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ABSTRACT

Global weather patterns are greatly impacted by climate change, making droughts more frequent and severe, espe-
cially in regions with limited adaptation capacity. This review evaluates the strengths and limitations of widely used
drought indices in the context of climate change. Our analysis identifies the Standardized Precipitation Evapotran-
spiration Index (SPEI) and the Normalized Difference Vegetation Index (NDVI) as the most robust tools for mon-
itoring drought under current and projected climate scenarios, with CMIP6 models indicating increased drought
risk for vulnerable regions such as South Asia. The integration of remote sensing and artificial intelligence enhances
the accuracy and adaptability of drought monitoring. The findings highlight the need for region-specific frameworks
and actionable recommendations for researchers, policymakers, and technologists to improve drought resilience

and management strategies.
INTRODUCTION

Environmental and climate change have been profound over the past century; severe natural calamities,
such as droughts and floods, have been triggered by global heating, leading to changes in water distribution
throughout the hydrological cycle (Leng et al. 2015). Accelerated population growth and climate change have
emerged as the most significant obstacles to sustainable human resource development and the conservation of
natural systems. Humans have modified drought characteristics during the Anthropocene, so they may no longer

be regarded as “natural hazards” in their entirety (Van Loon et al. 2016; Haile et al. 2020). Drought is generally
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characterised as an abnormal lack of moisture compared to a standard reference point, but it is more specifically
categorised depending on the particular phase of the water cycle in which these deviations in moisture emerge

(Wilhite and Glantz 1985).

The concept of drought lacks a broadly agreed-upon definition. According to (McMahon and Diaz Arenas
1982), drought is a prolonged period of arid weather that affects the water supply, producing a moisture scarcity
for human use. The drought phenomenon has long been a focal point of interest among ecologists. Research
publications titled “Drought” have been published since at least the 1920s (Gorham and Kelly 2018) and the
ecological effects of drought have long been studied. Due to climate model forecasts of increasingly frequent,
severe and pervasive water shortages, curiosity has grown in this subject in recent decades (Stocker et al. 2013).
Globally, the impact of drought on terrestrial ecosystems has increased over the last century, as confirmed by
many investigations (Schwalm et al. 2017: Du et al. 2018). Generally, the drought’s severity can be measured

by drought indices using the drought indicators.

Drought is a complex phenomenon, often described as a prolonged period of water scarcity that results
from significant moisture deficits compared to historical norms. It directly impacts agriculture, water supply,
ecosystems and economies. Historically, droughts have triggered severe consequences, including famines and
ecosystem degradation. Unlike other natural hazards, drought’s onset and termination are often slow and chal-
lenging to predict, making it particularly devastating. Understanding drought in the context of climate change
is increasingly critical as climate models project more frequent, severe and widespread water shortages in the

coming decades (Rahman 2017; Wilhite 2000).

Various drought indicators and indices have been developed to quantify and monitor drought severity, each
tailored to specific aspects of the hydrological cycle and regional characteristics. For instance, indices such as
the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and the
Palmer Drought Severity Index (PDSI) are widely utilized but have varying degrees of effectiveness in capturing
drought dynamics under changing climatic conditions (Dixit et al. 2022). These indices help contextualize
drought severity, offering critical insights for policymakers and researchers. However, traditional methods often
struggle with the challenges posed by climate change, such as non-stationarity and the increasing influence of

human activities on hydrological patterns.

The main aim of this review paper is to provide a comprehensive synthesis of current research and under-
standing regarding the correlation between climate change and drought. The review systematically incorporates
recent studies to analyze drought indices and indicators, emphasizing their applicability in evolving climatic
conditions. A detailed evaluation of the 25 most widely recognized drought indices is presented, focusing on
their methodological strengths, limitations and relevance to contemporary research challenges. These indices
are assessed within the context of changing climate scenarios to analyze the research undertaken on the connec-

tion between drought and climate variability. Most past reviews have focused either on specific drought indices
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or particular geographic regions, whereas this paper provides a broader comparative evaluation of 25 indices in

the context of climate change, addressing a critical gap in current literature.

The study also explores the potential for integrating advanced technologies such as remote sensing and
artificial intelligence to develop hybrid drought indices that address the limitations of traditional approaches.
By highlighting these advancements, the review underscores the need for innovative, region-specific frame-

works to enhance drought resilience.

This review synthesizes recent advancements in drought monitoring to address critical gaps in understand-
ing how traditional and emerging indices perform under evolving climate conditions. By evaluating the robust-
ness of drought indices across historical, CMIP5, and CMIP6 scenarios, we identify those most resilient to
temperature-driven hydrological shifts and non-stationary climatic patterns. The analysis systematically com-
pares their efficacy in capturing drought impacts across meteorological, agricultural, hydrological, and ecolog-
ical domains, emphasizing regional applicability and scalability. Furthermore, we explore the potential of inte-
grating remote sensing and artificial intelligence to overcome limitations in data resolution, socio-economic
integration, and real-time adaptability. Through this synthesis, the review provides a foundation for developing
adaptive frameworks that enhance drought resilience, offering actionable insights for researchers and policy-
makers to bridge the gap between theoretical advancements and practical implementation in water resource

management.
2. METHODOLOGY

To achieve the aim and objectives of this research, a systematic and comprehensive approach was em-
ployed to analyse the correlation between climate change and drought, with a specific focus on drought indices
and their applicability under evolving climatic conditions. The methodology began with a thorough review of
existing scientific literature and research papers on climate change, drought characteristics and drought indices,
including peer-reviewed journals, IPCC reports and datasets from CMIP5 and CMIP6 models. Relevant studies
from the past two decades were prioritized to ensure the inclusion of recent advancements and findings. Publicly
available datasets, including those from climate models and remote sensing technologies, were gathered to pro-
vide a robust basis for analyzing drought patterns and their connection to climate variability. The study then
categorized droughts into distinct types—meteorological, agricultural, hydrological, socio-economic, ecologi-
cal, groundwater and flash droughts—to ensure a comprehensive understanding of the phenomenon. Drought
indicators and indices, such as the Standardized Precipitation Index (SPI), Standardized Precipitation Evapo-
transpiration Index (SPEI), Palmer Drought Severity Index (PDSI) and other composite indices, were identified
and evaluated, focusing on their methodological strengths, limitations and applicability in the context of climate
change. The CMIP6 Scenario Model Intercomparison Project was utilized to analyse future drought projections
under different emission and socio-economic pathways. A comparative analysis of CMIP5 and CMIP6 models

was performed to understand the advancements in sensitivity and accuracy in predicting drought conditions.
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The study also explored the potential of remote sensing and artificial intelligence for drought monitoring and
management, examining existing hybrid drought indices and proposing frameworks for integrating advanced
technologies to improve the accuracy and applicability of drought monitoring tools. Gaps in existing methodol-
ogies were identified, particularly in terms of data availability, spatial resolution and the inclusion of socio-
economic factors in drought assessment. Challenges related to non-stationarity in climate models and the in-
creasing influence of anthropogenic activities on hydrological cycles were also analyzed. Based on the findings,
region-specific and innovative frameworks were proposed to enhance drought resilience and improve monitor-
ing and mitigation strategies. Recommendations for improving water resource governance and addressing the
economic impacts of drought were included to assist policymakers in developing effective strategies. This sys-
tematic approach ensured that the research covered all aspects of the complex relationship between climate
change and drought, providing a detailed evaluation of drought indices and proposing advanced methodologies

for drought monitoring and mitigation. Methodology Adopted for the Systematic Review is shown in Fig.1.
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Fig. 1: Methodology Adopted for the Systematic Review

A rigorous search and screening process ensured extensive coverage and reduced bias in this review. We
searched Scopus, Web of Science, and Google Scholar for recent peer-reviewed drought indices and climate
change literature. We also incorporated pertinent IPCC reports and carefully chosen grey literature on CMIP5,
CMIP6 forecasts, and Al-based drought monitoring frameworks to capture growing trends and state-of-the-art

methodologies.
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About 500 publications were found using keywords like “drought indices,” “climate change,” “CMIP5,”
“CMIP6,” “remote sensing,” and “Al-based drought monitoring.” About 150 full-text articles were eligible
after removing duplicates and assessing titles and abstracts for relevance. About 50 core papers were selected
for further examination based on methodological rigour, relevance to climate-based drought assessment, and
contribution to indices comparative understanding. Figure 2 shows a PRISMA-style flowchart of research in-
clusion and exclusion. This narrative review synthesises information from multiple sources, however we in-
cluded only peer-reviewed and high-impact research in the final comparative matrix. Since the review was a
comprehensive, comparative overview rather than a quantitative meta-analysis, GRADE or risk-of-bias score
was not performed. The Results and Discussion sections give theme evaluation and index ranking based on
chosen studies. The manuscript cites 123 references for contextual and conceptual support, but only 50 core

studies made the systematic review matrix.
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Fig. 2: PRISMA-style flow diagram of the literature screening and selection process

