0000-0002-1347-3742

Key Words	Climate change, Drought frequency, Drought indices, Drought measurement, Climate impact, Reliability of indices
DOI	https://doi.org/10.46488/NEPT.2026.v25i01.B4341 (DOI will be active only after the final publication of the paper)
Citation for the Paper	Madhu Sudhan, C., Seenu P. Z., Jayanthi, S.L.S.V., Harinder, D. and Kamatalam, M.P., 2026. Effects of climate change on drought: A systematic review of drought indices and climate change. <i>Nature Environment and Pollution Technology</i> , 25(1), p. B4341. https://doi.org/10.46488/NEPT.2026.v25i01.B4341

ABSTRACT

Global weather patterns are greatly impacted by climate change, making droughts more frequent and severe, especially in regions with limited adaptation capacity. This review evaluates the strengths and limitations of widely used drought indices in the context of climate change. Our analysis identifies the Standardized Precipitation Evapotranspiration Index (SPEI) and the Normalized Difference Vegetation Index (NDVI) as the most robust tools for monitoring drought under current and projected climate scenarios, with CMIP6 models indicating increased drought risk for vulnerable regions such as South Asia. The integration of remote sensing and artificial intelligence enhances the accuracy and adaptability of drought monitoring. The findings highlight the need for region-specific frameworks and actionable recommendations for researchers, policymakers, and technologists to improve drought resilience and management strategies.

INTRODUCTION

Environmental and climate change have been profound over the past century; severe natural calamities, such as droughts and floods, have been triggered by global heating, leading to changes in water distribution throughout the hydrological cycle (Leng et al. 2015). Accelerated population growth and climate change have emerged as the most significant obstacles to sustainable human resource development and the conservation of natural systems. Humans have modified drought characteristics during the Anthropocene, so they may no longer be regarded as “natural hazards” in their entirety (Van Loon et al. 2016; Haile et al. 2020). Drought is generally

characterised as an abnormal lack of moisture compared to a standard reference point, but it is more specifically categorised depending on the particular phase of the water cycle in which these deviations in moisture emerge (Wilhite and Glantz 1985).

The concept of drought lacks a broadly agreed-upon definition. According to (McMahon and Diaz Arenas 1982), drought is a prolonged period of arid weather that affects the water supply, producing a moisture scarcity for human use. The drought phenomenon has long been a focal point of interest among ecologists. Research publications titled “Drought” have been published since at least the 1920s (Gorham and Kelly 2018) and the ecological effects of drought have long been studied. Due to climate model forecasts of increasingly frequent, severe and pervasive water shortages, curiosity has grown in this subject in recent decades (Stocker et al. 2013). Globally, the impact of drought on terrestrial ecosystems has increased over the last century, as confirmed by many investigations (Schwalm et al. 2017; Du et al. 2018). Generally, the drought’s severity can be measured by drought indices using the drought indicators.

Drought is a complex phenomenon, often described as a prolonged period of water scarcity that results from significant moisture deficits compared to historical norms. It directly impacts agriculture, water supply, ecosystems and economies. Historically, droughts have triggered severe consequences, including famines and ecosystem degradation. Unlike other natural hazards, drought’s onset and termination are often slow and challenging to predict, making it particularly devastating. Understanding drought in the context of climate change is increasingly critical as climate models project more frequent, severe and widespread water shortages in the coming decades (Rahman 2017; Wilhite 2000).

Various drought indicators and indices have been developed to quantify and monitor drought severity, each tailored to specific aspects of the hydrological cycle and regional characteristics. For instance, indices such as the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and the Palmer Drought Severity Index (PDSI) are widely utilized but have varying degrees of effectiveness in capturing drought dynamics under changing climatic conditions (Dixit et al. 2022). These indices help contextualize drought severity, offering critical insights for policymakers and researchers. However, traditional methods often struggle with the challenges posed by climate change, such as non-stationarity and the increasing influence of human activities on hydrological patterns.

The main aim of this review paper is to provide a comprehensive synthesis of current research and understanding regarding the correlation between climate change and drought. The review systematically incorporates recent studies to analyze drought indices and indicators, emphasizing their applicability in evolving climatic conditions. A detailed evaluation of the 25 most widely recognized drought indices is presented, focusing on their methodological strengths, limitations and relevance to contemporary research challenges. These indices are assessed within the context of changing climate scenarios to analyze the research undertaken on the connection between drought and climate variability. Most past reviews have focused either on specific drought indices

or particular geographic regions, whereas this paper provides a broader comparative evaluation of 25 indices in the context of climate change, addressing a critical gap in current literature.

The study also explores the potential for integrating advanced technologies such as remote sensing and artificial intelligence to develop hybrid drought indices that address the limitations of traditional approaches. By highlighting these advancements, the review underscores the need for innovative, region-specific frameworks to enhance drought resilience.

This review synthesizes recent advancements in drought monitoring to address critical gaps in understanding how traditional and emerging indices perform under evolving climate conditions. By evaluating the robustness of drought indices across historical, CMIP5, and CMIP6 scenarios, we identify those most resilient to temperature-driven hydrological shifts and non-stationary climatic patterns. The analysis systematically compares their efficacy in capturing drought impacts across meteorological, agricultural, hydrological, and ecological domains, emphasizing regional applicability and scalability. Furthermore, we explore the potential of integrating remote sensing and artificial intelligence to overcome limitations in data resolution, socio-economic integration, and real-time adaptability. Through this synthesis, the review provides a foundation for developing adaptive frameworks that enhance drought resilience, offering actionable insights for researchers and policy-makers to bridge the gap between theoretical advancements and practical implementation in water resource management.

2. METHODOLOGY

To achieve the aim and objectives of this research, a systematic and comprehensive approach was employed to analyse the correlation between climate change and drought, with a specific focus on drought indices and their applicability under evolving climatic conditions. The methodology began with a thorough review of existing scientific literature and research papers on climate change, drought characteristics and drought indices, including peer-reviewed journals, IPCC reports and datasets from CMIP5 and CMIP6 models. Relevant studies from the past two decades were prioritized to ensure the inclusion of recent advancements and findings. Publicly available datasets, including those from climate models and remote sensing technologies, were gathered to provide a robust basis for analyzing drought patterns and their connection to climate variability. The study then categorized droughts into distinct types—meteorological, agricultural, hydrological, socio-economic, ecological, groundwater and flash droughts—to ensure a comprehensive understanding of the phenomenon. Drought indicators and indices, such as the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI) and other composite indices, were identified and evaluated, focusing on their methodological strengths, limitations and applicability in the context of climate change. The CMIP6 Scenario Model Intercomparison Project was utilized to analyse future drought projections under different emission and socio-economic pathways. A comparative analysis of CMIP5 and CMIP6 models was performed to understand the advancements in sensitivity and accuracy in predicting drought conditions.

The study also explored the potential of remote sensing and artificial intelligence for drought monitoring and management, examining existing hybrid drought indices and proposing frameworks for integrating advanced technologies to improve the accuracy and applicability of drought monitoring tools. Gaps in existing methodologies were identified, particularly in terms of data availability, spatial resolution and the inclusion of socio-economic factors in drought assessment. Challenges related to non-stationarity in climate models and the increasing influence of anthropogenic activities on hydrological cycles were also analyzed. Based on the findings, region-specific and innovative frameworks were proposed to enhance drought resilience and improve monitoring and mitigation strategies. Recommendations for improving water resource governance and addressing the economic impacts of drought were included to assist policymakers in developing effective strategies. This systematic approach ensured that the research covered all aspects of the complex relationship between climate change and drought, providing a detailed evaluation of drought indices and proposing advanced methodologies for drought monitoring and mitigation. Methodology Adopted for the Systematic Review is shown in Fig.1.

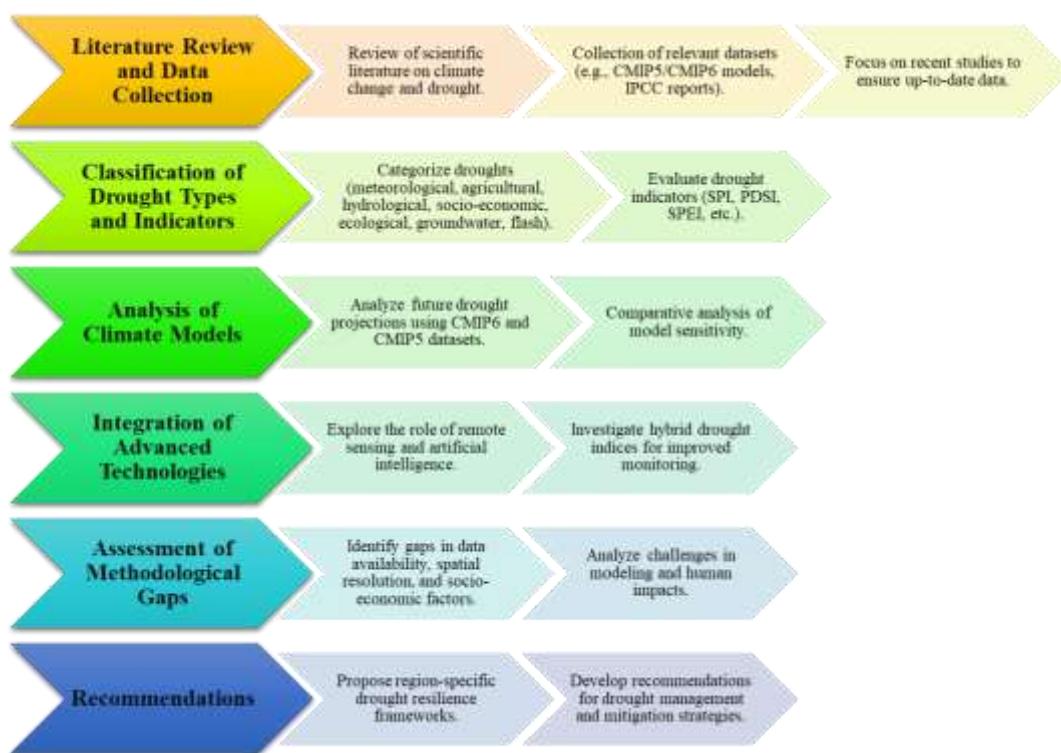


Fig. 1: Methodology Adopted for the Systematic Review

A rigorous search and screening process ensured extensive coverage and reduced bias in this review. We searched Scopus, Web of Science, and Google Scholar for recent peer-reviewed drought indices and climate change literature. We also incorporated pertinent IPCC reports and carefully chosen grey literature on CMIP5, CMIP6 forecasts, and AI-based drought monitoring frameworks to capture growing trends and state-of-the-art methodologies.

About 500 publications were found using keywords like “drought indices,” “climate change,” “CMIP5,” “CMIP6,” “remote sensing,” and “AI-based drought monitoring.” About 150 full-text articles were eligible after removing duplicates and assessing titles and abstracts for relevance. About 50 core papers were selected for further examination based on methodological rigour, relevance to climate-based drought assessment, and contribution to indices comparative understanding. Figure 2 shows a PRISMA-style flowchart of research inclusion and exclusion. This narrative review synthesises information from multiple sources, however we included only peer-reviewed and high-impact research in the final comparative matrix. Since the review was a comprehensive, comparative overview rather than a quantitative meta-analysis, GRADE or risk-of-bias score was not performed. The Results and Discussion sections give theme evaluation and index ranking based on chosen studies. The manuscript cites 123 references for contextual and conceptual support, but only 50 core studies made the systematic review matrix.

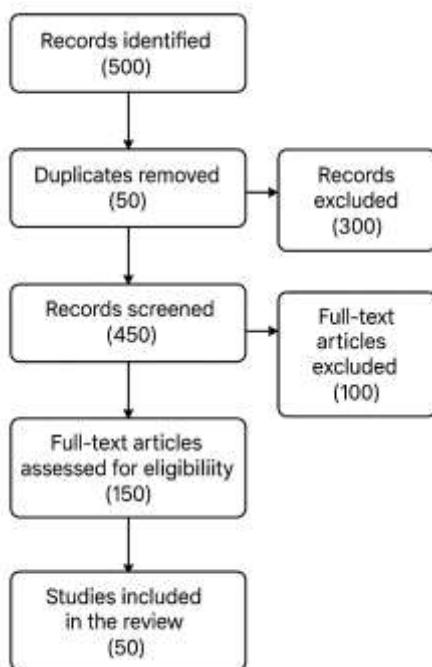


Fig. 2: PRISMA-style flow diagram of the literature screening and selection process

While this review does not directly apply artificial intelligence (AI) methods, it systematically examines how AI has been integrated into drought monitoring and index development in the existing literature. Our review process included identifying studies that utilize machine learning and other AI techniques to process remote sensing data, develop hybrid indices, and improve drought prediction accuracy. These studies were analyzed to understand the current state, advantages, and challenges of AI in drought research. Our methodology thus provides a comprehensive synthesis of AI’s role in advancing drought monitoring, as reflected in recent scientific work.

