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ABSTRACT  

The renewable sources, biodegradability, and customizable physicochemical features of 

biopolymers make them viable alternatives to synthetic materials. Their use in wastewater, air, 

and soil remediation offers promising answers to pollution problems. This comprehensive 

analysis encompasses the natural extraction, microbial biosynthesis, and chemical polymerization 

of biopolymers. Chitosan, alginate, bacterial cellulose, and polyhydroxyalkanoates (PHAs) are 

excellent biopolymers for wastewater treatment because they effectively adsorb heavy metals, 

dyes, and organic contaminants. Additionally, biopolymer-based membranes, composites, and 

hydrogels are garnering attention for air filtration and soil stabilization. Functional modifications 

have enhanced the efficiency and environmental sustainability of biopolymers through the 

application of synthetic biology and nanotechnology. This paper explores the potential of 

biopolymer-based environmental remediation technologies to replace synthetic materials in 

sustainable pollution management, highlighting recent advances, challenges, and prospects. 
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INTRODUCTION 

The escalating environmental burden caused by non-biodegradable synthetic polymers—derived 

primarily from fossil fuels—has emerged as a significant global concern due to their persistence, 

toxicity, and contribution to pollution in water, soil, and air. These synthetic materials not only 

deplete non-renewable resources but also generate long-lasting waste that poses threats to both 

ecosystems and human health (Kibria et al. 2023; Islam et al. 2024). In response to these challenges, 

biopolymers have garnered increasing attention as a sustainable alternative. Derived from 

renewable sources and often biodegradable, biopolymers offer promising advantages in terms of 

environmental compatibility, resource efficiency, and functional versatility. This review examines 

recent strategies in biopolymer production and their emerging applications in environmental 

remediation, highlighting how these natural and engineered materials can effectively replace 

synthetic polymers in mitigating pollution and supporting a circular bioeconomy (Samir et al. 2022; 

Edo et al. 2025).  

Biopolymers play a vital role by competing with non-biodegradable synthetic polymers, offering 

unique advantages such as eco-friendliness and a highly biodegradable nature. Moreover, they can 

be biosynthesized from various biological resources. Biopolymers possess unique market potential 

due to their extensive range of applications. Biopolymers are found in multiple sources, including 

microbial and animal origins, and most are obtained from agricultural waste. Lignocellulosic-based 

agricultural residues are gaining market traction from agricultural wastes due to their substantial 

global production (Rai et al. 2021; Iqbal et al. 2025). Biopolymers are defined as large molecules 

synthesized by microbial, plant, and animal cells, composed of highly repetitive chemical repeating 

units. Fig. 1 illustrates various natural sources of biopolymers, along with examples. 

       

 

Fig 1. Biopolymers sources 



  

       The biochemical composition of biopolymers primarily comprises polysaccharides (cellulose, 

starch, chitosan, chitin, alginic acid, hyaluronic acid, and pectin), proteins (collagen, elastin, 

albumin, fibrin, gluten, and soy proteins), and nucleic acids (DNA and RNA), with primary sources 

derived from plant, animal, and microbial origins. Investigating the physical, chemical, biological, 

and mechanical properties of biopolymers enables their application in various industries, including 

food, pharmaceuticals, medicine, and environmental sectors (Hassan et al. 2019). Biopolymers 

synthesized through natural processes, including bioplastics, pullulan, dextran, xanthan, bacterial 

cellulose, microbial exopolysaccharides, and capsular polysaccharides, are widely utilized in 

medical, agricultural, agro-industrial, packaging, and environmental applications (Francis et al. 

2013; Chaabouni et al. 2014; Manubolu et al. 2024; Lad et al. 2024). Based on literature and data, 

the method of biopolymer production encompasses biopolymers extracted from agricultural waste 

and animal origin, as well as similar biopolymers synthesized by classical chemical synthesis (e.g., 

polylactic acid, PLA). Additionally, polymers are produced from indigenous microorganisms and 

genetically modified microorganisms. Table 1 shows various biopolymer production strategies. 

According to the literature, technical advancements in synthesizing biopolymers from natural 

sources and bioderived feedstocks have been noted (Volf and Popa, 2018; Chen et al. 2019; George 

et al. 2020). 