While this review does not directly apply artificial intelligence (Al) methods, it systematically examines
how Al has been integrated into drought monitoring and index development in the existing literature. Our review
process included identifying studies that utilize machine learning and other Al techniques to process remote
sensing data, develop hybrid indices, and improve drought prediction accuracy. These studies were analyzed to
understand the current state, advantages, and challenges of Al in drought research. Our methodology thus pro-
vides a comprehensive synthesis of Al’s role in advancing drought monitoring, as reflected in recent scientific

work.
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2.1. Ranking System for Drought Indices

To objectively assess and compare the robustness of drought indices for monitoring under changing cli-
matic conditions, we developed a transparent ranking system based on measurable criteria. The choice of criteria
was informed by the need to evaluate indices according to their scientific rigor, practicality, and suitability for
diverse climate scenarios, as recommended in the literature on drought indicators and indices (World Meteoro-

logical Organization & Global Water Partnership 2016).
2.1.1 Criteria for Ranking

We selected the following six criteria, each relevant to the effective application of drought indices in

operational and research contexts:

Climate Sensitivity: Measures the extent to which the index accounts for temperature, precipitation, and

evapotranspiration, reflecting its responsiveness to climate change.

Data Requirement: Evaluates the ease of obtaining the input data required for the index, including data avail-

ability and accessibility.
Spatial Resolution: Assesses the suitability of the index for application at local, regional, or global scales.

Temporal Resolution: Considers the frequency and flexibility of monitoring (e.g., daily, monthly, seasonal,

annual).

Performance under Projected Climate Scenarios (CMIP5/CMIP6): Rates the index’s reliability and adapta-

bility under current and future climate model projections.

Operational Usability: Reflects the ease of implementation, interpretability, and integration into existing

drought early warning systems or policy frameworks.
2.1.2 Scoring Method

Each index was scored on a scale of 1 (low) to 5 (high) for each criterion, based on a review of published
literature, expert consensus, and operational case studies. The total score for each index was calculated by
summing the scores across all criteria, providing a quantitative basis for comparison. This approach ensures
that the ranking is transparent, reproducible, and grounded in both scientific and practical considerations

(Dikici 2020; Patil et al. 2023; Jain et al. 2015).

3. CLASSIFICATION OF DROUGHTS
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The droughts are being recognised as a known natural calamity among water scientists, agricultural spe-
cialists, ecological researchers, geographers and forecasters (Ashok et al. 2020). According to Wilhite and
Glantz, there are four distinct types of droughts. Meteorological factors include insufficient precipitation; agri-
cultural factors include insufficient soil moisture to sustain crop growth; hydrological factors include deficiency
in streamflow and groundwater resources; and social factors include the inability to fulfil water requirements

(Wilhite and Glantz 1985).

The conceptual definition of drought provides an overview of its fundamental ideas and a general explana-
tion of the physical processes involved. This involves the lack of rainfall in a meteorological drought, soil mois-
ture in an agricultural drought, water in lakes and streams in a hydrological drought and water availability for
water management (Mishra and Singh 2010; Wilhite 2000; Mukherjee et al 2018; Ezzahra et al. 2023). A sum-
mary visual representation of these drought classes is presented in Fig. 3 (Wilhite and Glantz, 1985).

Drought problems and threats were thoroughly investigated and studied. The goal was to study its effects
on agriculture, water and ecosystems. This knowledge was used to create adaptable and sustainable strategies

and solutions (Igbal et al. 2020; Seleiman et al. 2021; Wahab A et al. 2022). Further classification details are

given in Table 1 (Wilhite and Glantz, 1985; Mishra and Singh, 2010; Mukherjee et al., 2018) .

Table 1: Different types of Drought Classification and their Description

Type of Drought Description

Meteorological Insufficient precipitation compared to normal levels over specific time scales (e.g.
Drought decadal. annual. monthly). Regional and climate-specific.

Agricultural Inadequate soil moisture to meet the needs of crops and pastures during critical
Drought growth stages, leading to reduced agricultural productivity.

Hydrological Deficiency in surface and groundwater resources, affecting streamflow, reservoir
Drought levels and the overall hydrological cycle.

Socio-Economic

Water scarcity impacts society and industry, disrupting trade and reducing access

Drought to essential water-dependent commodities and services.

Ecological Drought Prolonged water shortages that disrupt ecosystem functions, services and biodiver-
sity, often exceeding ecosystems' adaptive capacities.

Groundwater Long-term decline in underground water supplies caused by reduced recharge rates

Drought or over-extraction.

Flash Drought Rapid onset and intensification of drought conditions, often affecting multiple re-

gions in a short timeframe.
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Fig. 3: Pictorial Representation of the existing Drought Classes
4. DROUGHT INDICATORS AND INDICES
4.1 Drought Indicators

Drought indicators and indices play a critical role in understanding, monitoring and managing drought
conditions. They provide quantitative and qualitative measures to assess the severity, duration and spatial extent
of droughts. Indicators generally rely on meteorological. hydrological. agricultural. and socio-economic data to
reflect the specific components of drought, whereas indices combine multiple datasets into a single value for

decision-making purposes (Salehnia et al. 2020; Kulkarni 2020).

These tools are essential for researchers, policymakers and water resource managers to identify drought
conditions, predict potential impacts and implement mitigation strategies. Effective drought indices enable a
comprehensive analysis by capturing changes in climatic factors such as precipitation, temperature, evapotran-

spiration and water availability.

The evaluation of drought indices is especially relevant in the context of climate change, as shifts in tem-
perature and precipitation patterns intensify the frequency and severity of droughts. Modern advancements, such
as the integration of remote sensing data and artificial intelligence techniques, have further enhanced the accu-

racy of drought indicators, enabling real-time monitoring and improved predictions (Dakhil et al. 2024).

Bachmair et al. (2016) referred to drought indicators and indices collectively as tools to characterize and

quantify droughts, highlighting their widespread application in global drought research.
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4.2 Drought Indices

An index is typically calculated using statistical methods such as normalization or by combining multiple
processes to produce a single value. Using available data, an index measures drought duration and severity,
offering a comprehensive overview for decision-making. It provides a single numerical value that combines
hydrological and meteorological variables, including temperature, evapotranspiration, precipitation, runoff and
other indicators of water availability. Decision support tools used to assess drought intensity, duration and se-
verity rely on specific indices and indicators (Botterill and Hayes 2012). In the drought-monitoring community,
hydrological cycles, drought indicators and indices are often interchangeable (Hayes et al. 2021). Common
drought indicators, such as precipitation, temperature, groundwater levels, streamflow and soil moisture, are
widely used across different regions. In contrast, drought indices are determined and analyzed based on hydro-

climatic factors that influence drought. These indices represent singular quantities (Hayes et al. 2021).

The key characteristics of a drought are its intensity, duration and geographic extent. Among these, the
primary factor for drought analysis is the severity of the drought (Tigkas 2015). Given the multiple factors
contributing to drought, several composite drought indices—RAI, PDSI, SPI, RDI, SPEI, CMI, SPDI, SRI and
others—have been developed to monitor drought conditions by integrating individual remote sensing drought

indices. Here is a list of the drought indices:

4.2.1 Rainfall Anomaly Index (RAI): The proposal was first put up by Van-Rooy in 1965, The operation of
this method relies on the comparison of computed precipitation with random values that span from (-3 to +3).
There are ten categories assigned to the variations in precipitation. Furthermore, it is executed on both a
yearly and monthly basis (Smakhtin and Hughes 2007). The aforementioned research has assessed the effec-
tiveness of RAI in specific, uniform regions classified by moist to moderate climates. It has identified the pre-
cipitation patterns and variations, as well as the intensity and frequency of rainfall (Costa and Rodrigues 2017;
Siddharam and Kambale 2020; Goswami 2018). While a study by (Loukas et al 2003) looked at RAI’s perfor-
mance in temperate climate stations in Greece, where summers often have negative precipitation values, no data
on RAI’s performance in dry and extremely dry climates is available. In these climates, extended warm dry

period has severely skewed precipitation and many zero precipitation data (Raziei et al. 2015).