2.1. Ranking System for Drought Indices

To objectively assess and compare the robustness of drought indices for monitoring under changing climatic conditions, we developed a transparent ranking system based on measurable criteria. The choice of criteria was informed by the need to evaluate indices according to their scientific rigor, practicality, and suitability for diverse climate scenarios, as recommended in the literature on drought indicators and indices (World Meteorological Organization & Global Water Partnership 2016).

2.1.1 Criteria for Ranking

We selected the following six criteria, each relevant to the effective application of drought indices in operational and research contexts:

- i. Climate Sensitivity: Measures the extent to which the index accounts for temperature, precipitation, and evapotranspiration, reflecting its responsiveness to climate change.
- ii. Data Requirement: Evaluates the ease of obtaining the input data required for the index, including data availability and accessibility.
- iii. Spatial Resolution: Assesses the suitability of the index for application at local, regional, or global scales.
- iv. Temporal Resolution: Considers the frequency and flexibility of monitoring (e.g., daily, monthly, seasonal, annual).
- v. Performance under Projected Climate Scenarios (CMIP5/CMIP6): Rates the index's reliability and adaptability under current and future climate model projections.
- vi. Operational Usability: Reflects the ease of implementation, interpretability, and integration into existing drought early warning systems or policy frameworks.

2.1.2 Scoring Method

Each index was scored on a scale of 1 (low) to 5 (high) for each criterion, based on a review of published literature, expert consensus, and operational case studies. The total score for each index was calculated by summing the scores across all criteria, providing a quantitative basis for comparison. This approach ensures that the ranking is transparent, reproducible, and grounded in both scientific and practical considerations (Dikici 2020; Patil et al. 2023; Jain et al. 2015).

3. CLASSIFICATION OF DROUGHTS

The droughts are being recognised as a known natural calamity among water scientists, agricultural specialists, ecological researchers, geographers and forecasters (Ashok et al. 2020). According to Wilhite and Glantz, there are four distinct types of droughts. Meteorological factors include insufficient precipitation; agricultural factors include insufficient soil moisture to sustain crop growth; hydrological factors include deficiency in streamflow and groundwater resources; and social factors include the inability to fulfil water requirements (Wilhite and Glantz 1985).

The conceptual definition of drought provides an overview of its fundamental ideas and a general explanation of the physical processes involved. This involves the lack of rainfall in a meteorological drought, soil moisture in an agricultural drought, water in lakes and streams in a hydrological drought and water availability for water management (Mishra and Singh 2010; Wilhite 2000; Mukherjee et al 2018; Ezzahra et al. 2023). A summary visual representation of these drought classes is presented in Fig. 3 (Wilhite and Glantz, 1985).

Drought problems and threats were thoroughly investigated and studied. The goal was to study its effects on agriculture, water and ecosystems. This knowledge was used to create adaptable and sustainable strategies and solutions (Iqbal et al. 2020; Seleiman et al. 2021; Wahab A et al. 2022). Further classification details are given in Table 1 (Wilhite and Glantz, 1985; Mishra and Singh, 2010; Mukherjee et al., 2018) .

Table 1: Different types of Drought Classification and their Description

Type of Drought	Description
Meteorological Drought	Insufficient precipitation compared to normal levels over specific time scales (e.g. decadal, annual, monthly). Regional and climate-specific.
Agricultural Drought	Inadequate soil moisture to meet the needs of crops and pastures during critical growth stages, leading to reduced agricultural productivity.
Hydrological Drought	Deficiency in surface and groundwater resources, affecting streamflow, reservoir levels and the overall hydrological cycle.
Socio-Economic Drought	Water scarcity impacts society and industry, disrupting trade and reducing access to essential water-dependent commodities and services.
Ecological Drought	Prolonged water shortages that disrupt ecosystem functions, services and biodiversity, often exceeding ecosystems' adaptive capacities.
Groundwater Drought	Long-term decline in underground water supplies caused by reduced recharge rates or over-extraction.
Flash Drought	Rapid onset and intensification of drought conditions, often affecting multiple regions in a short timeframe.

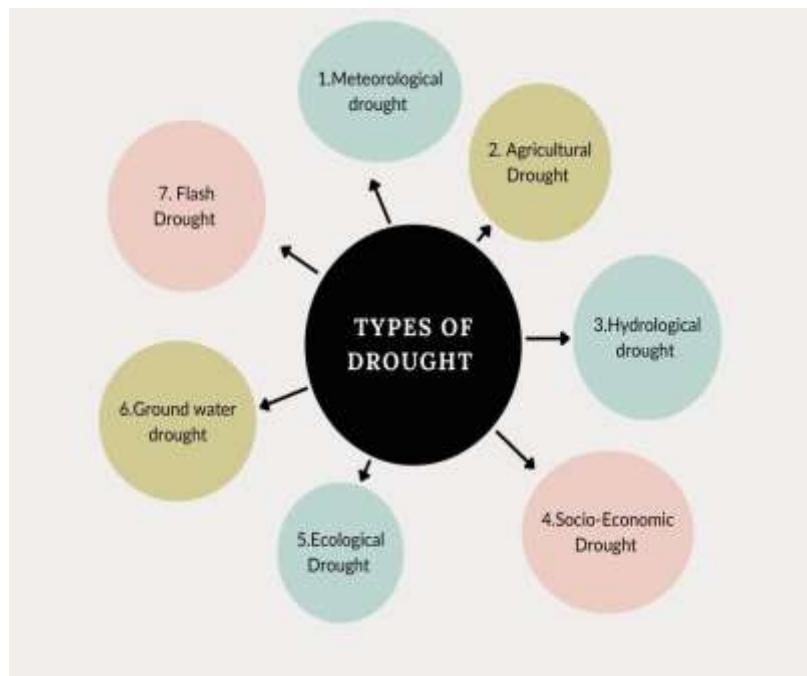


Fig. 3: Pictorial Representation of the existing Drought Classes

4. DROUGHT INDICATORS AND INDICES

4.1 Drought Indicators

Drought indicators and indices play a critical role in understanding, monitoring and managing drought conditions. They provide quantitative and qualitative measures to assess the severity, duration and spatial extent of droughts. Indicators generally rely on meteorological, hydrological, agricultural, and socio-economic data to reflect the specific components of drought, whereas indices combine multiple datasets into a single value for decision-making purposes (Salehnia et al. 2020; Kulkarni 2020).

These tools are essential for researchers, policymakers and water resource managers to identify drought conditions, predict potential impacts and implement mitigation strategies. Effective drought indices enable a comprehensive analysis by capturing changes in climatic factors such as precipitation, temperature, evapotranspiration and water availability.

The evaluation of drought indices is especially relevant in the context of climate change, as shifts in temperature and precipitation patterns intensify the frequency and severity of droughts. Modern advancements, such as the integration of remote sensing data and artificial intelligence techniques, have further enhanced the accuracy of drought indicators, enabling real-time monitoring and improved predictions (Dakhil et al. 2024).

Bachmair et al. (2016) referred to drought indicators and indices collectively as tools to characterize and quantify droughts, highlighting their widespread application in global drought research.

4.2 Drought Indices

An index is typically calculated using statistical methods such as normalization or by combining multiple processes to produce a single value. Using available data, an index measures drought duration and severity, offering a comprehensive overview for decision-making. It provides a single numerical value that combines hydrological and meteorological variables, including temperature, evapotranspiration, precipitation, runoff and other indicators of water availability. Decision support tools used to assess drought intensity, duration and severity rely on specific indices and indicators (Botterill and Hayes 2012). In the drought-monitoring community, hydrological cycles, drought indicators and indices are often interchangeable (Hayes et al. 2021). Common drought indicators, such as precipitation, temperature, groundwater levels, streamflow and soil moisture, are widely used across different regions. In contrast, drought indices are determined and analyzed based on hydro-climatic factors that influence drought. These indices represent singular quantities (Hayes et al. 2021).

The key characteristics of a drought are its intensity, duration and geographic extent. Among these, the primary factor for drought analysis is the severity of the drought (Tigkas 2015). Given the multiple factors contributing to drought, several composite drought indices—RAI, PDSI, SPI, RDI, SPEI, CMI, SPDI, SRI and others—have been developed to monitor drought conditions by integrating individual remote sensing drought indices. Here is a list of the drought indices:

4.2.1 Rainfall Anomaly Index (RAI): The proposal was first put up by Van-Rooy in 1965, The operation of this method relies on the comparison of computed precipitation with random values that span from (-3 to +3). There are ten categories assigned to the variations in precipitation. Furthermore, it is executed on both a yearly and monthly basis (Smakhtin and Hughes 2007). The aforementioned research has assessed the effectiveness of RAI in specific, uniform regions classified by moist to moderate climates. It has identified the precipitation patterns and variations, as well as the intensity and frequency of rainfall (Costa and Rodrigues 2017; Siddharam and Kambale 2020; Goswami 2018). While a study by (Loukas et al 2003) looked at RAI's performance in temperate climate stations in Greece, where summers often have negative precipitation values, no data on RAI's performance in dry and extremely dry climates is available. In these climates, extended warm dry period has severely skewed precipitation and many zero precipitation data (Raziei et al. 2015).

4.2.2 Palmer drought severity index (PDSI): (Palmer,1965), PDSI bases its definition of drought on soil moisture, precipitation and temperature. Four main factors—precipitation, temperature, soil moisture and evapotranspiration—need to be calculated through sophisticated formulation in order to calculate the PDSI, which is employed on a monthly basis. PDSI is a soil moisture algorithm (Ntale, H.K. Gan, T.Y. 2003; Van der Schrier et al. 2011) that is calculated for areas that are comparatively uniform. This drought warning system is among the most advanced and precise available. Though it is a useful tool for identifying long-term drought on a monthly basis, the PDSI is not appropriate for characterising short-term drought on a weekly basis (Hong and

Wilhite 2004). The categorisation of precipitation patterns based on index values provides a comprehensive scale to assess the severity of deviations from average rainfall (Table 2).

Table 2: PDSI Classification and its Range

PDSI Range	Classification
4 or above	Extremely wet
0.5 to 0.99	Very wet
-0.49 to 0.49	Normal
-0.5 to -0.99	Moderate drought
-4 or less	Extreme drought

4.2.3 Standardised Precipitation Index (SPI): McKee et al 1933, developed the SPI index in 1993. This index is calculated by dividing with standard deviation after subtracting the mean precipitation from the actual precipitation. Calculations are based on precipitation data for 3, 6, 12, 24 and 48 months. The use of SPI varies according to the chance of precipitation at different time scales. Assessing meteorological droughts through the use of the (SPI) (Diani et al. 2019; Bhunia et al. 2020; Li et al. 2020). Furthermore, it has the ability to forecast droughts before they happen and assists in determining drought's intensity (Funk and Shukla 2020). SPI classification and range is listed in Table 3. This index is less complex in terms of processing requirements compared to the Palmer index (Yihdego et al. 2019; Liu et al. 2021).

Table 3: SPI Classification and Range

SPI Range	Classification
2 or above	Extremely wet
1.5 to 1.99	Very wet
-0.99 to 0.99	Normal
-1.49 to -1	Moderate drought
-1.99 to -1.5	Severe drought
-2 or below	Extreme drought

Presently, individuals responsible for organising and making decisions on drought are aware that the (SPI) serves multiple purposes and comprehends its specific significance. In addition, they acknowledge that the input data values in SPI have the potential to be altered and they consider this to be a restriction of the index (Ji and Peters 2003). These are the values into which precipitation variations are classified by (SPI) where in each range signifies the extent of departure from average precipitation, offering a structured assessment of the drought severity conditions within specific regions based on SPI values.

4.2.4 Reconnaissance Drought Index (RDI): The MEDROPLAN coordinating meeting introduced an innovative drought detection and assessment index (Tsakiris 2004) and further elaborated upon throughout subsequent works (Tsakiris et al. 2007). The PET methodologies were implemented in the RDI index value comput-

tation (Halwatura et al 2015). It provides a distinct framework for classifying and comprehending various degrees of drought intensity. The criterion that evaluates the severity of drought by utilising numerical numbers. RDI classification and range is listed in Table 4.

Table 4: RDI classification and range

RDI Range	Classification
-0.5 to -1.0	Mild drought
-1.0 to -1.5	Moderate drought
-1.5 to -2.0	Severe drought
-2 or below	Extreme drought

4.2.5 Soil Moisture Drought Index (SMDI): Hollinyer (Hollinyer et al. 1993) established the (SMDI) in 1993. It is calculated for one year by summing the daily soil moisture readings. This measure only considers soil moisture as one meteorological variable (Karimi et al. 2001). Recent studies on the SMDI's effectiveness of monitoring the drought (Cao et al 2022; Sen Roy et al. 2023). Utilising historical data as a benchmark, it is conventionally computed as the discrepancy between present-day soil moisture levels and the long-term mean. Typically, it is denoted by a standardised value between -4 (extremely dry) and +4 (extremely moist). SMDI values of 0 and negative ones, respectively, denote different levels of dryness.