 2. NATURAL BIO-BASED POLYMERS CAN BE HARNESSED WITH PARTIAL 

MODIFICATION AS AN EFFECTIVE PRODUCTION STRATEGY 

  In recent years, bio-based polymers have seen a surge in demand for their versatile 

applications. Primarily, modification of functional groups and their properties is sought in recent 

technical advancements to meet our industrial application (Das et al. 2024). Table 1 presents three 

significant types of biopolymers, along with their origins and sources.   

Table 1. Biopolymer origin, synthesis, and sources 

Biopolymer origin  Types Examples  Sources  

Biomass 1. Polysaccharides 

 

  

 

 

2. Proteins 

 

 

 

3. Lipids 

Starch, cellulose, chitosan, 

alginate, carrageenan, pectin, 

and gums or their derivatives. 

 

Gelatin, casein, whey, and 

collagen 

 

 

Waxes 

wild or genetically 

modified microorganisms 

 

 

Animal and plant origin 

 

 

Beeswax and carnauba 

wax 



  

Synthesized from 

bioderived monomers 

-  Polylactic acids (PLA) Renewable agro-wastes  

Bioderived 

monomers 

- Poly(hydroxyalkanoate)s 

(PHAs), 

poly(hydroxybutyrate)s 

(PHBs), bacterial cellulose, 

xanthan, gellan, pullulan. 

wild or genetically 

modified microorganisms 

 

2.1 Functionality of biopolymer  

   The production of biopolymers from renewable biomass has become one of the most widely 

adopted sustainable alternatives to fossil fuel-based synthetic polymers. Unlike traditional plastic 

synthesis, which depends on non-renewable petrochemicals and generates long-lasting waste, 

biopolymers are often biodegradable, non-toxic, and derived from abundant natural resources. 

This shift aligns with the growing environmental regulations and increasing consumer demand 

for eco-friendly materials (Pinaeva and Noskov, 2024; Jha et al. 2024). 

Among the most promising strategies in recent years is the cell factory approach, wherein 

microorganisms are genetically engineered to convert simple carbon sources—typically glucose, 

glycerol, or lignocellulosic hydrolysates—into high-value polymer precursors. Glucose, in 

particular, is favoured for its low cost, wide availability, and compatibility with many microbial 

systems. Using in vivo chemical synthesis and metabolic engineering, researchers have 

significantly advanced the microbial biosynthesis of various biopolymer building blocks (Mitra 

et al. 2020; de Souza and Gupta, 2024). 

Over the past three decades, several notable milestones have been achieved in this field: 

    Glucaric acid: Produced using engineered E. coli strains (Moon et al. 2009), glucaric acid is 

a precursor for biodegradable polyesters and has potential applications in detergents, hydrogels, 

and biomedical devices. Its production exemplifies how central metabolism can be rerouted to 

yield value-added products from glucose.  

    Putrescine: This diamine compound, synthesized by Corynebacterium glutamicum and E. 

coli (Qian et al. 2009), serves as a monomer for nylon-4,6, a biodegradable polyamide. The 

biosynthetic production of putrescine replaces the energy-intensive petrochemical routes typically 

required for polyamide synthesis. 

    3-Hydroxybutyrate (3HB): A key monomer in the synthesis of polyhydroxybutyrate (PHB), 

3HB is produced by various bacteria such as Ralstonia eutropha (Jung et al. 2010). PHB exhibits 

thermoplastic properties similar to polypropylene, making it a potential substitute for petroleum-

derived plastics in packaging and agriculture. 

    1,4-Butanediol (BDO): Traditionally produced through petrochemical synthesis, BDO is 

now biosynthesized by engineered microbes, such as E. coli and Clostridium species (Oliver et al. 



  

2013; Kumar et al. 2020). BDO is a versatile precursor for biodegradable plastics, such as 

polybutylene succinate (PBS) and polybutylene terephthalate (PBT). 