4.2.2 Palmer drought severity index (PDSI): (Palmer,1965), PDSI bases its definition of drought on soil mois-
ture, precipitation and temperature. Four main factors—precipitation, temperature, soil moisture and evapotran-
spiration—need to be calculated through sophisticated formulation in order to calculate the PDSI, which is
employed on a monthly basis. PDSI is a soil moisture algorithm (Ntale, H.K. Gan, T.Y. 2003; Van der Schrier
et al. 2011) that is calculated for areas that are comparatively uniform. This drought warning system is among
the most advanced and precise available. Though it is a useful tool for identifying long-term drought on a

monthly basis, the PDSI is not appropriate for characterising short-term drought on a weekly basis (Hong and
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Wilhite 2004).The categorisation of precipitation patterns based on index values provides a comprehensive scale

to assess the severity of deviations from average rainfall (Table 2).

Table 2: PDSI Classification and its Range
PDSI Range Classification

4 or above Extremely wet
0.5t0 0.99 Very wet

-0.49 t0 0.49 Normal

-0.5t0 -0.99 Moderate drought
-4 or less Extreme drought

4.2.3 Standardised Precipitation Index (SPI): McKee et al 1933, developed the SPI index in 1993. This index
is calculated by dividing with standard deviation after subtracting the mean precipitation from the actual pre-
cipitation. Calculations are based on precipitation data for 3, 6, 12, 24 and 48 months. The use of SPI varies
according to the chance of precipitation at different time scales. Assessing meteorological droughts through the
use of the (SPI) (Diani et al. 2019; Bhunia et al. 2020; Li et al. 2020). Furthermore, it has the ability to forecast
droughts before they happen and assists in determining drought’s intensity (Funk and Shukla 2020). SPI classi-
fication and range is listed in Table 3. This index is less complex in terms of processing requirements compared

to the Palmer index (Yihdego et al. 2019; Liu et al. 2021).

Table 3: SPI Classification and Range

SPI Range Classification

2 or above Extremely wet
1.5t0 1.99 Very wet

-0.99 to0 0.99 Normal

-1.49 to -1 Moderate drought
-1.99to -1.5 Severe drought

-2 or below Extreme drought

Presently, individuals responsible for organising and making decisions on drought are aware that the (SPI)
serves multiple purposes and comprehends its specific significance. In addition, they acknowledge that the input
data values in SPI have the potential to be altered and they consider this to be a restriction of the index (Ji and
Peters 2003). These are the values into which precipitation variations are classified by (SPI) where in each range
signifies the extent of departure from average precipitation, offering a structured assessment of the drought

severity conditions within specific regions based on SPI values.

4.2.4 Reconnaissance Drought Index (RDI): The MEDROPLAN coordinating meeting introduced an inno-
vative drought detection and assessment index (Tsakiris 2004) and further elaborated upon throughout subse-

quent works (Tsakiris et al. 2007). The PET methodologies were implemented in the RDI index value compu-
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tation (Halwatura et al 2015). It provides a distinct framework for classifying and comprehending various de-
grees of drought intensity. The criterion that evaluates the severity of drought by utilising numerical numbers.

RDI classification and range is listed in Table 4.

Table 4: RDI classification and range

RDI Range Classification
-0.5t0-1.0 Mild drought
-1.0to-1.5 Moderate drought
-1.5t0-2.0 Severe drought

-2 or below Extreme drought

4.2.5 Soil Moisture Drought Index (SMDI): Hollinyer (Hollinyer et al. 1993) established the (SMDI) in 1993.
It is calculated for one year by summing the daily soil moisture readings. This measure only considers soil mois-
ture as one meteorological variable (Karimi et al. 2001). Recent studies on the SMDI’s effectiveness of monitor-
ing the drought (Cao et al 2022; Sen Roy et al. 2023). Utilising historical data as a benchmark, it is conventionally
computed as the discrepancy between present-day soil moisture levels and the long-term mean. Typically, it is
denoted by a standardised value between -4 (extremely dry) and +4 (extremely moist).SMDI values of 0 and

negative ones, respectively, denote different levels of dryness.

4.2.6 Standard Precipitation Evaporation Index (SPEI): The SPEI, similar to PDSI, considers reference
evapotranspiration’s influence on drought severity. However, its ability to analyse several scales allows for the
identification of various types of drought and their effects on different systems (Vicente Serrano, S.M. et al.
2012a; Vicente Serrano, S.M. et al. 2012b; Vicente Serrano, S.M. et al. 2013a; Vicente Serrano, S.M. et al.
2013b). SPEI values vary from (2 to -2). SPEI classification and range is listed in Table 5.

Table 5: SPEI classification and range
SPEI Range Classification

2 or above Highly wet
1.5t02 Very wet
1tol.5 Moderately wet
-1tol Normal

-2to-1 Severely dry

-2 or below Extremely dry

Therefore, the SPEI possesses the same level of sensitivity as the PDSI when it comes to measuring the
demand for evapotranspiration, which is influenced by changes and patterns in climatic factors other than pre-
cipitation. Additionally, it is straightforward to be computed and can be applied at various scales, similar to the

(SPI) (Begueria et al. 2013).
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4.2.7 Crop Moisture Index (CMI): The purpose of the CMI is to offer information that addresses broad-scale
general inquiries rather than localized ones. The sensitivity study conducted on the Crop Moisture Index re-
vealed that the index shows increased levels of moisture in response to rising temperatures under certain in-
stances (Juhasz and Kornfield, 1978). It is dependent on the available meteorological data; in particular, the data
comprises the total precipitation and mean temperature for each week. It evaluates climate change’s impact on
water resources and equitable growth (Miryaghoubzadeh et al 2019; Ampitiyawatta and Wimalasiri 2023).
Evapotranspiration anomaly index and Wetness index are added to generate the final (CMI) (Heim et al. 2002;
Hogg et al 2013). During the growth season, the value is near zero, stays near zero if crop moisture supply and

weather conditions are normal. and returns to nearly zero at the conclusion (Palmer 1968).

4.2.8 Standardised runoffindex (SRI): The (SRI) according to (McKee et al. 1933), the unit standard normal
deviation of the percentile of hydrologic runoff data over a period of time must be calculated. Various
timeframes (such as 1-month or 9-month) and varying levels of spatial grouping for the index can be computed
based on the resolution of the source data and the intended use. SPIs, such as those computed by NOAA, are
determined at a climatic division level and by state agencies at a county level (Shukla and Wood 2008). It is
used to identify the drought patterns in a region (Nalbantis and Tsakiris 2008; Wang et al. 2013) and there are
different methods were used to identify the SRI (Sheffield et al. 2012).

4.2.9 Munger’s Index: The Munger Index, created by Robert Munger in the 1920s, is a measure of drought.
This method is straightforward and commonly employed and by considering precipitation severity of the
drought is evaluated. Short-term droughts can be assessed most effectively using this indices (Yihdego et al
2019). It aids in assessing the sufficiency of rainfall for crop development, where readings below a specific
threshold indicate drought conditions and higher values imply ample moisture availability. Nevertheless, it is
crucial to acknowledge that the Munger Index predominantly emphasises precipitation and the variables that
may impact drought may are not considered such as soil moisture and temperature. A time frame without a 24-
hour rainfall of 1.27 mm. He made the interesting observation that the drying out effect of drought on plant life
in forests is independent to the duration that they last. The approach used a right triangle whose height and base
were proportional to drought length. The mathematical expression for the severity of drought is given by the

formula 0.5 L2, where L is the length of the drought in days (Hogg et al. 2013).

4.2.10 Kincer’s Index: Kincer produced a set of essential maps and charts that depicted the seasonal patterns of
rainfall and the climatological data on the average yearly frequency of rainy days. Kincer’s definition of a
drought is a period of 30 or more consecutive days with precipitation of less than 6.35 mm (0.25 in.) within a
24-hour period (Hogg et al. 2013). Furthermore, it highlighted the allocation of rainfall across several seasons,
taking into account the average yearly precipitation (Qiao et al. 2014). The Kincer’s index evaluates the vulner-
ability of a watershed to drought and identifies the regions that are most prone to drought (Mishra and Nagarajan
2010; Wu et al. 2016). Studies indicate that the Kincer’s index showed higher accuracy compared to the PDSI
and SPI (Gouveia et al. 2019).
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4.2.11 Marcovitch’s Index: In order to calculate a drought index, Marcovitch created an equation that combines
precipitation and temperature. Drought index= 0.5 times the (N/R)* , where, N is the cumulative count of con-
secutive days, lasting for at least two days, with temperatures over 32.2°C (90°F). R denotes the overall amount

of rainfall during the summer for that particular month (Hogg et al. 2013).