4.2.6 Standard Precipitation Evaporation Index (SPEI): The SPEI, similar to PDSI, considers reference evapotranspiration's influence on drought severity. However, its ability to analyse several scales allows for the identification of various types of drought and their effects on different systems (Vicente Serrano, S.M. et al. 2012a; Vicente Serrano, S.M. et al. 2012b; Vicente Serrano, S.M. et al. 2013a; Vicente Serrano, S.M. et al. 2013b). SPEI values vary from (2 to -2). SPEI classification and range is listed in Table 5.

Table 5: SPEI classification and range

SPEI Range	Classification
2 or above	Highly wet
1.5 to 2	Very wet
1 to 1.5	Moderately wet
-1 to 1	Normal
-2 to -1	Severely dry
-2 or below	Extremely dry

Therefore, the SPEI possesses the same level of sensitivity as the PDSI when it comes to measuring the demand for evapotranspiration, which is influenced by changes and patterns in climatic factors other than precipitation. Additionally, it is straightforward to be computed and can be applied at various scales, similar to the (SPI) (Beguería et al. 2013).

4.2.7 Crop Moisture Index (CMI): The purpose of the CMI is to offer information that addresses broad-scale general inquiries rather than localized ones. The sensitivity study conducted on the Crop Moisture Index revealed that the index shows increased levels of moisture in response to rising temperatures under certain instances (Juhasz and Kornfield, 1978). It is dependent on the available meteorological data; in particular, the data comprises the total precipitation and mean temperature for each week. It evaluates climate change's impact on water resources and equitable growth (Miryaghoubzadeh et al 2019; Ampitiyawatta and Wimalasiri 2023). Evapotranspiration anomaly index and Wetness index are added to generate the final (CMI) (Heim et al. 2002; Hogg et al 2013). During the growth season, the value is near zero, stays near zero if crop moisture supply and weather conditions are normal, and returns to nearly zero at the conclusion (Palmer 1968).

4.2.8 Standardised runoff index (SRI): The (SRI) according to (McKee et al. 1933), the unit standard normal deviation of the percentile of hydrologic runoff data over a period of time must be calculated. Various timeframes (such as 1-month or 9-month) and varying levels of spatial grouping for the index can be computed based on the resolution of the source data and the intended use. SPIs, such as those computed by NOAA, are determined at a climatic division level and by state agencies at a county level (Shukla and Wood 2008). It is used to identify the drought patterns in a region (Nalbantis and Tsakiris 2008; Wang et al. 2013) and there are different methods were used to identify the SRI (Sheffield et al. 2012).

4.2.9 Munger's Index: The Munger Index, created by Robert Munger in the 1920s, is a measure of drought. This method is straightforward and commonly employed and by considering precipitation severity of the drought is evaluated. Short-term droughts can be assessed most effectively using this indices (Yihdego et al 2019). It aids in assessing the sufficiency of rainfall for crop development, where readings below a specific threshold indicate drought conditions and higher values imply ample moisture availability. Nevertheless, it is crucial to acknowledge that the Munger Index predominantly emphasises precipitation and the variables that may impact drought may not be considered such as soil moisture and temperature. A time frame without a 24-hour rainfall of 1.27 mm. He made the interesting observation that the drying out effect of drought on plant life in forests is independent to the duration that they last. The approach used a right triangle whose height and base were proportional to drought length. The mathematical expression for the severity of drought is given by the formula $0.5 L^2$, where L is the length of the drought in days (Hogg et al. 2013).

4.2.10 Kincer's Index: Kincer produced a set of essential maps and charts that depicted the seasonal patterns of rainfall and the climatological data on the average yearly frequency of rainy days. Kincer's definition of a drought is a period of 30 or more consecutive days with precipitation of less than 6.35 mm (0.25 in.) within a 24-hour period (Hogg et al. 2013). Furthermore, it highlighted the allocation of rainfall across several seasons, taking into account the average yearly precipitation (Qiao et al. 2014). The Kincer's index evaluates the vulnerability of a watershed to drought and identifies the regions that are most prone to drought (Mishra and Nagarajan 2010; Wu et al. 2016). Studies indicate that the Kincer's index showed higher accuracy compared to the PDSI and SPI (Gouveia et al. 2019).

4.2.11 Marcovitch's Index: In order to calculate a drought index, Marcovitch created an equation that combines precipitation and temperature. Drought index= 0.5 times the $(N/R)^2$, where, N is the cumulative count of consecutive days, lasting for at least two days, with temperatures over 32.2°C (90°F). R denotes the overall amount of rainfall during the summer for that particular month (Hogg et al. 2013).

4.2.12 Blumenstock's Index: In his climatic study, Blumenstock utilised probability theory to calculate the frequencies of droughts. The drought time in days was used to calculate the index. For a drought to end, 2.54 mm (0.10 in.) of precipitation was needed within 48 hours. Using Mungers and Blumenstock indices, short term drought were measured (Hogg et al. 2013). When compared it to other indices, it becomes apparent that various indices provide unique expressions of drought (Yihdego et al. 2019). The findings highlighted the need of using evapotranspiration precipitation data, the severity of the drought was assessed and also improve drought understanding and help develop effective drought monitoring and control technologies (Silva et al. 2021; Johnson et al. 2021; Santos et al. 2022).

4.2.13 Antecedent Precipitation Index: Antecedent precipitation refers to the precipitation that occurs prior to a certain storm event and it has an impact on the relationship between runoff and that storm event. The yield from the same rainfall event on a watershed that has already been wetted by earlier rainfall is lesser than the yield from a rainfall event on a dry watershed (Heggen 2001). The system includes Precipitation, which is a reverse drought index utilised for the purpose of flood prediction (Hogg et al. 2013) and API decay constant k affects API value accuracy (Heggen 2001). Soil moisture is crucial in the connection between land and atmosphere. Estimating soil moisture levels can be done by several methods such as in situ measurements, hydrological modeling and satellite remote sensing. The utilisation of indicators to perform an index of the circumstances of soil moisture is still another effective strategy. This study examines one of the index known as the (API). To match the physical process, two parameters were added to the standard API. The recession coefficient is initially allowed to change with air temperature to account for evapotranspiration. The maximum API value considers the soil's maximum water holding capacity. The adjusted API was subsequently calibrated and validated through a comparison with the soil moisture measured in situ (Zhao et al. 2019). Some recent studies on this index are utilised to assess the intensity of drought, track patterns of rainfall and forecast hydrological reactions (Goswami 2018; Nguyen-Huy et al. 2022).

4.2.14 Moisture Adequacy Index (MAI): The (McGuire and Palmer, 1957) index, generated from prospective evapotranspiration, compares a region's moisture need to its actual moisture supply, which includes rainfall and soil moisture. It was computed by dividing the actual moisture supply by the moisture needed and expressing it as a percentage. Indicators such as precipitation and soil moisture are used and a 100% indicates that what is available has been enough to fulfil the need (Yihdego et al. 2019) Research has shown that the use of the (MAI) is an extremely effective technique to determine the drought severity, optimising the cultivation of crops and making accurate assessments in the field for agriculture (Rawat and Joshi 2010; Sarkar and Biswas 2017; Das et al. 2019).

4.2.15 The Keetch and Byram index: Its purpose was to evaluate the state of the drought with a special focus on fire control management. It measures soil moisture depletion in hundredths of an inch, with 0 indicating no shortage and 800 severe drought. The calculation of this index relies on a soil moisture storage capacity of 203-mm (8 in.). The DI is calculated using a daily water budgeting approach that balances drought factor, precipitation and soil moisture. For monitoring and predicting wildfires, this index is extensively used (Hogg et al. 2013). In situ soil moisture measurements might enhance wildfire threat estimates, which frequently use the KBDI (Krueger et al. 2017). Studies examine this technology's usefulness in assessing droughts and wildfires (Keetch and Byram, 1968; Gouveia et al. 2019).

4.2.16 Surface Water Supply Index: The (SWSI) is a hydrologic drought statistic developed in 1981 particularly for Colorado, based on empirical data. It incorporates snowfall, reservoir storage, streamflow and high elevation precipitation to improve the PDSI. A useful indicator of surface water resources is the SWSI (Wilhite and Glantz, 1985; Shafer and Dezman, 1982). Colorado's Drought Assessment and Response Plan incorporates SWSI and PDSI-like measurements. The SWSI is largely computed for river basins and has been adopted by other western states (Hogg et al. 2013). It includes precipitation, Snowpack, reservoir storage, runoff (Yihdego et al. 2019). The study of an area and its real-world applications as well as its effectiveness in evaluating the seriousness of drought and predicting streamflow ((Wilhite and Glantz, 1985; Wu et al. 2016).

4.2.17 The vegetation condition index (VCI): The data utilised for drought identification and tracking is derived from satellite, Advanced Very High Resolution Radiometer (AVHRR) radiance, namely in the visible and near infrared spectrum. This data is modified for land climate, ecology and weather. Kogan's 1995 research showed this approach's potential. The VCI capitalises on the strong correlation between vegetation and climate, drawing inspiration from the ideas established by German biologist W. Koppen nearly a century ago in his creation of a climate classification system based on vegetation. VCI enables the identification of drought and serves as a potential worldwide benchmark for assessing the timing, severity, duration and impact of drought on vegetation. Nevertheless, due to its reliance on vegetation, the VCI is predominantly valuable during the summer period of plant growth. Its usefulness is restricted during the winter months when plant growth is mostly inactive (Hogg et al. 2013). Recent studies were done on drought severity and evaluating the trends of drought (Wu et al. 2016; Khatri and Sharma 2019). Prior to 2000, the Anomaly Vegetation Condition Index (AVCI) predominantly had negative values, indicating a lack of soil moisture. The analysis of exceedance probability on an annual time scale revealed a 20% likelihood of severe drought ($VCI \leq 35\%$) and a 35% likelihood of regular drought ($35\% \leq VCI \leq 50\%$) occurring in Nepal (Baniya et al. 2019).

4.2.18 Drought Monitor Index: The writers of the DM index depend on the studies of various crucial indices and supplementary indicators from multiple organisations to construct the ultimate map. The main factors consist of the PDI (Palmer Drought Index), CMI, percentiles of soil moisture model, percentiles of daily streamflow, percent of normal precipitation, topsoil moisture (percent of short and very short levels) provided by the USDA and a satellite-based Vegetation Health Index. The U.S. Drought Monitor employs a categorical framework to

categorise the severity of drought: D0 (Abnormally dry) denotes conditions prior to drought, D1 (Moderate drought) indicates the initial effects on crops and water supply, D2 (Severe drought) signifies significant harm to agriculture and water scarcity, D3 (Extreme drought) suggests critical losses and widespread scarcity of water and D4 (Exceptional drought) represents catastrophic impacts on agriculture and economy, coupled with severe water shortages. These categorisations facilitate the communication of the seriousness and consequences of drought conditions, providing guidance for responses and allocation of resources in places that are affected (Hogg et al. 2013). From 2000 to 2016, this research used the integrated drought monitoring index (IDMI) to measure agricultural drought in Tamil Nadu state, southern Indian peninsula, during the northeast monsoon season. PCI (precipitation condition index), SMCI (soil moisture condition index), TCI (temperature condition index and VCI, the IDMI constitutes of these four indices. The indices are calculated based on time-series satellite observations of climate risks, namely infrared precipitation data from CHIRPS, the European Space Agency Climate Change Initiative (ESA- CCI) and Moderate Resolution Image Spectroradiometer (MODIS) (Kuma et al. 2021). The significance and effectiveness of measuring severity and vulnerability of the drought studies were carried out (Zargar et al. 2022; Liu et al. 2022).

4.2.19 Joint Deficit Index: (Kao and Govindaraju 2010) developed the Joint Deficit Index (JDI), a new measure using the copula functions that integrates joint distributions of several SPIs. It has the ability for the distribution of precipitation and streamflow by considering the seasonal variations. This indicator properly detects the incipient and the protracted droughts quickly and allows for a monthly evaluation of drought conditions. It predicts how much rain is needed in the coming months to restore to normal conditions (Mirabbasi et al. 2013). The copulas used in JDI are multivariate distribution functions that provide a link between one-dimensional marginal distributions and joint probability distributions (Nelsen 2006). Geostatistics and spatial statistics explain multi-timescale covariance using a two- parameter function. Analysis of long-term precipitation data proves covariance models validity. The Bootstrap tests demonstrate that the Gaussian copula model assesses drought severity better than the empirical copula. It measures droughts outside the empirical copula. Second, drought is well-quantified. Finally, it clarifies estimate uncertainty (Van de Vyver and Van den Bergh 2018). This indexversatility, applicability and capability to monitor droughts were carried out (Wu et al 2016; Liu et al. 2022).