These advancements underscore not only the functional versatility of biopolymers but also the 

potential for modular customization, enabling the design of polymers with specific mechanical, 

thermal, or chemical properties tailored for diverse applications, including biomedicine, 

agriculture, packaging, textiles, and electronics. Significantly, the functionality of biopolymers is 

determined not only by their monomeric composition but also by their molecular weight, 

branching, crystallinity, and interaction with other molecules. Advances in synthetic biology and 

protein engineering now enable researchers to fine-tune these properties by modifying 

biosynthetic enzymes or incorporating non-natural building blocks into the polymer backbone 

(Arif et al. 2022; Khalil et al. 2025). 

Despite these successes, current biosynthetic approaches face several technical limitations: 

    Low titers and yields in industrial-scale fermentation processes, high recovery and 

purification costs, limited tolerance of host organisms to toxic intermediates, and substrate 

competition within central metabolism all affect growth and productivity. To overcome these 

challenges, efforts are being directed toward optimizing host strains, developing co-culture 

systems, and integrating dynamic pathway regulation to balance growth and production. 

Furthermore, combining metabolic engineering with process innovations such as continuous 

fermentation or in situ product recovery is expected to enhance overall efficiency and reduce costs. 

The functionality of biopolymers derived from biomass not only fulfils sustainability goals but 

also offers a broad spectrum of application-specific properties. Continued innovation in microbial 

engineering and bioprocess design will be essential for translating these materials into scalable, 

commercially viable solutions (de Souza and Gupta, 2024; Del Hierro et al. 2024). 

2.2. Synthetic biology as a tool to modify biopolymers.  

 Synthetic biology has emerged as a transformative tool for modifying and producing 

biopolymers with enhanced efficiency, precision, and sustainability. Traditional one-step microbial 

production of polymers, while promising, often suffers from low yields, slow growth rates, and 

inefficient substrate conversion, particularly when using wild-type or unoptimized strains. 

Moreover, these processes typically require chemical catalysts and harsh solvents for polymer 

extraction and purification, resulting in increased environmental and economic burdens (Anderson 

et al. 2018; Kaur et al. 2024). 

Currently, commonly produced biopolymers include chitin, alginate, polylactic acid (PLA), and 

polyhydroxyalkanoates (PHAs). For instance, chitin—extracted primarily from crustacean 

shells—is limited by its animal origin, posing sustainability and allergenicity concerns. Similarly, 

alginate, derived from brown algae, faces challenges due to seasonal availability and batch 

variability, which can affect product consistency. PHAs and PLA, although microbial in origin, 



  

often require complex feedstocks and multiple downstream purification steps due to the 

accumulation of mixed metabolic byproducts (Sharma et al. 2024; Kaur et al. 2024). 

One limitation of conventional metabolic engineering is the difficulty in controlling pathway 

fluxes, which can lead to unintended accumulation of intermediates or metabolic burden that 

compromises cell growth. Additionally, the limited range of naturally occurring monomers 

restricts the mechanical and functional diversity of biopolymers, curbing their potential 

applications. Synthetic biology addresses these challenges by enabling fine-tuned control over 

gene expression, modular pathway design, and the incorporation of non-natural monomers 

(Aravind et al. 2015; Arif et al. 2024). For example, engineered strains of E. coli have been 

developed to produce cellulose nanofibers with customized lengths and crystallinity. At the same 

time, synthetic pathways in Cupriavidus necator have been utilized to create novel 

polyhydroxyalkanoates (PHAs) with side chains that confer elasticity and biodegradability. These 

modifications not only enhance the functional properties of the polymers but also streamline 

production by eliminating unnecessary enzymatic steps (Zhang et al. 2022). 

CRISPR-based genome editing and biosensor-guided pathway optimization have enabled the 

dynamic regulation of biosynthetic pathways, allowing microbial systems to adjust in real-time to 

fluctuations in precursor availability or metabolic stress. This results in more robust production 

systems that are resilient under industrial fermentation conditions (Xin et al. 2025). However, 

challenges remain. Many engineered strains still face scale-up issues, such as instability of 

synthetic pathways during prolonged fermentations and sensitivity to industrial stressors, including 

pH and shear forces. Moreover, regulatory and safety concerns around the use of genetically 

modified organisms (GMOs) in open environments or consumer products may slow down the 

commercial deployment of such technologies. Despite these limitations, the integration of 

synthetic biology with computational modelling, machine learning, and high-throughput screening 

holds promise to accelerate the development of next-generation biopolymers. These polymers can 

be fully bio-based, biodegradable, and tailored for specific applications (Palladino et al. 2024). 