4.2.12 Blumenstock’s Index: In his climatic study, Blumenstock utilised probability theory to calculate the
frequencies of droughts. The drought time in days was used to calculate the index. For a drought to end, 2.54
mm (0.10 in.) of precipitation was needed within 48 hours. Using Mungers and Blumenstock indices, short term
drought were measured (Hogg et al. 2013). When compared it to other indices, it becomes apparent that various
indices provide unique expressions of drought (Yihdego et al. 2019). The findings highlighted the need of using
evapotranspiration precipitation data, the severity of the drought was assessed and also improve drought under-
standing and help develop effective drought monitoring and control technologies (Silva et al. 2021; Johnson et

al. 2021; Santos et al. 2022).

4.2.13 Antecedent Precipitation Index: Antecedent precipitation refers to the precipitation that occurs prior to
a certain storm event and it has an impact on the relationship between runoff and that storm event. The yield
from the same rainfall event on a watershed that has already been wetted by earlier rainfall is lesser than the
yield from a rainfall event on a dry watershed (Heggen 2001). The system includes Precipitation, which is a
reverse drought index utilised for the purpose of flood prediction (Hogg et al. 2013) and API decay constant k
affects API value accuracy (Heggen 2001). Soil moisture is crucial in the connection between land and atmos-
phere. Estimating soil moisture levels can be done by several methods such as in situ measurements, hydrolog-
ical modeling and satellite remote sensing. The utilisation of indicators to perform an index of the circumstances
of soil moisture is still another effective strategy. This study examines one of the index known as the (API). To
match the physical process, two parameters were added to the standard API. The recession coefficient is initially
allowed to change with air temperature to account for evapotranspiration. The maximum API value considers
the soil’s maximum water holding capacity. The adjusted API was subsequently calibrated and validated
through a comparison with the soil moisture measured in situ (Zhao et al. 2019). Some recent studies on this
index are utilised to assess the intensity of drought, track patterns of rainfall and forecast hydrological reactions

(Goswami 2018; Nguyen-Huy el al. 2022).

4.2.14 Moisture Adequacy Index (MAI): The (McGuire and Palmer, 1957) index, generated from prospective
evapotranspiration, compares a region’s moisture need to its actual moisture supply, which includes rainfall and
soil moisture. It was computed by dividing the actual moisture supply by the moisture needed and expressing it
as a percentage. Indicators such as precipitation and soil moisture are used and a 100% indicates that what is
available has been enough to fulfil the need (Yihdego et al. 2019) Research has shown that the use of the (MAI)
is an extremely effective technique to determine the drought severity, optimising the cultivation of crops and
making accurate assessments in the field for agriculture (Rawat and Joshi 2010; Sarkar and Biswas 2017; Das

et al. 2019).
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4.2.15 The Keetch and Byram index: Its purpose was to evaluate the state of the drought with a special focus
on fire control management. It measures soil moisture depletion in hundredths of an inch, with 0 indicating no
shortage and 800 severe drought. The calculation of this index relies on a soil moisture storage capacity of 203-
mm (8 in.). The DI is calculated using a daily water budgeting approach that balances drought factor, precipita-
tion and soil moisture.For monitoring and predicting wildfires , this index is extensively used (Hogg et al. 2013).
In situ soil moisture measurements might enhance wildfire threat estimates, which frequently use the KBDI
(Krueger et al. 2017). Studies examine this technology’s usefulness in assessing droughts and wildfires (Keetch
and Byram, 1968; Gouveia et al. 2019).

4.2.16 Surface Water Supply Index:The (SWSI) is a hydrologic drought statistic developed in 1981 particularly
for Colorado, based on empirical data. It incorporates snowfall, reservoir storage, streamflow and high elevation
precipitation to improve the PDSI. A useful indicator of surface water resources is the SWSI (Wilhite and
Glantz, 1985; Shafer and Dezman, 1982). Colorado’s Drought Assessment and Response Plan incorporates
SWSI and PDSI-like measurements. The SWSI is largely computed for river basins and has been adopted by
other western states (Hogg et al. 2013). It includes precipitation, Snowpack, reservoir storage, runoff (Yihdego
et al. 2019). The study of an area and its real-world applications as well as its effectiveness in evaluating the

seriousness of drought and predicting streamflow ((Wilhite and Glantz, 1985; Wu et al. 2016).

4.2.17 The vegetation condition index (VCI): The data utilised for drought identification and tracking is derived
from satellite,Advanced Very High Resolution Radiometer (AVHRR) radiance, namely in the visible and near
infrared spectrum. This data is modified for land climate, ecology and weather. Kogan’s 1995 research showed
this approach’s potential. The VCI capitalises on the strong correlation between vegetation and climate, drawing
inspiration from the ideas established by German biologist W. Koppen nearly a century ago in his creation of a
climate classification system based on vegetation. VCI enables the identification of drought and serves as a
potential worldwide benchmark for assessing the timing, severity, duration and impact of drought on vegetation.
Nevertheless, due to its reliance on vegetation, the VCI is predominantly valuable during the summer period of
plant growth. Its usefulness is restricted during the winter months when plant growth is mostly inactive (Hogg
et al. 2013). Recent studies were done on drought severity and evaluating the trends of drought ( Wu et al. 2016;
Khatri and Sharma 2019). Prior to 2000, the Anomaly Vegetation Condition Index (AVCI) predominantly had
negative values, indicating a lack of soil moisture. The analysis of exceedance probability on an annual time
scale revealed a 20% likelihood of severe drought (VCI < 35%) and a 35% likelihood of regular drought (35%
< VCI £ 50%) occurring in Nepal (Baniya et al. 2019).

4.2.18 Drought Monitor Index: The writers of the DM index depend on the studies of various crucial indices
and supplementary indicators from multiple organisations to construct the ultimate map. The main factors con-
sist of the PDI (Palmer Drought Index), CMI, percentiles of soil moisture model, percentiles of daily streamflow,
percent of normal precipitation, topsoil moisture (percent of short and very short levels) provided by the USDA

and a satellite-based Vegetation Health Index. The U.S. Drought Monitor employs a categorical framework to
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categorise the severity of drought: DO (Abnormally dry) denotes conditions prior to drought, D1 (Moderate
drought) indicates the initial effects on crops and water supply, D2 (Severe drought) signifies significant harm
to agriculture and water scarcity, D3 (Extreme drought) suggests critical losses and widespread scarcity of water
and D4 (Exceptional drought) represents catastrophic impacts on agriculture and economy, coupled with severe
water shortages. These categorisations facilitate the communication of the seriousness and consequences of
drought conditions, providing guidance for responses and allocation of resources in places that are affected
(Hogg et al. 2013). From 2000 to 2016, this research used the integrated drought monitoring index (IDMI) to
measure agricultural drought in Tamil Nadu state, southern Indian peninsula, during the northeast monsoon
season. PCI (precipitation condition index), SMCI (soil moisture condition index), TCI (temperature condition
index and VCI, the IDMI constitutes of these four indices. The indices are calculated based on time-series sat-
ellite observations of climate risks, namely infrared precipitation data from CHIRPS, the European Space
Agency Climate Change Initiative (ESA- CCI) and Moderate Resolution Image Spectroradiometer (MODIS)
(Kuma et al. 2021).The significance and effectiveness of measuring severity and vulnerability of the drought

studies were carried out (Zargar et al. 2022; Liu et al. 2022).

4.2.19 Joint Deficit Index: (Kao and Govindaraju 2010) developed the Joint Deficit Index (JDI), a new measure
using the copula functions that integrates joint distributions of several SPIs. It has the ability for the distribution
of precipitation and streamflow by considering the seasonal variations. This indicator properly detects the in-
cipient and the protracted droughts quickly and allows for a monthly evaluation of drought conditions. It predicts
how much rain is needed in the coming months to restore to normal conditions (Mirabbasi et al. 2013). The
copulas used in JDI are multivariate distribution functions that provide a link between one-dimensional marginal
distributions and joint probability distributions (Nelsen 2006). Geostatistics and spatial statistics explain multi-
timescale covariance using a two- parameter function. Analysis of long-term precipitation data proves covari-
ance models validity. The Bootstrap tests demonstrate that the Gaussian copula model assesses drought severity
better than the empirical copula. It measures droughts outside the empirical copula. Second, drought is well-
quantified. Finally, it clarifies estimate uncertainty (Van de Vyver and Van den Bergh 2018). This indexversa-
tility, applicability and capability to monitor droughts were carried out (Wu et al 2016; Liu et al. 2022).