4.2.20 Multivariate standardised drought index (MSDI): The (MSDI), utilises a probabilistic approach for integrating the Standardised Soil Moisture Index (SSI) and the (SPI) to accurately represent conditions of drought. MSDI assesses drought using meteorological and agricultural data. The suggested Multi-Scale Drought Index (MSDI) is used in California's climate divisions and North Carolina to assess drought conditions. The drought studies employ the Modified Standardised Drought Index (MSDI) are then compared to the Standardised Soil Moisture Index (SSI) and Standardised Precipitation Index (SPI). The findings indicate that MSDI accurately recognises the beginning and end of drought situations by taking into account both SPI and SSI. SPI largely determines drought onset, whereas SSI more closely determines drought persistence. In short, the (MSDI) model demonstrates that it's possible in quickly merging multiple indices using stochastic approaches (Hao and

AghaKouchak 2013). The joint cumulative probability is transformed using a standard normal distribution's inverse cumulative distribution function to get the MSDI. Standardisation is not achieved using this method. Since the joint cumulative probability is not evenly distributed on [0,1], negative index values are more likely. The standardised drought analysis toolkit (SDAT) (Farahmand and AghaKouchak 2015) computes non-parametric standardised univariate and non-parametric bivariate (MSDI) drought indices (Erhardt and Czado 2018). The methods of drought characterisation and risk assessment were evaluated (Zhang et al. 2022; Trigo et al. 2021; Albajes et al. 2022).

4.2.21 Reconnaissance Tri-variate Drought Index (RTDI): Trivariate Drought Index (RTDI), which is a composite of soil moisture, evapotranspiration and precipitation. The meteorological and agricultural droughts are effectively represented by the RTDI and MSDI, which link the climatic status. For bivariate and trivariate analysis, the most appropriate copulas derived are the Student and Frank's t copulas, respectively. In order to analyse the tendencies of drought's onset and withdrawal characteristics, the two drought indices are formulated and evaluated. Frank and Student's t copulas are best for bivariate and trivariate analysis. Two drought indicators are created and assessed to analyse drought onset and withdrawal. Cross-wavelet analysis (CWA) can reveal how large-scale climatic anomalies affect drought indices. This research considers Indian summer monsoon rainfall (ISMR), Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI) and Indian Ocean Dipole (Dixit and Jayakumar 2021).

4.2.22 The Effective Drought Index (EDI): (Byun and Wilhite, 1999) created the Effective drought index in 1999 to address index limitations. By assessing daily water collection for time, the EDI can provide a full evaluation. Its specialized design for daily drought severity estimate and more accurate water resource evaluations make EDI advantageous (Kim 2009). From -2.5 to 2.5 constitutes EDI. Value index readings between -1.0 and 1.0 imply near-normal circumstances, while -2.0 or below indicate severe drought (Salehnia et al. 2017; Raja Azman et al. 2022).

4.2.23 Relative Drought Indices: The relative Standardised Precipitation Index (rSPI) and Relative Palmer Drought Severity Index (rPDSI) improve drought evaluation in shifting climates. They provide an innovative method to compare drought conditions across time and geography. Inorder to apply drought indices to future climate, they must first be calibrated using aggregated observational data from all stations during a reference period. This process is known as achieving the former. This approach can be utilised to evaluate the spatial displacement of drought caused by climate change. However, the latter method uses station measurements to accurately track drought temporal changes in relation to the present climate. The second approach may provide indicators that are not comparable across climate zones (Mukherjee et al. 2018; Dubrovsky et al. 2009).

4.2.24 Standardized Stream flow Index (SSFI): Power spectrum and the detrended fluctuation analysis are the employed techniques. The presence of the yearly oscillation indicates all the streamflows. This oscillation also acts as a transition point between two regions. For frequencies below the yearly cycle (or timescales longer than

1 year), the dynamics are roughly random. However, for frequencies above the yearly frequency (or timescales shorter than 1 year), the dynamics are consistently correlated (Telesca et al. 2012). The usefulness of SSFI in drought evaluation and monitoring, particularly in places with enormous river systems and complex hydrology. The tool's ability to quantify drought's effect on streamflow makes it useful for water resource management and environmental planning (Wu 2016).

4.2.25 Data fusion-based drought index (DFDI): Data fusion drought index is the process of combining several sources or types of data to form a complete index that evaluates drought conditions. The index thoroughly encompasses all categories of drought by utilising a range of indices and proxies that are linked to each specific form of drought. The primary objective of data fusion, defined as the integration and consolidation of data from various sources and sensors, is to generate a solution that is either more precise or enables specialists to access a greater quantity of information than would be possible by utilizing individual data sources alone.

To aid comparative evaluation, a matrix-style summary is presented in Table 6 below, highlighting key characteristics of major drought indices, including their input data, applicable drought type, strengths, limitations, scale of application, and suitability under changing climate scenarios.

Table 6: Comparative Matrix of Drought Indices

Index	Input Data	Type	Scale	Applicability under CC
RAI	Precipitation	Precipitation based	Local regional, monthly	Limited (only precipitation)
PDSI	Precipitation, Temp., Soil moisture	Evapotranspiration	Regional, monthly	Moderate (needs calibration)
SPI	Precipitation	Precipitation based	Local global, monthly	Limited (excludes temperature)
RDI	Precipitation, PET	Evapotranspiration	Regional, monthly	High (accounts for PET)
SMDI	Soil moisture	Agricultural	Local regional, daily	High (soil moisture focus)
SPEI	Precipitation, Temp., PET	Evapotranspiration	Local global, monthly	High (integrates temperature)
CMI	Precipitation, Temp., Soil moisture	Agricultural	Regional, weekly	Moderate (short-term focus)
SRI	Streamflow	Hydrological	Regional, monthly	Moderate (streamflow-dependent)
Munger's Index	Precipitation	Precipitation based	Local, daily	Limited (short-term focus)
Kincer's Index	Precipitation, Temp.	Composite	Regional, monthly	Moderate (empirical)
Marcovitch's Index	Precipitation, Temp.	Composite	Local, daily	Limited (experimental)

Blumenstock's Index	Precipitation	Precipitation based	Local, daily	Limited (historical focus)
Antecedent Precipitation Index	Precipitation, Soil moisture	Hydrological	Local regional, daily	Moderate (soil moisture integration)
MAI	Precipitation, Soil moisture	Agricultural	Regional, monthly	Moderate (agro-climatic focus)
Keetch-Byram Index	Temp., Soil moisture	Ecological	Local regional, daily	High (fire risk under warming)
SWSI	Streamflow, Snow pack, Reservoir storage	Hydrological	Regional, monthly	Moderate (water resource focus)
VCI	Satellite imagery (NDVI)	Vegetation-based	Regional global, monthly	High (real-time monitoring)
Drought Monitor Index	Multi-source (PDSI, CMI, VCI, etc.)	Composite	Regional global, monthly	High (integrates multiple proxies)
JD1	Precipitation, Streamflow (copia-based)	Composite	Regional, monthly	High (multi-variable)
MSDI	Precipitation, Soil moisture	Composite	Regional, monthly	High (non-stationary climates)
RTDI	Precipitation, Soil moisture, ET	Composite	Regional, monthly	High (multi-variable)
EDI	Daily Precipitation, ET	Evapotranspiration	Local regional, daily	Moderate (short-term focus)
Relative Drought Indices	Precipitation, Temp. (calibrated)	Composite	Regional, monthly	High (non-stationary climates)
SSFI	Streamflow	Hydrological	Regional, monthly	Moderate (streamflow-dependent)
DFDI	Multi-source (remote sensing, climate)	Remote-sensing	Regional global, monthly	High (AI/RS integration)

This paper offers a method to objectively correlate water availability and plant characteristics to assess terrestrial ecosystem water stress, a set of DIs were considered. The combination approach determines each time step's water stress circumstances using multivariate statistical methods like independent components analysis and eco meteorological parameters including land use, land-cover and climate. Three case study regions with varying land use and climate regimes and surface and atmospheric variables are provided to assess the new approach's potential to generalize DIs (Azmi et al. 2010).

The following table 7 provides an overview of 25 widely used drought indices, categorized based on their focus areas such as meteorology, hydrology and agriculture. Each index is evaluated for its strengths, limitations and suitability under evolving climate conditions.

Table 7: Summary of Commonly Used Drought Indices

Index Name	Description	Strengths	Limitations
SPI	Measures drought based on precipitation deviation from normal.	Simple, widely used, adaptable to different time-scales.	Does not account for temperature and evapotranspiration.
SPEI	Combines precipitation and evapotranspiration to assess drought severity.	Considers temperature impacts; robust under climate change.	Requires detailed climate data.
PDSI	Incorporates soil moisture balance to measure long-term drought.	Effective for agricultural drought monitoring.	Complex calculations; not suited for short-term drought.
CMI	Focuses on short-term agricultural droughts using soil moisture.	Relevant for agricultural applications.	Not useful for long-term drought analysis.
RDI	Considers precipitation and potential evapotranspiration.	Versatile and adaptable.	Requires accurate climatic data.
SRI	Quantifies drought using runoff data.	Hydrologically relevant.	Requires extensive hydrological data.
VCI	Monitors drought impact on vegetation using remote sensing data.	Useful for agricultural and ecological droughts.	Relies on satellite data availability.
RAI	Compares rainfall anomalies to historical averages.	Simple and easy to calculate.	Limited by exclusion of temperature and soil factors.
EDI	Considers precipitation deficits over time.	Dynamic and responsive to recent changes.	Requires detailed precipitation records.
EDI	Quantifies drought by analyzing evapotranspiration anomalies.	Relevant under warming climate scenarios.	Requires advanced climate models.

This section provides a comprehensive understanding of the tools used to measure and monitor droughts. Indices and indicators continue to evolve, with recent advancements integrating modern technologies and climate models, ensuring their relevance for addressing the challenges of climate change. Recent studies demonstrate the integration of diverse drought indicators or proxies from many data sources to offer a thorough evaluation of drought severity. The assessment of drought monitoring, early warning and drought assessment can be evaluated (Azmi et al. 2016; Mishra et al. 2018; Wu et al. 2017). Other drought indices are employed to thoroughly evaluate and describe drought conditions. These indices give additional viewpoints on different aspects of drought, going beyond conventional measurements to provide a more detailed comprehension. Drought indices, which quantify departures from typical local circumstances based on historical distributions, are used to track drought (Dai 2011). Drought indices can be classified as shown in Fig. 4.

Fig. 4: Pictorial Representation of the Different Classifications of Drought Indices

5. RESULTS AND DISCUSSION

This section provides a detailed explanation of the results from the literature analysis, key findings and their implications. It also discusses the challenges encountered during the research and outlines the future scope for advancing drought monitoring and management in the context of climate change.

5.1 Results

The results of this study demonstrate the complex and multifaceted relationship between climate change and drought, evaluated through a detailed analysis of drought indices, climate models and emerging trends. The findings are summarized as follows:

5.1.1 *Analysis of Drought Indices:*

- Among the 25 evaluated indices, the Standardized Precipitation-Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI) were identified as the most robust tools for monitoring drought under changing climatic conditions.
- SPEI's inclusion of evapotranspiration made it particularly sensitive to temperature increases caused by global warming, whereas NDVI proved useful for real-time monitoring of agricultural and ecological drought impacts.

5.1.2 *Climate Model Comparisons:*

- Comparative analysis of CMIP5 and CMIP6 models highlighted advancements in the latter, with improved sensitivity to regional climate variations and better predictions of extreme drought events.
- The CMIP6 models projected a significant increase in the frequency and intensity of droughts in South Asia, especially under high-emission scenarios (SSP5-8.5).
- Results also showed non-linear trends in precipitation variability, indicating a potential for more severe meteorological and hydrological droughts in semi-arid regions.

5.1.3 Regional Projections for South Asia

The comparative analysis of CMIP5 and CMIP6 models reveals significant regional differences in projected drought patterns. For South Asia, CMIP6 models indicate a marked increase in the frequency and severity of droughts, especially under high-emission scenarios (SSP5-8.5) (Dixit et al., 2022). Projections suggest that agricultural and meteorological droughts will become more frequent, with soil moisture deficits and temperature-driven evapotranspiration playing a key role (Mukherjee et al., 2018). For example, in certain regions of South Asia, the frequency of severe agricultural droughts is projected to increase by 20–30% by the end of the century. These changes are closely linked to projected increases in temperature and shifts in precipitation patterns, which are more robustly captured by CMIP6 models compared to CMIP5.

The SPEI and NDVI indices emerge as particularly robust for monitoring these projected changes, due to their sensitivity to temperature and vegetation stress, respectively (Vicente-Serrano et al., 2012; Dixit et al., 2022). The integration of remote sensing and AI-driven models further enhances the ability to detect and predict drought severity in real time, supporting more adaptive management strategies for the region (Dakhil et al., 2024).