 

3. PRODUCING BIO-BASED MONOMERS BY FERMENTATION AND/OR VIA 

CONVENTIONAL CHEMISTRY FOLLOWED BY POLYMERIZATION 

3.1 Method of preparation  

         Biopolymers possess excellent biological and biodegradable properties, but they lack specific 

mechanical properties, including low chemical resistance, limited processing capacity, and short 

storage duration. Various methods can be implemented to achieve maximum yield while retaining 

the properties of biopolymers and overcoming challenges (Pinaeva and Noskov, 2024). Figure 2 

illustrates various methods for preparing biopolymers. Table 2 Overview of the biopolymer 

synthesis pathway 



  

 

Fig. 2 Method of preparation of biopolymers  

3.1.1 Fermentation  

  This method utilized bacteria, fungi, and algal species to produce specific types or different 

groups of biopolymers, which were produced using specific substrates as the sole carbon source 

(Chang et al., 2015). Major biopolymers (Alginate, bacterial cellulose, dextran, Hyaluronic acid, 

etc.) use glucose and/or sucrose as primary substrates. Very few groups of polymers (Gellan and 

pullulan) are produced using industrial waste as substrate. Table 3 provides detailed information 

on the types of polymers, substrates used for Fermentation, and polymer-producing 

microorganisms.   

3.1.2 Polymerization  

   The monomeric form of polymers is highly prepared for the synthesis of microstructure. In 

this method, the polymerization of monomers occurs in a series of sequential reactions, with each 

step representing the functionalities of the monomers and their steric effects. For example, in the 

formation of alkene units, more straightforward steps are required, whereas carbonyl groups 

necessitate more complex steps. In the presence of strong acids, alkane units are polymerized 

(Doyle et al. 2010). Similarly, the production of Polycaprolactone (PCL) by two methods, which 

include 1. polycondensation of hydroxycarboxylic acid and 2. ring-opening polymerization of ε-

caprolactone (Udayakumar et al. 2020).  

 

 

 

 

 

 

 

 



  

 

Table 2 Overview of the biopolymer synthesis pathway 

 

 

Direction of 

polymer 

synthesis 

 

Glucose  Glucose Glucose Glucose 

Glucose 6-

phosphate 

Glucose 6-phosphate Acetyl 

coenzyme A 

Glucose 6-phosphate 

Glucose 1-

phosphate 

Glucose 1-phosphate Oxaloacetate Fructose 6-phosphate 

Glucuronic acid - 

glucose 

Glucuronic acid - 

glucose 

Fructose 6-

phosphate 

Glucosamine 6-

phosphate 

 

 

 

 

Cellulose  

N-acetylglucosamine 1-

phosphate 

Mannose 6-

phosphate; 

N-acetylglucosamine 6-

phosphate 

UDP-N-

acetylglucosamine 

Mannose 1-

phosphate 

N-acetylglucosamine 1-

phosphate 

Hyaluronan GDP-mannose UDP-N-

acetylglucosamine 

GDP-

mannuronic acid 

Chitin  

Alginate Chitosan  

 

 

3.1.3 Solvent-based extraction. 

 In solvent-based extraction, the process is determined by mechanical operations, including 

sifting, filtration, and centrifugation of biomass for biopolymer extraction (Faidi et al. 2019). To 

improve efficacy, varying biopolymer solvents were extracted from pretreated biomass 

(Mahmood and Moniruzzaman, 2019). Similarly, to overcome the toxicity potential of solvents, 

green solvents such as ionic liquids, deep eutectic solvents, bio-derived solvents, non-halogenated 

solvents, and accelerated solvent systems have been used to extract polymers from biomass (Gu 

and Jérôme, 2013).  