4.2.20 Multivariate standardised drought index (MSDI): The (MSDI), utilises a probabilistic approach for in-
tegrating the Standardised Soil Moisture Index (SSI) and the (SPI) to accurately represent conditions of drought.
MSDI assesses drought using meteorological and agricultural data. The suggested Multi-Scale Drought Index
(MSDI) is used in California’s climate divisions and North Carolina to assess drought conditions.The drought
studies employ the Modified Standardised Drought Index (MSDI) are then compared to the Standardised Soil
Moisture Index (SSI) and Standardised Precipitation Index (SPI). The findings indicate that MSDI accurately
recognises the beginning and end of drought situations by taking into account both SPI and SSI. SPI largely
determines drought onset, whereas SSI more closely determines drought persistence. In short, the (MSDI) model

demonstrates that it’s possible in quickly merging multiple indices using stochastic approaches (Hao and
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AghaKouchak 2013). The joint cumulative probability is transformed using a standard normal distribution’s
inverse cumulative distribution function to get the MSDI. Standardisation is not achieved using this method.
Since the joint cumulative probability is not evenly distributed on [0,1], negative index values are more likely.
The standardised drought analysis toolkit (SDAT) (Farahmand and AghaKouchak 2015) computes non-para-
metric standardised univariate and non-parametric bivariate (MSDI) drought indices (Erhardt and Czado 2018).
The methods of drought characterisation and risk assessment were evaluated (Zhang et al. 2022; Trigo et al.

2021; Albajes et al. 2022).

4.2.21 Reconnaissance Tri- variate Drought Index (RTDI): Trivariate Drought Index (RTDI), which is a com-
posite of soil moisture, evapotranspiration and precipitation. The meteorological and agricultural droughts are
effectively represented by the RTDI and MSDI, which link the climatic status. For bivariate and trivariate anal-
ysis, the most appropriate copulas derived are the Student and Frank’s t copulas, respectively. In order to analyse
the tendencies of drought’s onset and withdrawal characteristics, the two drought indices are formulated and
evaluated. Frank and Student’s t copulas are best for bivariate and trivariate analysis. Two drought indicators
are created and assessed to analyse drought onset and withdrawal. Cross-wavelet analysis (CWA) can reveal
how large-scale climatic anomalies affect drought indices. This research considers Indian summer monsoon
rainfall (ISMR), Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI) and Indian Ocean Dipole
(Dixit and Jayakumar 2021).

4.2.22 The Effective Drought Index (EDI): (Byun and Wilhite, 1999) created the Effective drought index in
1999 to address index limitations. By assessing daily water collection for time, the EDI can provide a full eval-
uation. Its specialized design for daily drought severity estimate and more accurate water resource evaluations
make EDI advantageous (Kim 2009). From -2.5 to 2.5 constitutes EDI. Value index readings between -1.0 and
1.0 imply near-normal circumstances, while -2.0 or below indicate severe drought (Salehnia et al. 2017; Raja

Azman et al. 2022).

4.2.23 Relative Drought Indices: The relative Standardised Precipitation Index (rSPI) and Relative Palmer
Drought Severity Index (rPDSI) improve drought evaluation in shifting climates. They provide an innovative
method to compare drought conditions across time and geography. Inorder to apply drought indices to future
climate, they must first be calibrated using aggregated observational data from all stations during a reference
period. This process is known as achieving the former. This approach can be utilised to evaluate the spatial
displacement of drought caused by climate change. However, the latter method uses station measurements to
accurately track drought temporal changes in relation to the present climate. The second approach may provide

indicators that are not comparable across climate zones (Mukherjee et al. 2018; Dubrovsky et al. 2009).

4.2.24 Standardized Stream flow Index (SSFI): Power spectrum and the detrended fluctuation analysis are the
employed techniques. The presence of the yearly oscillation indicates all the streamflows. This oscillation also

acts as a transition point between two regions. For frequencies below the yearly cycle (or timescales longer than
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1 year), the dynamics are roughly random. However, for frequencies above the yearly frequency (or timescales
shorter than 1 year), the dynamics are consistently correlated (Telescaet al. 2012). The usefulness of SSFI in
drought evaluation and monitoring, particularly in places with enormous river systems and complex hydrology.
The tool’s ability to quantify drought’s effect on streamflow makes it useful for water resource management

and environmental planning (Wu 2016).

4.2.25 Data fusion-based drought index (DFDI): Data fusion drought index is the process of combining several
sources or types of data to form a complete index that evaluates drought conditions. The index thoroughly
encompasses all categories of drought by utilising a range of indices and proxies that are linked to each specific
form of drought. The primary objective of data fusion, defined as the integration and consolidation of data from
various sources and sensors, is to generate a solution that is either more precise or enables specialists to access

a greater quantity of information than would be possible by utilizing individual data sources alone.

To aid comparative evaluation, a matrix-style summary is presented in Table 6 below, highlighting key
characteristics of major drought indices, including their input data, applicable drought type, strengths, limita-

tions, scale of application, and suitability under changing climate scenarios.

Table 6: Comparative Matrix of Drought Indices

Index Input Data Type Scale Applicability under CC
RAI Precipitation Precipitation based Local regional, monthly Limited (only precipitation)
PDSI Precipitation, Evapotranspiration Regional, monthly Moderate (needs calibration)

Temp., Soil mois-

ture
SPI Precipitation Precipitation based Local global, monthly = Limited (excludes tempera-
ture)
RDI Precipitation, PET  Evapotranspiration Regional, monthly High (accounts for PET)
SMDI Soil moisture Agricultural Local regional, daily =~ High (soil moisture focus)
SPEI Precipitation, Evapotranspiration Local global, monthly  High (integrates temperature)
Temp., PET
CMI Precipitation, Agricultural Regional, weekly Moderate (short-term focus)
Temp., Soil mois-
ture
SRI Streamflow Hydrological Regional, monthly Moderate (streamflow-de-
pendent)
Munger’s Index  Precipitation Precipitation based Local, daily Limited (short-term focus)
Kincer’s Index Precipitation, Composite Regional, monthly Moderate (empirical)
Temp.
Marcovitch’s Inde: Precipitation, Composite Local, daily Limited (experimental)

Temp.
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Blumenstock’s In-
dex

Antecedent Precip-
itation Index

MAI

Keetch-Byram In-

dex

SWSI

VCI

Drought Monitor

Index

JDI

MSDI

RTDI

EDI

Relative Drought
Indices

SSFI

DFDI

Precipitation

Precipitation, Soil
moisture
Precipitation, Soil
moisture

Temp., Soil mois-
ture

Streamflow, Snow
pack, Reservoir
storage

Satellite imagery
(NDVI)
Multi-source
(PDSI, CMI, VCI,
etc.)

Precipitation,
Streamflow (cop-
ula-based)
Precipitation, Soil
moisture
Precipitation, Soil
moisture, ET
Daily Precipitation,
ET

Precipitation,
Temp. (calibrated)

Streamflow

Multi-source (re-
mote sensing, cli-

mate)

Precipitation based

Hydrological

Agricultural

Ecological

Hydrological

Vegetation-based

Composite

Composite

Composite

Composite

Evapotranspiration

Composite

Hydrological

Remote-sensing

Local, daily

Local regional, daily

Regional, monthly

Local regional, daily

Regional, monthly

Regional global,

monthly

Regional global,

monthly

Regional, monthly

Regional, monthly

Regional, monthly

Local regional, daily

Regional, monthly

Regional, monthly

Regional global,
monthly

Limited (historical focus)

Moderate (soil moisture inte-
gration)

Moderate (agro-climatic fo-
cus)

High (fire risk under warm-
ing)

Moderate (water resource fo-

cus)

High (real-time monitoring)

High (integrates multiple

proxies)

High (multi-variable)

High (non-stationary cli-
mates)

High (multi-variable)

Moderate (short-term focus)

High (non-stationary cli-
mates)

Moderate (streamflow-de-
pendent)

High (AI/RS integration)

This paper offers a method to objectively correlate water availability and plant characteristics to assess

terrestrial ecosystem water stress, a set of DIs were considered. The combination approach determines each time

step’s water stress circumstances using multivariate statistical methods like independent components analysis

and eco meteorological parameters including land use, land-cover and climate. Three case study regions with

varying land use and climate regimes and surface and atmospheric variables are provided to assess the new

approach’s potential to generalize DIs (Azmi et al. 2010).
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The following table 7 provides an overview of 25 widely used drought indices, categorized based on their

focus areas such as meteorology, hydrology and agriculture. Each index is evaluated for its strengths, limitations

and suitability under evolving climate conditions.