5.1.4 Integration of Advanced Technologies:

- a. Remote sensing and artificial intelligence showed significant potential in improving drought monitoring capabilities. For example, hybrid indices combining NDVI and surface water data offered higher spatial accuracy for drought predictions.
- b. AI-based models reduced prediction errors and allowed for more adaptive monitoring frameworks tailored to regional conditions.

5.1.5 Role of Artificial Intelligence in Drought Monitoring

Several reviewed studies highlight the growing use of artificial intelligence (AI) techniques, such as machine learning, for processing remote sensing data and developing hybrid drought indices. AI-based models have been shown to reduce prediction errors and enable more adaptive monitoring frameworks. However, these

approaches are still largely experimental or limited to well-resourced regions, and their broader application depends on data availability and computational infrastructure.

5.1.6 Best Performing Indices by Drought Type and Climate Scenario

To provide clear guidance for practitioners and researchers, we synthesized our findings to identify the most suitable drought indices for each drought type under current and projected climate scenarios (CMIP5 and CMIP6). This summary is based on the comparative analysis and ranking system described above table 8.

Table 8: Recommended Drought Indices by Drought Type and Climate Scenario

Drought Type	Current Climate	CMIP5 Scenario	CMIP6 Scenario
Meteorological	SPI, SPEI	SPEI	SPEI, MSDI
Agricultural	NDVI, VCI, SMDI	NDVI, SPEI	NDVI, SMDI, Hybrid/AI
Hydrological	PDSI, SWSI	PDSI	MSDI, Hybrid
Ecological	NDVI, VCI	NDVI, VCI	NDVI, Hybrid/AI

- **Meteorological Drought:** Under historical and current climates, both SPI and SPEI are widely used, but SPEI is preferable under CMIP5 and especially CMIP6 projections due to its sensitivity to temperature-driven evapotranspiration, which is increasingly relevant in warming scenarios. MSDI also shows promise for capturing multi-variable influences in future conditions.
- **Agricultural Drought:** NDVI and VCI are effective for real-time monitoring of vegetation stress, making them ideal for current and projected climates. SMDI is valuable where soil moisture data is available, and hybrid or AI-driven indices are recommended under CMIP6 for their ability to integrate diverse datasets and improve prediction accuracy.
- **Hydrological Drought:** PDSI and SWSI remain standard for long-term water resource assessment under current and CMIP5 conditions. However, under CMIP6, MSDI and hybrid indices are better suited to capture the complexity of hydrological droughts influenced by multiple climate variables.
- **Ecological Drought:** NDVI and VCI are robust for monitoring ecological impacts, and their effectiveness is enhanced under future scenarios when combined with AI and hybrid approaches for greater spatial and temporal resolution.

These recommendations provide a practical framework for selecting drought indices tailored to specific drought types and evolving climate scenarios. The following Discussion section expands on these findings and their implications for research and policy.

5.1.7 Ranking and Comparative Performance of Drought Indices

To objectively identify the most robust drought indices for monitoring under changing climatic conditions, we applied the ranking system described in the Methodology section. Each index was evaluated according to

six criteria: climate sensitivity, data requirement, spatial resolution, temporal resolution, performance under projected climate scenarios (CMIP5/CMIP6), and operational usability. Scores for each criterion were assigned on a scale of 1 (low) to 5 (high), based on literature review and expert consensus. Table 9 presents the scores for each index according to the six ranking criteria. The total scores indicate the overall robustness of each index for drought monitoring under changing climatic conditions. The results show that SPEI and NDVI are the most robust indices, with the highest total scores. This ranking supports their use for drought monitoring under both current and projected climate scenarios.

Table 9: summarizes the scores and total ranking for each index

Index	Climate Sensitivity	Data Requirement	Spatial Resolution	Temporal Resolution	CMIP6 Suitability	Operational Usability	Total Score
SPI	2	5	4	5	2	5	23
SPEI	5	4	4	5	5	5	28
NDVI	4	4	5	5	4	4	26
PDSI	3	3	3	3	3	4	19
MSDI	5	2	3	3	5	3	21

The results indicate that **SPEI** and **NDVI** achieved the highest total scores, reflecting their robustness for drought monitoring under current and projected climate scenarios. This ranking supports the selection of SPEI and NDVI as the most suitable indices for operational and research applications, particularly in the context of climate change.

5.2 Discussion

The findings underscore the growing complexity of drought management in the era of climate change. Several key insights and implications arise from the results:

5.2.1 *Relevance of Drought Indices in Climate Change Context:*

The effectiveness of drought indices is highly dependent on their ability to incorporate climate variables such as temperature, evapotranspiration and soil moisture. Indices like SPEI are better suited for capturing the multi-dimensional impacts of climate change compared to traditional indices like SPI, which focus solely on precipitation. However, challenges remain in adapting these indices to account for local socio-economic and ecological conditions.

5.2.2 *Comparative Usability of Drought Indices under Climate Change Scenarios*

The increasing complexity of droughts under climate change necessitates a nuanced understanding of the strengths and limitations of various drought indices. The usability of each index depends not only on its methodological foundation but also on its sensitivity to evolving climate variables, data requirements, and suitability for different drought types and regional contexts. Here, we synthesize the comparative performance of widely

used indices under historical and projected climate scenarios (CMIP5 and CMIP6), providing practical guidance for their application. Table 10 represented the Comparative Analysis of Major Drought Indices.

Usability under Projected Climate Scenarios

- CMIP5 vs. CMIP6: The transition from CMIP5 to CMIP6 models has improved the simulation of regional climate extremes, particularly in South Asia and other drought-prone areas. Indices that incorporate temperature and evapotranspiration (e.g., SPEI, MSDI) demonstrate greater sensitivity and reliability under high-emission scenarios (SSP5-8.5), where temperature-driven droughts are projected to increase in both frequency and severity.
- SPI remains a useful baseline tool but underestimates drought risk in warming climates due to its exclusion of temperature effects. Its simplicity and broad adoption make it suitable for initial screening but less so for future-focused risk assessments.
- SPEI is better suited for climate change contexts, as it integrates both precipitation and temperature, capturing the intensifying evapotranspiration and moisture deficits projected in CMIP6. SPEI is recommended for regions experiencing significant warming or variable precipitation patterns.
- NDVI/VCI and other remote sensing indices excel at real-time monitoring of agricultural and ecological droughts, especially when combined with AI for rapid data analysis. Their effectiveness is particularly notable in regions with high spatial variability and for early warning applications.
- Composite indices (e.g., JDI, MSDI, hybrid AI-based) are increasingly valuable for capturing compound and cascading drought events, which are expected to become more frequent under future climate scenarios. These indices are recommended for advanced research and operational frameworks in regions with sufficient data infrastructure.

Table 10: Comparative Analysis of Major Drought Indices

Index	Input Data	Drought Type	Strengths	Weaknesses	Performance under CMIP5/CMIP6	Best Use Cases	
						under CMIP5/CMIP6	Best Use Cases
SPI	Precipitation	Meteorological	Simple, widely used, multi-scale	Ignores temperature, less sensitive to warming	Adequate for historical climates; less robust under projected warming (CMIP6)	Short-term drought, baseline monitoring	meteorological
SPEI	Precipitation, Temperature/ET	Meteorological, Agricultural	Captures temperature effects, multi-scale, climate-adaptive	Sensitive to ET estimation, data intensive	Highly robust under CMIP5/CMIP6, especially for warming scenarios	Climate change impact studies, semi-arid regions	
PDSI	Precipitation, Temperature, Soil Moisture	Agricultural, Hydrological	Integrates soil moisture, long-term trends	Complex, less suitable for short-term drought, region-specific calibration needed	Useful for long-term drought under both scenarios, but calibration is critical		Water resource management, policy planning
NDVI/VCI	Satellite Vegetation	Agricultural, Ecological	Real-time, spatially explicit, sensitive to vegetation stress	Seasonal limitations, indirect for meteorological drought	Effective for rapid drought detection under both scenarios, especially with AI integration		Agricultural monitoring, early warning systems
SMDI	Soil Moisture	Agricultural	Direct soil moisture assessment	Requires dense soil data, spatial heterogeneity	Valuable where soil data is available, especially for flash droughts under CMIP6		Crop yield forecasting, precision agriculture
JDI/MSDI	Multiple (Precipitation, Soil Moisture, Streamflow)	Meteorological, Agricultural, Hydrological	Integrates multiple variables, captures compound events	Computationally intensive, requires multi-source data	Strong performance under non-stationary, extreme events in CMIP6		Complex drought risk assessment, research applications
Hybrid/AI-Based Indices	Remote Sensing, Climate, Socio-economic	All	Adaptive, customizable, high spatial/temporal resolution	Data and expertise intensive, validation needed	Promising for future scenarios, especially in data-rich regions		Integrated drought risk management, policy frameworks

Practical Guidance for Index Selection

- Meteorological droughts in semi-arid and warming regions: Prefer SPEI or MSDI, as these indices account for temperature-driven evapotranspiration and are responsive to projected climate variability.
- Agricultural and ecological droughts: NDVI, VCI, and SMDI are highly effective, especially when integrated with AI for real-time monitoring and prediction.
- Hydrological droughts and water resource management: PDSI and SWSI remain relevant for long-term planning, but require careful regional calibration and may benefit from integration with remote sensing data.
- Early warning and rapid response: Remote sensing indices (NDVI/VCI) and hybrid indices combining climate, vegetation, and soil data provide the most timely and spatially explicit information.
- Data-limited regions: SPI and RAI can serve as initial tools, but efforts should be made to build data infrastructure for adopting more advanced, climate-adaptive indices.

The usability of drought indices is context-dependent and should be aligned with both the type of drought and the prevailing or projected climatic scenario. SPEI and NDVI emerge as the most robust and versatile indices for monitoring drought under changing climate conditions, particularly when enhanced with AI and remote sensing technologies. However, no single index is universally optimal; a combination of indices, tailored to regional data availability and climate risks, is recommended for comprehensive drought assessment and management.

5.2.3 *Regional Implications of Climate Model Projections:*

The CMIP6 projections for South Asia highlight the urgent need for region-specific drought mitigation strategies (Dixit et al., 2022). The increased frequency of flash droughts and long-term hydrological droughts underscores the importance of enhancing water resource management and adopting adaptive agricultural practices (Mukherjee et al., 2018). The findings also emphasize the value of advanced monitoring tools, such as remote sensing and AI, in providing actionable insights for policymakers and practitioners (Dakhil et al., 2024). However, it is important to note that model uncertainties and regional biases remain a challenge, and efforts should be made to validate projections with local observational data where possible (WMO & GWP, 2016).

5.2.4 *Advancements in Drought Monitoring Technologies: Vicente*

Integrating remote sensing and AI into drought management frameworks could revolutionize the field. Technologies such as satellite-based vegetation monitoring and AI-driven predictive models enable near real-time assessment of drought conditions, allowing for faster response times and more targeted mitigation efforts. The integration of artificial intelligence (AI) into drought monitoring represents a significant advancement, as evidenced by the reviewed literature. AI enables the rapid analysis of large datasets, improves the accuracy of drought predictions, and facilitates the development of adaptive, region-specific indices. However, challenges such as data scarcity, model interpretability, and the need for specialized expertise limit the widespread adoption of AI-driven approaches. Future research should focus on overcoming these barriers to fully realize the potential of AI in enhancing drought resilience.

5.2.5 Challenges in Drought Assessment and Mitigation:

Despite advancements, significant challenges remain. Data availability and quality continue to hinder the application of sophisticated drought indices and climate models in many developing regions. Additionally, the increasing influence of anthropogenic activities on hydrological cycles complicates the prediction of drought impacts.

5.2.6 Policy Implications and Recommendations:

The results emphasize the need for policymakers to prioritize investments in climate-resilient infrastructure and technologies. For instance, improving the accessibility of high-resolution climate data and implementing AI-driven drought monitoring systems could significantly enhance preparedness and response capabilities. The integration of climate, remote sensing, and socio-economic data into a hybrid drought monitoring system is illustrated in Fig. 5. This diagram illustrates the integration of climate data, remote sensing, and socio-economic information within a hybrid drought monitoring system. Climate models provide projections of temperature and precipitation, while remote sensing delivers real-time data on vegetation health, soil moisture, and surface water. Socio-economic data are incorporated to assess community vulnerability and adaptive capacity. Artificial intelligence (AI) processes these diverse data streams, enabling rapid, accurate drought prediction and early warning. The system supports adaptive management and policy decisions by providing comprehensive, actionable insights for drought resilience and water resource management.