3.1.4 Endo and exo biopolymer production. 

Endo polymers, such as polyhydroxyoctanoate (PHO), possess unique characteristics and have 

low melting temperatures, allowing for the formation of lightweight composites (Van de Velde 

and Kiekens, 2002; Ujang et al. 2009). All these polymers are produced by eubacteria 

intracellularly. Similarly, Ganoderma applanatum, Collybia confluens, and Pleurotus eryngii 

were identified as potential sources of endopolymer. All these fungi can be cultivated using 

Mushroom Complete Medium (MCM) (Yang et al. 2007; Jeong et al. 2008; Moradali and Rehm, 

2020). In exopolymer production, submerged cultures of fungal species have been widely 

 



  

employed, and parameters such as carbon and nitrogen sources, pH, temperature, and agitation 

have been standardized to optimize exopolymer production from fungal mycelia. For example, 

Paecilomyces japonica was used to optimize the production of maximal dry-weight biomass for 

extracting exopolymers (Bae et al. 2000). Similarly, Paecilomyces tenuipes C240 was studied to 

optimize factors using a One-Factor-at-a-Time Approach and an orthogonal matrix (Xu et al. 

2003). Besides fungi, Ganoderma lucidum mushrooms and Phellinus linteus KCTC 6190 were 

studied to optimize mycelial growth. Similarly, Mushroom Complete Medium (MCM), Yeast 

Malt (YM), and Potato Malt Peptone (PMP) were studied to standardize exo-biopolymer 

production. PMP media was the best medium for maximal polymer production (Kim et al. 2002). 

For a comparative study, Cordyceps militaris exhibited maximal mycelial growth at 7.5 days and 

maximal exopolysaccharide formation at 9.5 days (Park et al. 2001).    

3.1.5 Bulk synthesis  

Biopolymers are extracted and synthesized from various sources, including microbes, plants, 

and natural renewable sources such as food and animal waste (Kaplan, 1998). The extraction 

method may differ from source to source. Generally, biopolymers are produced under submerged 

conditions in fed-batch mode. For example, PHB was synthesized by optimizing carbon and 

nitrogen sources using reactor-fed bacteria of the species Ralstonia eutropha. Various factors, 

including pH, substrate concentration, retention time, and substrate feeding rate, are necessary for 

the optimal production of biopolymers. Similarly, the genetic algorithm for fed-batch cultivation 

was studied using nutrient feeding rates and dilution rates to maximize PHB production (Khanna 

and Srivastava, 2005; Lai et al. 2013; Stanley et al. 2018).  

4. PRODUCING BIO-BASED POLYMERS DIRECTLY VIA 

MICROORGANISMS 

4.1 Alginate 

       Alginates are water-soluble, linear, anionic heteropolysaccharides. It is distributed in the cell 

wall of the algae family Phaeophyceae. Which include., Laminaria hyperborean, Macrocystis 

pyrifera, Laminaria digitat, and Ascophyllum nodosum. Besides algae, many bacterial species, such 

as Pseudomonas and Azotobacter, also produce alginate-like polymeric materials (Sabra and 

Deckwer, 2005; Abka-Khajouei et al. 2022).  

      4.2 Dextran 

Dextrans are hydrophilic polysaccharides produced by species like Leuconostoc mesenteroides 

and Streptococcus mutans. It has α (1–6)-linked glucan side chains attached to the 3-positions of 

the glucose units, forming the backbone. Class 1 - α (1 → 6)-linked d-glucopyranosyl backbone 

modified with side chains of d-glucose branches with α (1 → 2), α (1 → 3), and α (1 → 4)-linkage, 

class 2 - a backbone structure of alternating α (1 → 3) and α (1 → 6)-linked d-glucopyranosyl 

units with α (1 → 3)-linked branches, whereas class 3 - a backbone structure of consecutive α (1 



  

→ 3)-linked d-glucopyranosyl units with α (1 → 6)-linked branches. Dextran's physical and 

chemical properties generally vary depending on the source and production methodologies 

(Saboktakin et al. 2010; Díaz-Montes, 2021).   

4.3 Xanthan 

Xanthan is β-(1, 4)-linked heteropolymer with pentasaccharide units found in Xanthomonas 

species. This polysaccharide is widely used in food products as a thickening and gelling agent (Rehm, 

2010; Martínez-Burgos et al. 2024). 

4.4 Gellan 

Gellan is a heteropolymer widely extracted from Sphingomonas species and is a β-(1, 3)-linked, 

containing tetrasaccharide units (West, 2021). 