Table 7: Summary of Commonly Used Drought Indices

Index Name Description Strengths Limitations

SPI Measures drought based on precipita- Simple, widely used, Does not account for tempera-
tion deviation from normal. adaptable to different time-  ture and evapotranspiration.

scales.

SPEI Combines precipitation and evapotran-  Considers temperature im-  Requires detailed climate data.

spiration to assess drought severity. pacts; robust under climate
change.

PDSI Incorporates soil moisture balance to Effective for agricultural Complex calculations; not
measure long-term drought. drought monitoring. suited for short-term drought.

CMI Focuses on short-term agricultural Relevant for agricultural Not useful for long-term
droughts using soil moisture. applications. drought analysis.

RDI Considers precipitation and potential Versatile and adaptable. Requires accurate climatic data.
evapotranspiration.

SRI Quantifies drought using runoff data. Hydrologically relevant. Requires extensive hydrological

data.

VCI Monitors drought impact on vegetation ~ Useful for agricultural and  Relies on satellite data availa-
using remote sensing data. ecological droughts. bility.

RAI Compares rainfall anomalies to histori-  Simple and easy to calcu- Limited by exclusion of temper-
cal averages. late. ature and soil factors.

EDI Considers precipitation deficits over Dynamic and responsive to  Requires detailed precipitation
time. recent changes. records.

EDI Quantifies drought by analyzing evapo-  Relevant under warming Requires advanced climate

transpiration anomalies.

climate scenarios.

models.

This section provides a comprehensive understanding of the tools used to measure and monitor droughts.

Indices and indicators continue to evolve, with recent advancements integrating modern technologies and cli-

mate models, ensuring their relevance for addressing the challenges of climate change. Recent studies demon-

strate the integration of diverse drought indicators or proxies from many data sources to offer a thorough eval-

uation of drought severity. The assessment of drought monitoring, early warning and drought assessment can

be evaluated (Azmi et al. 2016; Mishra et al. 2018; Wu et al. 2017). Other drought indices are employed to

thoroughly evaluate and describe drought conditions. These indices give additional viewpoints on different as-

pects of drought, going beyond conventional measurements to provide a more detailed comprehension. Drought

indices, which quantify departures from typical local circumstances based on historical distributions, are used

to track drought (Dai 2011). Drought indices can be classified as shown in Fig. 4.
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5. RESULTS AND DISCUSSION

This section provides a detailed explanation of the results from the literature analysis, key findings and
their implications. It also discusses the challenges encountered during the research and outlines the future scope

for advancing drought monitoring and management in the context of climate change.
5.1 Results

The results of this study demonstrate the complex and multifaceted relationship between climate change
and drought, evaluated through a detailed analysis of drought indices, climate models and emerging trends. The

findings are summarized as follows:
5.1.1 Analysis of Drought Indices:

o Among the 25 evaluated indices, the Standardized Precipitation-Evapotranspiration Index (SPEI)
and Normalized Difference Vegetation Index (NDVI) were identified as the most robust tools for

monitoring drought under changing climatic conditions.

o SPEI’s inclusion of evapotranspiration made it particularly sensitive to temperature increases caused
by global warming, whereas NDVI proved useful for real-time monitoring of agricultural and eco-

logical drought impacts.

5.1.2 Climate Model Comparisons:
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o Comparative analysis of CMIP5 and CMIP6 models highlighted advancements in the latter, with

improved sensitivity to regional climate variations and better predictions of extreme drought events.

o The CMIP6 models projected a significant increase in the frequency and intensity of droughts in

South Asia, especially under high-emission scenarios (SSP5-8.5).

o Results also showed non-linear trends in precipitation variability, indicating a potential for more

severe meteorological and hydrological droughts in semi-arid regions.
5.1.3 Regional Projections for South Asia

The comparative analysis of CMIP5 and CMIP6 models reveals significant regional differences in pro-
jected drought patterns. For South Asia, CMIP6 models indicate a marked increase in the frequency and severity
of droughts, especially under high-emission scenarios (SSP5-8.5) (Dixit et al., 2022). Projections suggest that
agricultural and meteorological droughts will become more frequent, with soil moisture deficits and tempera-
ture-driven evapotranspiration playing a key role (Mukherjee et al., 2018). For example, in certain regions of
South Asia, the frequency of severe agricultural droughts is projected to increase by 20-30% by the end of the
century. These changes are closely linked to projected increases in temperature and shifts in precipitation pat-

terns, which are more robustly captured by CMIP6 models compared to CMIP5.

The SPEI and NDVI indices emerge as particularly robust for monitoring these projected changes, due to
their sensitivity to temperature and vegetation stress, respectively (Vicente-Serrano et al., 2012; Dixit et al.,
2022). The integration of remote sensing and Al-driven models further enhances the ability to detect and predict
drought severity in real time, supporting more adaptive management strategies for the region (Dakhil et al.,

2024).
5.1.4 Integration of Advanced Technologies:

a. Remote sensing and artificial intelligence showed significant potential in improving drought moni-
toring capabilities. For example, hybrid indices combining NDVI and surface water data offered

higher spatial accuracy for drought predictions.

b. Al-based models reduced prediction errors and allowed for more adaptive monitoring frameworks

tailored to regional conditions.
5.1.5  Role of Artificial Intelligence in Drought Monitoring

Several reviewed studies highlight the growing use of artificial intelligence (Al) techniques, such as ma-
chine learning, for processing remote sensing data and developing hybrid drought indices. Al-based models

have been shown to reduce prediction errors and enable more adaptive monitoring frameworks. However, these
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approaches are still largely experimental or limited to well-resourced regions, and their broader application

depends on data availability and computational infrastructure.

5.1.6 Best Performing Indices by Drought Type and Climate Scenario

To provide clear guidance for practitioners and researchers, we synthesized our findings to identify the
most suitable drought indices for each drought type under current and projected climate scenarios (CMIP5 and

CMIP6). This summary is based on the comparative analysis and ranking system described above table 8.

Table 8: Recommended Drought Indices by Drought Type and Climate Scenario

Drought Type Current Climate CMIP5 Scenario CMIP6 Scenario
Meteorological SPI, SPEI SPEI SPEI, MSDI
Agricultural NDVI, VCI, SMDI NDVI, SPEI NDVI, SMDI, Hybrid/Al
Hydrological PDSI, SWSI PDSI MSDI, Hybrid
Ecological NDVI, VCI NDVI, VCI NDVI, Hybrid/Al

e Meteorological Drought: Under historical and current climates, both SPI and SPEI are widely used, but

SPEI is preferable under CMIPS5 and especially CMIP6 projections due to its sensitivity to temperature-
driven evapotranspiration, which is increasingly relevant in warming scenarios. MSDI also shows promise

for capturing multi-variable influences in future conditions.

e Agricultural Drought: NDVI and VCI are effective for real-time monitoring of vegetation stress, making

them ideal for current and projected climates. SMDI is valuable where soil moisture data is available, and
hybrid or Al-driven indices are recommended under CMIP6 for their ability to integrate diverse datasets and

improve prediction accuracy.

¢ Hydrological Drought: PDSI and SWSI remain standard for long-term water resource assessment under

current and CMIP5 conditions. However, under CMIP6, MSDI and hybrid indices are better suited to capture

the complexity of hydrological droughts influenced by multiple climate variables.

¢ Ecological Drought: NDVI and VCI are robust for monitoring ecological impacts, and their effectiveness

is enhanced under future scenarios when combined with Al and hybrid approaches for greater spatial and

temporal resolution.

These recommendations provide a practical framework for selecting drought indices tailored to specific
drought types and evolving climate scenarios. The following Discussion section expands on these findings and

their implications for research and policy.

5.1.7Ranking and Comparative Performance of Drought Indices

To objectively identify the most robust drought indices for monitoring under changing climatic conditions,

we applied the ranking system described in the Methodology section. Each index was evaluated according to
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six criteria: climate sensitivity, data requirement, spatial resolution, temporal resolution, performance under
projected climate scenarios (CMIP5/CMIP6), and operational usability. Scores for each criterion were assigned
on a scale of 1 (low) to 5 (high), based on literature review and expert consensus. Table 9 presents the scores
for each index according to the six ranking criteria. The total scores indicate the overall robustness of each index
for drought monitoring under changing climatic conditions. The results show that SPEI and NDVT are the most
robust indices, with the highest total scores. This ranking supports their use for drought monitoring under both

current and projected climate scenarios.