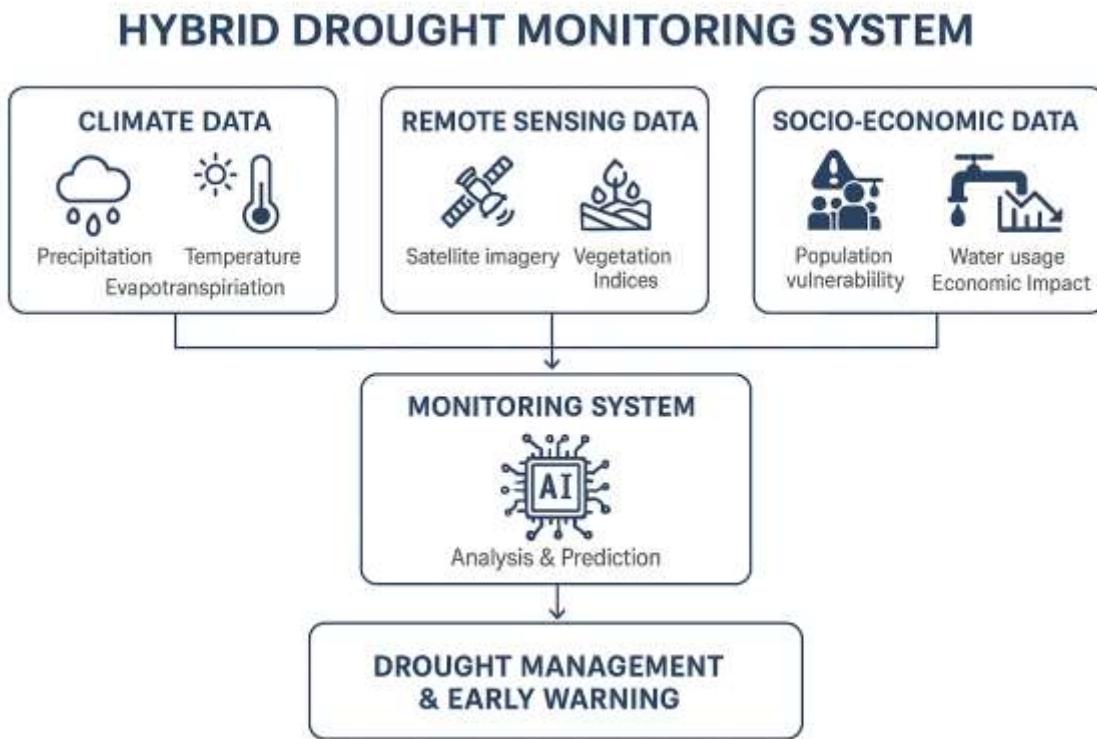


Fig. 5: Conceptual Diagram of a Hybrid Drought Monitoring System

5.3 Case Studies and Real World Applications

In India, the Normalized Difference Vegetation Index (NDVI) has been widely used for early warning of agricultural drought. For instance, in the Marathwada region of Maharashtra, researchers have utilized NDVI data from MODIS and Landsat satellites to monitor vegetation health and detect drought onset up to several weeks before traditional ground-based indicators (Kulkarni et al., 2020). This approach has enabled local authorities to issue timely advisories and implement water-saving measures, reducing crop losses and supporting adaptive agricultural planning. Similar applications have been reported in other drought-prone regions of India, demonstrating the value of remote sensing indices for early drought detection and response.

5.4 Future Scope

While this study provides valuable insights, several areas for further research remain:

- Developing hybrid indices that integrate socio-economic factors for a more holistic assessment of drought impacts.
- Improving climate models to address non-stationarity and better capture the effects of anthropogenic activities.

- Exploring the role of groundwater and ecological droughts in shaping long-term resilience to climate change.

6. CHALLENGES AND GAPS IN EXISTING RESEARCH

Despite significant advancements in drought research, several challenges and gaps remain in both the methodology and technological applications, which hinder the accurate assessment and effective management of droughts under changing climate conditions. Challenges in Understanding and Managing Drought are shown in Fig. 5. The key challenges identified in this study are as follows:

6.1 Methodological Challenges

One of the primary challenges in drought assessment is the lack of uniformity in the application of drought indices. Many indices, such as the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI), are predominantly based on precipitation data and do not adequately account for other crucial climate variables such as temperature, evapotranspiration and soil moisture. While some indices have been adapted to include temperature and evapotranspiration, their application under non-stationary climate conditions remains a significant limitation.

Another challenge is the complexity of integrating multiple drought indices for comprehensive drought monitoring. While hybrid indices that combine remote sensing and ground-based data show promise, their development and validation are still in nascent stages, which makes their widespread application challenging.

6.2 Technological Challenges

Although advancements in satellite-based remote sensing and artificial intelligence have the potential to improve drought monitoring, challenges remain in terms of data accessibility, quality and the integration of these technologies into operational frameworks. High-resolution satellite data can be expensive and difficult to access, especially for developing countries, which limits its use for real-time drought monitoring.

Furthermore, AI models require vast amounts of reliable and diverse data to accurately predict drought conditions. Inadequate datasets, coupled with the challenges of transferring these models to real-world applications, pose significant barriers to the deployment of AI-driven drought management solutions.

6. 3 Limitations in the Application of Current Indices Under Non-Stationary Climate Models

The increasing unpredictability of climate patterns due to human activities and natural variations complicates the application of traditional drought indices. Current models often fail to account for the non-stationarity of climate systems, which means that indices developed under stationary climate conditions may not perform well in future scenarios characterized by abrupt climatic shifts. The adaptation of these indices to more dynamic, non-stationary models is a crucial gap in the current research.

Additionally, the ability of existing indices to predict extreme droughts with sufficient accuracy under new climate conditions is still a matter of concern. Many indices are not sensitive enough to capture the nuances of severe drought events, especially in regions with complex climates or rapid climatic changes.

6.4 Integrating Socio-Economic Factors into Drought Assessments:

Another significant gap in existing drought research is the difficulty of incorporating socio-economic factors into drought assessments. While climate data and drought indices can provide insights into environmental conditions, they often overlook the socio-economic vulnerabilities of the affected populations. Factors such as local economic dependencies, social resilience and governance structures are critical in assessing the full impact of droughts but are challenging to quantify and integrate into existing models.

The lack of socio-economic data, coupled with difficulties in assessing the combined effects of climate and socio-economic variables, makes it challenging to develop comprehensive drought assessments that inform policy and adaptive strategies effectively. Research efforts that focus on integrating socio-economic aspects with environmental data are still limited but are essential for improving the resilience of communities to droughts.

6.5 How Future Tools Could Resolve These Challenges

Recent advances in artificial intelligence (AI) and remote sensing offer promising solutions to many of these challenges. AI-driven models can integrate diverse datasets, including socio-economic and ecological variables, to better capture the complexity of drought impacts and vulnerabilities. By leveraging machine learning and big data analytics, these tools enable more accurate, real-time monitoring and prediction of drought conditions, supporting adaptive management and targeted interventions. Furthermore, the integration of AI with remote sensing facilitates the development of hybrid indices that address data gaps and improve the spatial and temporal resolution of drought assessments, ultimately enhancing the resilience of vulnerable communities and ecosystems. A flow chart of challenges in understanding and managing drought is shown in Fig. 6.

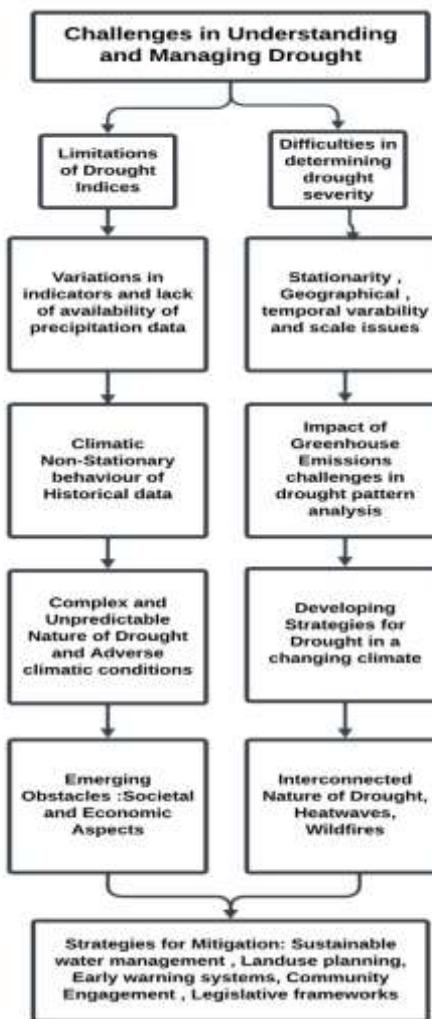


Fig. 6: Challenges in Understanding and Managing Drought

7. RECOMMENDATIONS AND FUTURE FRAMEWORKS

To address the challenges identified in this study and improve drought management and mitigation strategies, several key recommendations are proposed. First, region-specific solutions should be prioritized, considering the unique climatic, geographical, and socio-economic conditions of each area. Implementing localized drought monitoring systems that integrate advanced technologies such as satellite-based remote sensing, AI and machine learning can provide real-time data, enabling more accurate and timely responses. Additionally, drought indices should be enhanced by incorporating cutting-edge tools, such as AI-driven predictive models and hybrid indices that integrate multiple data sources, to improve their sensitivity and applicability under non-stationary climate conditions.

To support actionable application, we recommend that SPEI and NDVI be prioritized for drought monitoring in semi-arid and warming regions due to their sensitivity to temperature-driven evapotranspiration and real-time vegetation stress. Policymakers should integrate SPEI and NDVI into early warning systems by leveraging

remote sensing and AI-driven predictive models, such as Support Vector Machines (SVM), Random Forest (RF), and Deep Learning, which have proven effective in recent studies.

Policy directions should focus on improving water management systems, with an emphasis on sustainable practices, water conservation and efficient resource allocation. Policymakers must also address the socio-economic impacts of drought by supporting vulnerable communities through adaptive agricultural strategies, investment in climate-resilient infrastructure and the development of social safety nets. By fostering greater integration between scientific research, technological innovation and policy development, the resilience of communities to droughts can be significantly improved, ensuring a more sustainable future in the face of climate change.

8. CONCLUSION

The findings of this study underscore the intricate relationship between climate change and drought, highlighting the significant role of advanced drought indices, climate models and emerging technologies in enhancing drought monitoring and management. The comprehensive evaluation of 25 drought indices and climate model comparisons offers valuable insights into the growing complexity of droughts under climate change scenarios. The integration of remote sensing and AI-based tools provides a promising avenue for more accurate, real-time assessments of drought conditions, which is crucial for adaptive strategies in the face of increasingly erratic weather patterns. Moreover, the study emphasizes the need for innovative, region-specific frameworks that consider local socio-economic, ecological, and climatic conditions to enhance drought resilience. These frameworks can serve as a foundation for more effective drought management and mitigation efforts, providing tangible solutions for addressing the challenges posed by climate-driven droughts.

To translate these insights into practice, we recommend that researchers prioritize the development of hybrid indices integrating socio-economic factors and advanced technologies; policymakers invest in robust data infrastructure and region-specific monitoring systems; and technologists advance the integration of AI and remote sensing for real-time, adaptive drought monitoring. Ultimately, this research calls for continued collaboration between researchers, policymakers and stakeholders to develop actionable strategies and ensure sustainable water resource management, particularly in regions most vulnerable to droughts.

Author Contributions: Conceptualization, Seenu P Z and Chebrolu Madhu Sudhan; methodology, Seenu P Z; literature review and synthesis, Chebrolu Madhu Sudhan and Mahaboob Peera Kamatalam; writing—original draft preparation, Chebrolu Madhu Sudhan and Seenu P Z; writing—review and editing, Sri Lakshmi Sesha Vani Jayanthi and Seenu P Z; visualization, D Harinder; supervision, Seenu P Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

REFERENCES:

1. Albajes, P.A., Ferrer, P.J., and Valdés, J.B., 2022. Towards Water Secure Societies: Coping with Water Scarcity and Drought. Elsevier: Amsterdam, Netherlands.
2. Ampitiyawatta, A.D. and Wimalasiri, E.M., 2023. Review of drought characterization indices. *Sri Lankan Journal of Agriculture and Ecosystems*, 5(1), pp. 86–112. <https://doi.org/10.4038/sljae.v5i1.116>
3. Ashok, K., Mishra, V. and Singh, V.P., 2020. A review of drought concepts. *Journal of Hydrology*, 391(1–2), pp. 202–216. <https://doi.org/10.1016/j.jhydrol.2010.07.012>
4. Azmi, M., Araghinejad, S. and Kholghi, M., 2010. Multi-model data fusion for hydrological forecasting using K-nearest neighbour method. *Iranian Journal of Science and Technology, Transactions B: Engineering*, 34(B1), pp. 81–92.
5. Azmi, M., Rüdiger, C. and Walker, J., 2016. A data fusion-based drought index. *Water Resources Research*, 52, pp. 2222–2239. <https://doi.org/10.1002/2015WR017834>
6. Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K.H., Wall, N., Fuchs, B., Crossman, N.D. and Overton, I.C., 2016. Drought indicators revisited: The need for a wider consideration of environment and society. *WIREs Water*, 3, pp. 516–536. <https://doi.org/10.1002/wat2.1154>
7. Baniya, B., Tang, Q., Ximeng, X., Haile, G.G. and Chhipi-Shrestha, G., 2019. Spatial and temporal variation of drought based on satellite-derived vegetation condition index in Nepal from 1982–2015. *Sensors*, 19, p. 430. <https://doi.org/10.3390/s19020430>
8. Beguería, S., Vicente Serrano, S.M., Reig, F. and Latorre, B., 2013. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. *International Journal of Climatology*, 34(10), pp. 3001–3023. <https://doi.org/10.1002/joc.3887>
9. Bhunia, P., Das, P. and Maiti, R., 2020. Meteorological drought study through SPI in three drought-prone districts of West Bengal, India. *Earth Systems and Environment*, 4(1), pp. 43–55.
10. Botterill, L.C. and Hayes, M.J., 2012. Drought triggers and declarations: Science and policy considerations for drought risk management. *Nature Current Climate Change Reports: Hazards*. <http://link.springer.com/10.1007/s11069-012-0231-4>
11. Byun, H.R. and Wilhite, D.A., 1999. Objective quantification of drought severity and duration. *Journal of Climate*, 12, pp. 2747–2756. <https://doi.org/10.1175/1520-0442>
12. Cao, M., Chen, M., Liu, J. and Liu, Y., 2022. Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain. *Agricultural Water Management*, 263, p. 107450. <https://doi.org/10.1016/j.agwat.2021.107450>
13. Costa, J.A. and Rodrigues, G.P., 2017. Space-time distribution of rainfall anomaly index (RAI) for the Salgado Basin, Ceará State-Brazil. *Ciência e Natura*, 39(3), pp. 627–634.
14. Dai, A., 2011. Drought under global warming: A review. *Wiley Interdisciplinary Reviews: Climate Change*, 2, pp. 45–65.
15. Dakhil, A.J., Hussain, E.K. and Aziz, F.F., 2024. Evaluation of the Drought Situation Using Remote Sensing Technology, an Applied Study on a Part of North Wasit Governorate in Iraq. *Nature Environment and Pollution Technology*, 23(4), pp.2241-2249. 10.46488/NEPT.2024.v23i04.028

16. Das, S.R., Deka, B.C. and Sarma, H.K., 2019. Dry and wet spell analysis and moisture adequacy index (MAI) estimation for assessing the agro-climatic potentiality for crop planning in the Central Brahmaputra Valley Zone (CBVZ) of Assam, India. *Journal of Agrometeorology*, 21(4), pp. 551–557.
17. Diani, K., et al., 2019. Evaluation of meteorological drought using the standardized precipitation index (SPI) in the High Ziz River basin, Morocco. *Limnological Review*, 19(3), pp. 125–135.
18. Dikici, M. 2020. Drought analysis with different indices for the Asi Basin (Turkey). *Scientific Reports*, 10(1), 20739. <https://doi.org/10.1038/s41598-020-77827-z>
19. Dixit, S. and Jayakumar, K.V., 2021. A study on copula-based bivariate and trivariate drought assessment in Godavari River Basin and the teleconnection of drought with large-scale climate indices. *Theoretical and Applied Climatology*, 146(3), pp. 1335–1353.
20. Dixit, S., Atla, B.M. and Jayakumar, K.V., 2022. Evolution and drought hazard mapping of future meteorological and hydrological droughts using CMIP6 model. *Stochastic Environmental Research and Risk Assessment*, 36, pp. 3857–3874. <https://doi.org/10.1007/s00477-022-02230-1>
21. Doesken, N.J. and Garen, D., 1991. Drought monitoring in the western United States using a Surface Water Supply Index. In: *Proceedings of the Seventh Conference on Applied Climatology*, Salt Lake City, UT, USA, 1991. American Meteorological Society, pp. 266–269.
22. Du, L., Mikle, N., Zou, Z., Huang, Y., Shi, Z., Jiang, L. and Luo, Y., 2018. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency. *Science of the Total Environment*. <https://doi.org/10.1016/j.scitotenv.2018.02.114>
23. Dubrovsky, M., Svoboda, M.D., Trnka, M., Hayes, M.J., Wilhite, D.A., Zalud, Z. et al., 2009. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. *Theoretical and Applied Climatology*, 96, pp. 155–171. <http://link.springer.com/10.1007/s00704-008-0020-x>
24. Erhardt, T.M. and Czado, C., 2018. Standardized drought indices: A novel univariate and multivariate approach. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 67(3), pp. 643–664. <https://doi.org/10.1111/rssc.12242>
25. Ezzahra, F.F., Ahmed, A. and Abdellah, A., 2023. Variance-based fusion of VCI and TCI for efficient classification of agriculture drought using landsat data in the High Atlas (Morocco, North Africa). *Nature Environment and Pollution Technology*, 22(3), pp. 1421–1429. [10.46488/NEPT.2023.v22i03.028](https://doi.org/10.46488/NEPT.2023.v22i03.028)
26. Farahmand, A. and AghaKouchak, A., 2015. A generalized framework for deriving nonparametric standardized drought indicators. *Advances in Water Resources*, 76, pp. 140–145.
27. Funk, C. and Shukla, S., 2020. Drought early warning and forecasting: theory and practice. Elsevier.
28. Gorham, E. and Kelly, J., 2018. A history of ecological research derived from titles of articles in the journal "Ecology", 1925–2015. *Bulletin of the Ecological Society of America*, 99(1), pp. 61–72. <https://doi.org/10.1002/bes2.1380>
29. Goswami, A., 2018. Identifying the frequency and intensity of dry and wet years over Sub-Himalayan West Bengal, India using rainfall anomaly index. *Research and Review: International Journal of Multidisciplinary*, 3(11), pp. 461–465.
30. Gouveia, C., Santos, P., Russo, A. and Oliveira, P., 2019. Comparison of drought indices for drought monitoring in a Mediterranean climate region. *Water Resources Management*, 33(1), pp. 223–244.
31. Gouveia, C., Santos, P., Russo, A. and Oliveira, P., 2019. Comparison of drought indices for drought monitoring in a

- Mediterranean climate region. *Water Resources Management*, 33(1), pp. 223–244.
32. Haile, G.G., Tang, Q., Li, W., Liu, X. and Zhang, X., 2020. Drought: Progress in broadening its understanding. *WIREs Water*, 7(2), pp. 1–25. <https://doi.org/10.1002/wat2.1407>
33. Halwatura, D., Lechner, A.M. and Arnold, S., 2015. Drought severity–duration–frequency curves: A foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes. *Hydrology and Earth System Sciences*, 19, pp. 1069–1091. <https://doi.org/10.5194/hess-19-1069-2015>
34. Hao, Z. and AghaKouchak, A., 2013. Multivariate standardized drought index: A parametric multi-index model. *Advances in Water Resources*, 57, pp. 12–18. <https://doi.org/10.1016/j.advwatres.2013.03.009>
35. Hayes, M., Svoboda, M.D., Wardlow, B.D., Anderson, M. and Kogan, F., 2021. Drought monitoring: Historical and current perspectives. *Drought Mitigation Center Faculty Publications*. <https://digitalcommons.unl.edu/droughtfacpub/94>
36. Heggen, R.J., 2001. Normalized Antecedent Precipitation Index. *Journal of Hydrologic Engineering*, pp. 377–381, VI-5.
37. Heim, R.R. Jr., 2002. A review of twentieth-century drought indices used in the United States. *Bulletin of the American Meteorological Society*, 83, pp. 1149–1165.
38. Hogg, E.H., Barr, A.G. and Black, T.A., 2013. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. *Agricultural and Forest Meteorology*, 178, pp. 173–182.
39. Hollinger, S.E., Isard, S.A. and Welford, M.R., 1993. A new soil moisture drought index for predicting crop yields. In: *Preprints, Eighth Conference on Applied Climatology*, American Meteorological Society: Anaheim, CA, USA, pp. 187–190.
40. Hong, W. and Wilhite, D.A., 2004. An agricultural drought risk-assessment model for corn and soybeans. *International Journal of Climatology*, 24(6), pp. 723–741.
41. Iqbal, M.S., Singh, A.K. and Ansari, M.I., 2020. Effect of drought stress on crop production. In: *New Frontiers in Stress Management for Durable Agriculture*, pp. 35–47.
42. Jain, V. K., Pandey, R. P., Jain, M. K., and Byun, H., 2015. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. *Weather and Climate Extremes*, 8, 1–11. <https://doi.org/10.1016/j.wace.2015.05.002>
43. Ji, L. and Peters, A.J., 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. *Journal of Remote Sensing of Environment*, 87, pp. 85–95.
44. Johnson, G.L., Kunkel, K.E. and Zaitchik, B.F., 2021. *Journal of Climate. Journal of Climate*, 34(1), pp. 127–146.
45. Juhasz, T. and Kornfield, J., 1978. The Crop Moisture Index: Unnatural response to changes in temperature. *Journal of Applied Meteorology*, pp. 1864–1866.
46. Kao, S.C. and Govindaraju, R.S., 2010. A copula-based joint deficit index for droughts. *Journal of Hydrology*, 380, pp. 121–134. <https://doi.org/10.1016/J.JHYDROL.2009.10.029>
47. Karimi, V., Kamkar Haghghi, A., Sepaskhah, A. and Khalili, D., 2001. Hydrological droughts in Fars Province. *Journal of Agricultural Sciences and Natural Resources*, 5, No. 4, Isfahan Industrial University, pp. 1–12.
48. Keetch, J.J. and Byram, G.M., 1968. A synthesis of the Keetch-Byram Drought Index. *Journal of Applied Meteorology*, 7(1), pp. 1–8.
49. Khatri, A. and Sharma, P.K., 2019. Drought monitoring and forecasting using satellite-based vegetation condition indices:

- A case study of the Upper Indus River Basin. *Journal of Water and Climate Change*, 10, pp. 416–435.
50. Kim, D.W., Byun, H.R. and Choi, K.S., 2009. Evaluation, modification, and application of the effective drought index to 200-year drought climatology of Seoul, Korea. *Journal of Hydrology*, 378, pp. 1–12.
51. Krueger, E.S., Ochsner, T.E., Quiring, S.M., Engle, D.M., Carlson, J.D., Twidwell, D. and Fuhlendorf, S.D., 2017. Measured soil moisture is a better predictor of large growing-season wildfires than the Keetch–Byram Drought Index. *Soil Science Society of America Journal*, 81, pp. 490–502. <https://doi.org/10.2136/sssaj2017.01.0003>
52. Kulkarni, S.S., Wardlow, B.D., Bayissa, Y.A., Tadesse, T., Svoboda, M.D. and Gedam, S.S., 2020. Developing a remote sensing-based combined drought indicator approach for agricultural drought monitoring over Marathwada, India. *Remote Sensing*, 12, 2091. <https://doi.org/10.3390/rs12132091>
53. Kuma, A. KC., Obi Reddy, G.P., Masilamani, P., Y, Satish, Turkar, P. and Sandeep, P., 2021. Integrated drought monitoring index: A tool to monitor agricultural drought by using time-series datasets of space-based earth observation satellites. *Advances in Space Research*, 67(1), pp. 298–315.
54. Leng, G., Tang, Q. and Rayburg, S., 2015. Climate change impacts on meteorological, agricultural, and hydrological droughts in China. *Global and Planetary Change*, 126, pp. 23–34. <https://doi.org/10.1016/j.gloplacha.2015.01.003>
55. Li, L., et al., 2020. Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. *Journal of Hydrometeorology*, 21(7), pp. 1513–1530.
56. Liu, C., Yang, C., Yang, Q., et al., 2021. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. *Scientific Reports*, 11, 1280. <https://doi.org/10.1038/s41598-020-80527-3>
57. Liu, X., Xie, Y., Sun, Q. and Lei, H., 2022. Development and evaluation of a modified drought monitor index (MDMI) for drought assessment in North China. *Water Resources Management*, 36(5), pp. 1–20.
58. Liu, X., Xie, Y., Xu, C. and Zhang, J., 2022. Development and evaluation of a modified joint deficit index (MIDI) for drought assessment in North China. *Water Resources Management*, 36(8), pp. 1–15.
59. Loukas, A., Vasiliades, L. and Dalezios, N., 2003. Intercomparison of meteorological drought indices for drought assessment and monitoring in Greece. In: *Proceedings of the International Conference on Environmental Science and Technology*, Lemnos Island, pp. 484–491.
60. McGuire, J.K. and Palmer, W.C., 1957. The 1957 drought in the eastern United States. *Monthly Weather Review*, 85, pp. 305–314.
61. McKee, T.B., Doesken, N.J. and Kleist, J., 1933. The relationship of drought frequency and duration to time scales. In: *Proceedings of the 8th Conference on Applied Climatology*, Anaheim, CA, USA, 17–22, pp. 179–183.
62. McMahon, T.A. and Diaz Arenas, A., 1982. Methods of computation of low streamflow. UNESCO, Paris, p. 95.
63. Mirabbasi, R., Anagnostou, E.N., Fakheri-Fard, A., Dinpashoh, Y. and Eslamian, S., 2013. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. *Journal of Hydrology*, 492, pp. 35–48. <https://doi.org/10.1016/j.jhydrol.2013.04.019>
64. Miryaghoubzadeh, M., Khosravi, S.A. and Zabihi, M., 2019. A review of drought indices and their performance. *Journal of Water Sustainability and Development*, 6(1), pp. 103–112.