4.5 Curdlan 

Curdlan, a β-(1,3)-linked homopolymer, is isolated chiefly from a few species, including 

Agrobacterium, Rhizobium, and Cellulomonas (Al-Rmedh et al. 2023). 

4.6 Polyhydroxyalkanoates (PHA) 

PHA is a unique and ideal example of intracellular biopolymers mainly produced by many bacterial 

species. It has β-hydroxy fatty acids, where the R group substituted from methyl to tridecyl. In particular, 

the main biopolymer is PHB (polyhydroxybutyrate), a prominent member of the PHA family. Apart 

from that, there are many more copolymers synthesized, namely, PHB family such as., [poly 

(hydroxybutyrate-co-hydroxyvalerate) (PHBV), poly (hydroxybutyrate-co-hydroxyhexanoate) 

(PHBH), poly (hydroxybutyrate-co-hydroxyoctanoate) (PHBO) (Vicente et al. 2023).  



  

Table 3 Substrate and biopolymer-producing microorganisms 

 

Sl.no.  Type of 

Biopolymers 

Producing microorganism  Substrate 

used  

References  

1 Alginate Pseudomonas and Azotobacter spp. (mostly 

A. vinelandii) 

Sucrose (Valentine et al. 2020; Dudun 

et al. 2021) 

2 Bacterial 

cellulose 

Gluconacetobacter, Agrobacterium, 

Aerobacter, Achromobacter, Azotobacter, 

Escherichia, Rhizobium, Sarcina, and 

Salmonella sp 

Glucose and 

sucrose 

(Chawla et al. 2009; 

Almihyawi et al. 2024; 

Mishra et al. 2022) 

3 Cyanophycin Cyanobacteria, Acinetobacter spp., 

Bordetella spp., and Desulfitobacterium 

hafniense 

Arginine and 

protein 

hydrolysate 

(Solaiman et al. 2011; 

Aravind et al. 2016; Zou et al. 

2022) 

4 Dextran Leuconostoc, Streptococcus and 

Lactobacillus sp., L. mesenteroides, 

Gluconobacter sp. and Pediococcus 

pentosaceus 

Sucrose and 

maltodextrins 

(Patel et al. 2010; Wang et al. 

2023; Baek et al. 2025) 

5 Gellan Pseudomonas elodea and Sphingomonas 

spp., S. paucimobilis  

Industrial 

waste 

products 

(Fialho et al. 2008; Sá-

Correia et al. 2002; Wu et al., 

2011) 

6 Hyaluronic 

acid 

Streptococcus zooepidemicus, S. equi, and 

Pasteurella multocida 

Glucose, 

amino acids, 

nucleotides, 

salts, trace 

(Kogan et al. 2007; Zakeri et 

al. 2017; Shikina et al. 2022) 



  

elements, and 

vitamins 

7 PHAs Cupriavidus necator and Phaeodactylum 

tricornutum 

Starch, 

alcohol, and 

industrial 

waste 

products 

(Koller et al. 2010; Morlino et 

al. 2023) 

8 Poly-ε-lysine Streptomyces albulus Glucose (Hamano et al. 2011) 

9 Pullulan Aureobasidium pullulans, Tremellales 

enterica, Cytaria sp., Cryphonectria 

parasitica, and Rhodotorula 

Industrial 

waste 

products 

(Singh et al. 2008; Cruz-

Santos et al. 2023; West, 

2022) 

10 Xanthan gum Xanthomonas campestris Glucose and 

sucrose 

(Palaniraj et al. 2011) 



  

4.7 Cyanophycin 

Cyanophycin is a polyamide most widely extracted from cyanobacteria. Biochemically, it consists 

of a repeating heteropolymer composed of dipeptide units of aspartate and arginine. Cyanophycin is 

commonly used as a water softener and dispersant (Markus et al. 2023). 

4.8 ε-poly-l-lysine 

ε-poly-L-lysine is a polyamide, similar to cyanophycin and is widely found in the bacterial species 

Streptomyces albulus. It is a homopolymer; lysine is one of the main amino acids present in this polymer. 

In the food industry, ε-poly-L-lysine is used as a food preservative and adsorbent (Pan et al. 2019).  