Table 9: summarizes the scores and total ranking for each index

Index Climate Data Spatial Temporal CMIP6 Operational Total
Sensitivity Requirement Resolution  Resolution  Suitability Usability  Score
SPI 2 5 4 5 2 5 23
SPEI 5 4 4 5 5 5 28
NDVI 4 4 5 5 4 4 26
PDSI 3 3 3 3 3 4 19
MSDI 5 2 3 3 5 3 21

The results indicate that SPEI and NDVI achieved the highest total scores, reflecting their robustness for
drought monitoring under current and projected climate scenarios. This ranking supports the selection of SPEI
and NDVI as the most suitable indices for operational and research applications, particularly in the context of

climate change.
5.2 Discussion

The findings underscore the growing complexity of drought management in the era of climate change.

Several key insights and implications arise from the results:
5.2.1 Relevance of Drought Indices in Climate Change Context:

The effectiveness of drought indices is highly dependent on their ability to incorporate climate variables
such as temperature, evapotranspiration and soil moisture. Indices like SPEI are better suited for capturing the
multi-dimensional impacts of climate change compared to traditional indices like SPI, which focus solely on
precipitation. However, challenges remain in adapting these indices to account for local socio-economic and

ecological conditions.
5.2.2 Comparative Usability of Drought Indices under Climate Change Scenarios

The increasing complexity of droughts under climate change necessitates a nuanced understanding of the
strengths and limitations of various drought indices. The usability of each index depends not only on its meth-
odological foundation but also on its sensitivity to evolving climate variables, data requirements, and suitability

for different drought types and regional contexts. Here, we synthesize the comparative performance of widely
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used indices under historical and projected climate scenarios (CMIP5 and CMIP6), providing practical guidance

for their application. Table 10 represented the Comparative Analysis of Major Drought Indices.
Usability under Projected Climate Scenarios

e CMIPS vs. CMIP6: The transition from CMIP5 to CMIP6 models has improved the simulation of
regional climate extremes, particularly in South Asia and other drought-prone areas. Indices that
incorporate temperature and evapotranspiration (e.g., SPEI, MSDI) demonstrate greater sensitivity
and reliability under high-emission scenarios (SSP5-8.5), where temperature-driven droughts are

projected to increase in both frequency and severity.

e SPI remains a useful baseline tool but underestimates drought risk in warming climates due to its
exclusion of temperature effects. Its simplicity and broad adoption make it suitable for initial

screening but less so for future-focused risk assessments.

e SPEI is better suited for climate change contexts, as it integrates both precipitation and tempera-
ture, capturing the intensifying evapotranspiration and moisture deficits projected in CMIP6. SPEI

is recommended for regions experiencing significant warming or variable precipitation patterns.

e NDVI/VCI and other remote sensing indices excel at real-time monitoring of agricultural and eco-
logical droughts, especially when combined with Al for rapid data analysis. Their effectiveness is

particularly notable in regions with high spatial variability and for early warning applications.

e Composite indices (e.g., JDI, MSDI, hybrid Al-based) are increasingly valuable for capturing com-
pound and cascading drought events, which are expected to become more frequent under future
climate scenarios. These indices are recommended for advanced research and operational frame-

works in regions with sufficient data infrastructure.
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Table 10: Comparative Analysis of Major Drought Indices

Index Input Data Drought Type Strengths Weaknesses Performance under Best Use Cases
CMIP5/CMIP6
SPI Precipitation Meteorological Simple, widely used, Ignorestemperature, less Adequate for historical cli- Short-term  meteorological
multi-scale sensitive to warming mates; less robust under pro- drought, baseline monitoring
jected warming (CMIP6)
SPEI Precipitation, Tem- Meteorological, Captures temperature Sensitive to ET estima- Highly robust under Climate change impact stud-
perature/ET Agricultural effects, multi-scale, tion, data intensive CMIPS5/CMIP6,  especially ies, semi-arid regions
climate-adaptive for warming scenarios
PDSI Precipitation,  Agricultural, Hy- Integrates soil mois- Complex, less suitable Useful for long-term drought Water resource management,
Temperature, Soil  drological ture, long-term trends  for short-term drought, under both scenarios, but cal- policy planning
Moisture region-specific calibra- ibration is critical
tion needed
NDVI/VCI  Satellite Vegetation — Agricultural, Eco- Real-time, spatially Seasonal limitations, in- Effective for rapid drought Agricultural monitoring,
logical explicit, sensitive to direct for meteorological detection under both scenar- early warning systems
vegetation stress drought ios, especially with Al inte-
gration
SMDI Soil Moisture Agricultural Direct soil moisture Requires dense soil data, Valuable where soil data is Crop yield forecasting, preci-
assessment spatial heterogeneity available, especially for flash  sion agriculture
droughts under CMIP6
JDI/MSDI  Multiple (Precipita- Meteorological, Integrates ~ multiple Computationally inten- Strong performance under Complex drought risk assess-
tion, Soil Moisture, Agricultural, Hy- variables, captures sive, requires multi- non-stationary, extreme ment, research applications
Streamflow) drological compound events source data events in CMIP6
Hybrid/AI- Remote  Sensing, All Adative,customizable, Data and expertise inten- Promising for future scenar- Integrated drought risk man-
Based In- Climate, Socio-eco- high spatial/temporal sive, validation needed ios, especially in data-richre- agement, policy frameworks
dices nomic resolution gions
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Practical Guidance for Index Selection

e Meteorological droughts in semi-arid and warming regions: Prefer SPEI or MSDI, as these indices
account for temperature-driven evapotranspiration and are responsive to projected climate varia-

bility.

e Agricultural and ecological droughts: NDVI, VCI, and SMDI are highly effective, especially when

integrated with Al for real-time monitoring and prediction.

e Hydrological droughts and water resource management: PDSI and SWSI remain relevant for long-
term planning, but require careful regional calibration and may benefit from integration with re-

mote sensing data.

e Early warning and rapid response: Remote sensing indices (NDVI/VCI) and hybrid indices com-

bining climate, vegetation, and soil data provide the most timely and spatially explicit information.

e Data-limited regions: SPI and RAI can serve as initial tools, but efforts should be made to build

data infrastructure for adopting more advanced, climate-adaptive indices.

The usability of drought indices is context-dependent and should be aligned with both the type of drought
and the prevailing or projected climatic scenario. SPEI and NDVI emerge as the most robust and versatile indi-
ces for monitoring drought under changing climate conditions, particularly when enhanced with Al and remote
sensing technologies. However, no single index is universally optimal; a combination of indices, tailored to
regional data availability and climate risks, is recommended for comprehensive drought assessment and man-

agement.
5.2.3 Regional Implications of Climate Model Projections:

The CMIP6 projections for South Asia highlight the urgent need for region-specific drought mitigation
strategies (Dixit et al., 2022). The increased frequency of flash droughts and long-term hydrological droughts
underscores the importance of enhancing water resource management and adopting adaptive agricultural prac-
tices (Mukherjee et al., 2018). The findings also emphasize the value of advanced monitoring tools, such as
remote sensing and Al, in providing actionable insights for policymakers and practitioners (Dakhil et al., 2024).
However, it is important to note that model uncertainties and regional biases remain a challenge, and efforts

should be made to validate projections with local observational data where possible (WMO & GWP, 2016).

5.2.4 Advancements in Drought Monitoring Technologies: Vicente
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Integrating remote sensing and Al into drought management frameworks could revolutionize the field.
Technologies such as satellite-based vegetation monitoring and Al-driven predictive models enable near real-
time assessment of drought conditions, allowing for faster response times and more targeted mitigation efforts.
The integration of artificial intelligence (Al) into drought monitoring represents a significant advancement, as
evidenced by the reviewed literature. Al enables the rapid analysis of large datasets, improves the accuracy of
drought predictions, and facilitates the development of adaptive, region-specific indices. However, challenges
such as data scarcity, model interpretability, and the need for specialized expertise limit the widespread adoption
of Al-driven approaches. Future research should focus on overcoming these barriers to fully realize the potential

of Al in enhancing drought resilience.
5.2.5 Challenges in Drought Assessment and Mitigation:

Despite advancements, significant challenges remain. Data availability and quality continue to hinder the
application of sophisticated drought indices and climate models in many developing regions. Additionally, the
increasing influence of anthropogenic activities on hydrological cycles complicates the prediction of drought

impacts.