65. Mishra, A.K. and Singh, V.P., 2010. A review of drought concepts. *Journal of Hydrology*, 391, pp. 202–216. <https://www.sciencedirect.com/science/article/pii/S0022169410004257>
66. Mishra, S.K. and Nagarajan, K., 2010. Drought vulnerability assessment using Kincer Index and GIS: A study of a watershed in India. *Disaster Prevention and Management*, 19(3), pp. 293–309.
67. Mishra, V.K., Shah, R. and Joshi, P.C., 2018. A data fusion-based approach for drought monitoring in a semi-arid region. *Remote Sensing*, 10(2), 128.
68. Mukherjee, S., Mishra, A. and Trenberth, K.E., 2018. Climate change and drought: A perspective on drought indices. *Curr. Clim. Change Rep.*, 4, 145–163. <https://doi.org/10.1007/s40641-018-0098-x>
69. Mukherjee, S., Mishra, A., and Trenberth, K. E., 2018. Climate change and drought: a perspective on drought indices. *Current climate change reports*, 4, 145-163.
70. Nalbantis, I. and Tsakiris, G., 2008. The standardized runoff index (SRI) in North America: A review. *Hydrol. Res. Appl.*, 16(18), 3457–3470.
71. Nelsen, R.B., 2006. *An Introduction to Copulas*. Springer, New York.
72. Nguyen-Huy, T., Kath, J., Nagler, T.W., Khaung, Y., Su Aung, T.S., Mushtaq, S., Marcussen, T. and Stone, R., 2022. A satellite-based Standardized Antecedent Precipitation Index (SAPI) for mapping extreme rainfall risk in Myanmar. *Remote Sens. Appl. Soc. Environ.* 26, 100733.
73. Ntale, H.K. and Gan, T.Y., 2003. Drought indices and their application to East Africa. *Int. J. Climatol.* 23(11), 1335–1357.
74. Palmer, W.C., 1965. Meteorological drought. *Res. Pap. No. 45*. U.S. Department of Commerce Weather Bureau, Washington, DC.
75. Palmer, W.C., 1968. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. *Weatherwise*, 21, 156–161.
76. Patil, R., Polisgowdar , B. ., Rathod, S. ., Kumar, U. ., Wali, V. ., Reddy, G. ., and Rao, S., 2023. Comparison And Evaluation Of Drought Indices Using Analytical Hierarchy Process (Ahp) Over Raichur District, Karnataka. *MAU-SAM*, 74(1), 43–56. <https://doi.org/10.54302/mausam.v74i1.787>
77. Qiao, L., Qian, H. and Huo, A.D., 2014. A review of remote sensing drought monitoring methods. *AMR*, 1073–1076, 1891–1894. <https://doi.org/10.4028/www.scientific.net/amr.1073-1076.1891>.
78. Rahman, A., 2017. Social hydrology. In: Singh, V.P. (Ed.), *Handbook of Applied Hydrology*, Chapter 155, McGraw-Hill, New York, pp. 1–10.
79. Raja Azman, R., Raja Muhammad Naufal, M., Mohd Noor, N.A., Abdullah, S., Mohamed, M. and Gading, M., 2022. *Journal of Science and Technology* 2637-0018, V5, 59–68. <https://ir.uitm.edu.my/id/eprint/66805>.
80. Rawat, K.K. and Joshi, H.C., 2010. Determination of moisture adequacy index over Uttarakhand using GIS. *J. Indian Soc. Remote Sens.* 38(2), 227–234.
81. Raziei, T., Saghafian, B. and Abbaspour, K.C., 2015. On the use of the standardized precipitation index (SPI) for drought assessment in the arid and semiarid regions of Iran. *Water Resour. Manag.* 29(3), 811–823.
82. Salehnia, N., Alizadeh, A., Sanaeinejad, H., Bannayan, M., Zarrin, A. and Hoogenboom, G., 2017. Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data. *J. Arid Land* 9(6), 797–809. <https://doi.org/10.1007/s40333-017-0070-y>

83. Salehnia, N., et al., 2020. Rainfed wheat (*Triticum aestivum* L.) yield prediction using economical, meteorological, and drought indicators through pooled panel data and statistical downscaling. *Ecol. Indic.* 111, 105991.
84. Santos, D.M., Sousa, W.M. and Mendes, M.A., 2022. Environmental Science & Pollution Research. *Environ. Sci. Pollut. Res.* 28(32), 31702–31714.
85. Sarkar, A. and Biswas, S., 2017. Rainfall and Moisture Adequacy Index (MAI) based crop planning in Lower Brahmaputra Valley Zone (LBVZ) of Assam. *J. Agric. Sci.* 159(1), 1–18.
86. Schwalm, C.R., Anderegg, W.R., Belingley, S., De Jeu, R.A.M., Fisher, J.B., Medlyn, D.G. and Waring, R.H., 2017. Global patterns of terrestrial plant carbon cycling during drought. *Nature* 540(7631), 283–287.
87. Seleiman, M.F., Al-Suhaimi, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H. and Battaglia, M.L., 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. *Plants* 10, 259. <https://doi.org/10.3390/plants10020259>
88. Sen Roy, S., Ghosh, T., Roy, A. and Das, S., 2023. *Remote Sensing of Water-Related Hazards*. CRC Press.
89. Shafer, G. and Dezman, R.E., 1982. Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in the United States. *Water Resour. Bull.* 18(3), 336–340.
90. Sheffield, J., Wood, E.F. and Roderick, M.D., 2012. Global assessment of standardized runoff index for drought monitoring. *J. Hydrometeorol.* 13(1), 193–201.
91. Shukla, S. and Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. *Geophys. Res. Lett.* 35(2). <https://doi.org/10.1029/2007GL032487>
92. Siddharam, K., Kambale, J.B., et al., 2020. Assessment of long-term spatio-temporal variability and standardized anomaly index of rainfall of Northeastern region, Karnataka, India. *Climate Change* 6(21), 1–11.
93. Silva, V.D.A., Oliveira, L.E.B., da Silva, F.B. and da Costa, L.P., 2021. Water Resources Management. *Water Resour. Manag.* 35(11), 3907–3922.
94. Smakhtin, V.U. and Hughes, D.A., 2007. Automated estimation and analyses of meteorological drought characteristics from monthly rainfall data. *Environ. Model. Softw.* 22(6), 880–890.
95. Stocker, T.F., et al., 2013. *IPCC, Climate Change, The Physical Science Basis*, Cambridge UP.
96. Svoboda, M. D., & Fuchs, B. A. (2016). *Handbook of drought indicators and indices (Vol. 2)*. Geneva, Switzerland: World Meteorological Organization.
97. Telesca, L., Lovallo, M., Lopez-Moreno, I. and Vicente-Serrano, S., 2012. Investigation of scaling properties in monthly streamflow and Standardized Streamflow Index (SSI) time series in the Ebro basin (Spain). *Physica A: Stat. Mech. Appl.* 391(4), 1662–1678. <https://doi.org/10.1016/j.physa.2011.10.023>.
98. Tigkas, D., Vangelis, H. and Tsakiris, G., 2015. DrinC: A software for drought analysis based on drought indices. *Earth Sci. Inform.* 8, 697–709. <https://doi.org/10.1007/s12145-014-0178-y>
99. Trigo, C.M., Martínez-Vega, J. and Jiménez-López, J.A., 2021. Multivariate Standardized Drought Index (MSDI) for drought characterization and risk assessment: A case study of the Upper Tagus River Basin. *Water Resour. Manag.* 35(10), 2725–2745.
100. Tsakiris, G., 2004. Meteorological drought assessment. Paper prepared for the needs of the European Research Program MEDROPLAN (Mediterranean Drought Preparedness and Mitigation Planning), Zaragoza, Spain.

101. Tsakiris, G., Pangalou, D. and Vangelis, H., 2007. Regional drought assessment based on the reconnaissance drought index (RDI). *Water Resour. Manage.* 21, 821–833. <https://doi.org/10.1007/s11269-006-9105-4>
102. Van de Vyver, H. and Van den Bergh, J., 2018. The Gaussian copula model for the joint deficit index for droughts. *J. Hydrol.* 561, 987–999. <https://doi.org/10.1016/j.jhydrol.2018.03.064>.
103. Van der Schrier, G., Jones, P.D. and Briffa, K.R., 2011. The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration. *J. Geophys. Res. Atmos.* 116(D3).
104. Van Loon, A.F., Gleeson, T., Clark, J., Van Dijk, A.I.J.M., Stahl, K., Hannaford, J., et al., 2016. Drought in the Anthropocene. *Nature Geosci.* 9(2), 89–91. <https://doi.org/10.1038/ngeo2646>
105. Van-Rooy, M.P., 1965. A rainfall anomaly index (RAI) independent of time and space. *Notos* 14, 43–48.
106. Vicente Serrano, S.M., et al., 2012a. A new drought index combining precipitation and potential evapotranspiration: The standardized precipitation evapotranspiration index (SPEI). *J. Climate*, 25(11), 4389–4416.
107. Vicente Serrano, S.M., et al., 2012b. A new drought index for monitoring and predicting droughts: The SPEI. *Water Resour. Res.*, 48(7), W07510.
108. Vicente Serrano, S.M., et al., 2013a. A review of drought indices used in hydrology and climate science. *J. Hydrol.*, 494, 200–216.
109. Vicente Serrano, S.M., et al., 2013b. The Standardized Precipitation Evapotranspiration Index (SPEI): A review of its application in drought monitoring and forecasting. *Int. J. Climatol.*, 33(11), 2327–2365.
110. Wahab, A., et al., 2022. Plants' physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. *Plants* 11(13), 1620.
111. Wang, Q., Zhang, L., Chen, Y. and Fan, Y., 2013. SRI-based drought analysis in the Upper Heihe River Basin, China. *Hydrol. Sci. J.* 58(11), 2531–2546.
112. Wilhite, D., 2000. Drought as a natural hazard: Concepts and definitions. In: Drought Mitigation Center Faculty, Chapter 1. <https://digitalcommons.unl.edu/droughtfacpub/69>
113. Wilhite, D.A. and Glantz, M.H., 1985. Understanding: The drought phenomenon: The role of definitions. *Water International* 10, 111–120. <https://doi.org/10.1080/02508068508686328>
114. Wilhite, D.A., 2000. Drought as a natural hazard: Concepts and definitions. *Environmental Science*. <https://api.semanticscholar.org/CorpusID:8760593>
115. Wu, J., Wang, S., Islam, A. and Cheng, H., 2016. Assessment of Vegetation Condition Index (VCI) for Drought Monitoring in the Southeastern United States. *Water Resour. Manag.* 31, 2563–2580.
116. Wu, J., Wang, S., Islam, A. and Cheng, H., 2016. Development and application of a drought vulnerability index for assessing drought risk in the southeastern United States. *Water Resour. Manag.* 31(8), 2563–2580.
117. Wu, J., Wang, S., Islam, A. and Cheng, H., 2016. Drought assessment in the Southeastern United States using the Keetch-Byram Drought Index (KBDI) and the Standardized Streamflow Index (SSFI). *Water Resour. Manag.* 31(8), 2563–2580.
118. Wu, J., Wang, S., Islam, A. and Cheng, H., 2016. Improved drought monitoring using a combined index of meteorological and hydrological factors: application of the joint deficit index (JDI). *Water Resour. Manag.* 31(8), 2563–2580.
119. Wu, J., Wang, S., Islam, A. and Cheng, H., 2017. Development of a data fusion-based drought index for agricultural

- drought monitoring. *Water Resour. Manag.* 31(8), 2563–2580.
120. Yihdego, Y., Vaheddoost, B. and Al-Weshah, R.A., 2019. Drought indices and indicators revisited. *Arab J. Geosci.* 12, 69. <https://doi.org/10.1007/s12517-019-4237-z>
121. Zargar, A., Maskey, S., Rehschuh, M. and Shahbaz, T., 2022. A comprehensive review of drought indices for drought monitoring and prediction. *Water Resour. Manag.* 36(12), 1–26.
122. Zhang, X., Liu, W. and Zhang, Y., 2022. A comparative study of missing data imputation methods for drought assessment using multivariate standardized drought index (MSDI). *Water Resour. Manag.* 36(11), 3837–3857.
123. Zhao, B., Dai, Q., Han, D., et al., 2019. Estimation of soil moisture using modified antecedent precipitation index with application in landslide predictions. *Landslides* 16, 2381–2393. <https://doi.org/10.1007/s10346-019-01255-y>.