5.2.6 Policy Implications and Recommendations:

The results emphasize the need for policymakers to prioritize investments in climate-resilient infrastructure
and technologies. For instance, improving the accessibility of high-resolution climate data and implementing
Al-driven drought monitoring systems could significantly enhance preparedness and response capabilities. The
integration of climate, remote sensing, and socio-economic data into a hybrid drought monitoring system is
illustrated in Fig. 5. This diagram illustrates the integration of climate data, remote sensing, and socio-economic
information within a hybrid drought monitoring system. Climate models provide projections of temperature and
precipitation, while remote sensing delivers real-time data on vegetation health, soil moisture, and surface water.
Socio-economic data are incorporated to assess community vulnerability and adaptive capacity. Artificial intel-
ligence (Al) processes these diverse data streams, enabling rapid, accurate drought prediction and early warning.
The system supports adaptive management and policy decisions by providing comprehensive, actionable in-

sights for drought resilience and water resource management.
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Fig. 5: Conceptual Diagram of a Hybrid Drought Monitoring System

5.3 Case Studies and Real World Applications

In India, the Normalized Difference Vegetation Index (NDVI) has been widely used for early warning of

agricultural drought. For instance, in the Marathwada region of Maharashtra, researchers have utilized NDVI

data from MODIS and Landsat satellites to monitor vegetation health and detect drought onset up to several

weeks before traditional ground-based indicators (Kulkarni et al., 2020). This approach has enabled local au-

thorities to issue timely advisories and implement water-saving measures, reducing crop losses and supporting

adaptive agricultural planning. Similar applications have been reported in other drought-prone regions of India,

demonstrating the value of remote sensing indices for early drought detection and response.

5.4 Future Scope

While this study provides valuable insights, several areas for further research remain:

e Developing hybrid indices that integrate socio-economic factors for a more holistic assessment of drought

impacts.

e Improving climate models to address non-stationarity and better capture the effects of anthropogenic activi-

ties.
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o Exploring the role of groundwater and ecological droughts in shaping long-term resilience to climate change.

6. CHALLENGES AND GAPS IN EXISTING RESEARCH

Despite significant advancements in drought research, several challenges and gaps remain in both the meth-
odology and technological applications, which hinder the accurate assessment and effective management of
droughts under changing climate conditions. Challenges in Understanding and Managing Drought are shown in

Fig. 5. The key challenges identified in this study are as follows:

6.1 Methodological Challenges

One of the primary challenges in drought assessment is the lack of uniformity in the application of drought
indices. Many indices, such as the Standardized Precipitation Index (SPI) and the Standardized Precipitation-
Evapotranspiration Index (SPEI), are predominantly based on precipitation data and do not adequately account
for other crucial climate variables such as temperature, evapotranspiration and soil moisture. While some indices
have been adapted to include temperature and evapotranspiration, their application under non-stationary climate

conditions remains a significant limitation.

Another challenge is the complexity of integrating multiple drought indices for comprehensive drought
monitoring. While hybrid indices that combine remote sensing and ground-based data show promise, their de-

velopment and validation are still in nascent stages, which makes their widespread application challenging.

6.2 Technological Challenges

Although advancements in satellite-based remote sensing and artificial intelligence have the potential to
improve drought monitoring, challenges remain in terms of data accessibility, quality and the integration of
these technologies into operational frameworks. High-resolution satellite data can be expensive and difficult to

access, especially for developing countries, which limits its use for real-time drought monitoring.

Furthermore, Al models require vast amounts of reliable and diverse data to accurately predict drought
conditions. Inadequate datasets, coupled with the challenges of transferring these models to real-world applica-

tions, pose significant barriers to the deployment of Al-driven drought management solutions.

6. 3 Limitations in the Application of Current Indices Under Non-Stationary Climate Models

The increasing unpredictability of climate patterns due to human activities and natural variations compli-
cates the application of traditional drought indices. Current models often fail to account for the non-stationarity
of climate systems, which means that indices developed under stationary climate conditions may not perform
well in future scenarios characterized by abrupt climatic shifts. The adaptation of these indices to more dynamic,

non-stationary models is a crucial gap in the current research.
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Additionally, the ability of existing indices to predict extreme droughts with sufficient accuracy under new
climate conditions is still a matter of concern. Many indices are not sensitive enough to capture the nuances of

severe drought events, especially in regions with complex climates or rapid climatic changes.

6.4 Integrating Socio-Economic Factors into Drought Assessments:

Another significant gap in existing drought research is the difficulty of incorporating socio-economic fac-
tors into drought assessments. While climate data and drought indices can provide insights into environmental
conditions, they often overlook the socio-economic vulnerabilities of the affected populations. Factors such as
local economic dependencies, social resilience and governance structures are critical in assessing the full impact

of droughts but are challenging to quantify and integrate into existing models.

The lack of socio-economic data, coupled with difficulties in assessing the combined effects of climate and
socio-economic variables, makes it challenging to develop comprehensive drought assessments that inform pol-
icy and adaptive strategies effectively. Research efforts that focus on integrating socio-economic aspects with

environmental data are still limited but are essential for improving the resilience of communities to droughts.

6.5 How Future Tools Could Resolve These Challenges

Recent advances in artificial intelligence (Al) and remote sensing offer promising solutions to many of
these challenges. Al-driven models can integrate diverse datasets, including socio-economic and ecological var-
iables, to better capture the complexity of drought impacts and vulnerabilities. By leveraging machine learning
and big data analytics, these tools enable more accurate, real-time monitoring and prediction of drought condi-
tions, supporting adaptive management and targeted interventions. Furthermore, the integration of Al with re-
mote sensing facilitates the development of hybrid indices that address data gaps and improve the spatial and
temporal resolution of drought assessments, ultimately enhancing the resilience of vulnerable communities and

ecosystems. A flow chart of challenges in understanding and managing drought is shown in Fig. 6.
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Fig. 6: Challenges in Understanding and Managing Drought

7. RECOMMENDATIONS AND FUTURE FRAMEWORKS

To address the challenges identified in this study and improve drought management and mitigation strate-
gies, several key recommendations are proposed. First, region-specific solutions should be prioritized, consid-
ering the unique climatic, geographical. and socio-economic conditions of each area. Implementing localized
drought monitoring systems that integrate advanced technologies such as satellite-based remote sensing, Al and
machine learning can provide real-time data, enabling more accurate and timely responses. Additionally,
drought indices should be enhanced by incorporating cutting-edge tools, such as Al-driven predictive models
and hybrid indices that integrate multiple data sources, to improve their sensitivity and applicability under non-

stationary climate conditions.

To support actionable application, we recommend that SPEI and NDVI be prioritized for drought monitor-
ing in semi-arid and warming regions due to their sensitivity to temperature-driven evapotranspiration and real-

time vegetation stress. Policymakers should integrate SPEI and NDVI into early warning systems by leveraging
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remote sensing and Al-driven predictive models, such as Support Vector Machines (SVM), Random Forest

(RF), and Deep Learning, which have proven effective in recent studies.

Policy directions should focus on improving water management systems, with an emphasis on sustainable
practices, water conservation and efficient resource allocation. Policymakers must also address the socio-eco-
nomic impacts of drought by supporting vulnerable communities through adaptive agricultural strategies, in-
vestment in climate-resilient infrastructure and the development of social safety nets. By fostering greater inte-
gration between scientific research, technological innovation and policy development, the resilience of commu-
nities to droughts can be significantly improved, ensuring a more sustainable future in the face of climate

change.

8. CONCLUSION

The findings of this study underscore the intricate relationship between climate change and drought, high-
lighting the significant role of advanced drought indices, climate models and emerging technologies in enhanc-
ing drought monitoring and management. The comprehensive evaluation of 25 drought indices and climate
model comparisons offers valuable insights into the growing complexity of droughts under climate change sce-
narios. The integration of remote sensing and Al-based tools provides a promising avenue for more accurate,
real-time assessments of drought conditions, which is crucial for adaptive strategies in the face of increasingly
erratic weather patterns. Moreover, the study emphasizes the need for innovative, region-specific frameworks
that consider local socio-economic, ecological. and climatic conditions to enhance drought resilience. These
frameworks can serve as a foundation for more effective drought management and mitigation efforts, providing

tangible solutions for addressing the challenges posed by climate-driven droughts.

To translate these insights into practice, we recommend that researchers prioritize the development of hy-
brid indices integrating socio-economic factors and advanced technologies; policymakers invest in robust data
infrastructure and region-specific monitoring systems; and technologists advance the integration of Al and re-
mote sensing for real-time, adaptive drought monitoring. Ultimately, this research calls for continued collabo-
ration between researchers, policymakers and stakeholders to develop actionable strategies and ensure sustain-
able water resource management, particularly in regions most vulnerable to droughts.
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