5. PRODUCING BIO-BASED POLYMERS VIA ALGAE 

Biopolymers are produced from algae in 3 ways: algal Fermentation, algal cell factories, and adding 

additives in algal biomass. In Fermentation, algal enzymes produce biopolymers from algal biomass 

(Khan et al. 2018). Fig. 3 shows three ways to produce biobased polymers from algae.  

 

Fig. 3 Ways to produce bio-based polymers from algae 

 

Algae undergo photosynthesis, producing essential nutrients that are used to synthesize 

biopolymers (Costa et al., 2018). Compression of algae and additives is the most common method used 

to prepare biocomposite (Ciapponi et al. 2019). Biopolymers such as Alginate, PHA, PHB, Carrageenan, 

Fucoidan, and κ-carrageenan from various algal sources were isolated using different methods, 

including solvent extraction, Microwave-assisted extraction, Ultrasound-assisted extraction, and 



  

Subcritical water extraction (Kartik et al. 2021). Yield (%) from these methods varies from source to 

source and extraction method. 4.50 % of PHB was extracted from algal sources by using CHCl3 with 

benzoic acid and MeOH with H2SO4 as solvent (Rueda et al. 2020), and 78.75% for ĸ-carrageenan was 

extracted from seaweed Kappaphycus alvarezii by using solvent 1-Butyl-3-methylimidazolium acetate 

by Subcritical water extraction method (Gereniu et al. 2018).  

By comparing all other biological sources, algae are one of the most promising sources for the 

production of biopolymers due to their scalability in production and the availability of biopolymer 

extraction strategies. Moreover, it can synthesize a wide range of bioproducts, including carbohydrates, 

lipids, pigments, polysaccharides, proteins, polymers, and other biocompounds. Due to their Low-cost 

production and sustainable nature, biopolymers from algae serve as the best model organism for 

producing various bioproducts (Khoo et al. 2019; Parsons et al. 2020; Lutzu et al. 2021). Table 4 

summarises various biopolymers and biopolymers produced by algae.  

5.1 Comparative Insight on Scalability of Algal-Based Biopolymer Production Methods: 

Among the various approaches to producing biopolymers from algae—namely algal Fermentation, 

algal cell factories, and additive-assisted biomass processing—the most scalable method is continuous 

Fermentation using engineered algal strains in closed photobioreactors. This approach offers several 

key advantages: it enables precise control over growth conditions, maximizes biomass productivity, and 

supports the high-yield production of target biopolymers, such as polyhydroxyalkanoates (PHAs) and 

polyhydroxybutyrate (PHB). Genetic enhancements can further improve strain efficiency, substrate 

utilization, and tolerance to stress, making algal cell factories highly adaptable for industrial-scale 

applications. In contrast, direct enzyme-mediated or additive-based extraction from algal biomass is 

comparatively less scalable due to variability in biomass composition, dependence on seasonal 

availability, and batch-to-batch inconsistency (Gaur et al. 2024; Adetunji and Erasmus, 2024). 

Similarly, advanced extraction techniques, including microwave-assisted and solvent-based 

methods, offer higher purity and yield but are limited by high energy consumption, equipment costs, 

and environmental considerations—factors that challenge their economic viability at commercial scales. 

Therefore, while these techniques are valuable at laboratory and pilot levels, their transition to full 

industrial deployment is less straightforward. Overall, the use of genetically optimized algae in 

controlled bioreactor systems represents the most scalable and sustainable pathway for consistent, high-

volume biopolymer production, particularly when integrated with downstream biorefinery processes 

(Gautam et al. 2024; Cannavacciuolo et al. 2024). 

 

 

 



  

Table 4: Biopolymer-producing algae. 

Sl.No Biopolymer Algal species References  

1 Polyhydroxy alkanoates 

(PHA) 

Ulva Sp (Steinbruch et al. 

2020) 

2 Polyhydroxy butyrate 

(PHB) 
Nostoc sp.  

(Morales-Jiménez et 

al. 2020) 
3 Polyhydroxy butyrate 

(PHB) 

Synechocystis sp 

4 Polyhydroxy butyrate 

(PHB) 
Porphyridium purpureum 

5 Polyhydroxy butyrate 

(PHB) 

Chlorella sp.   

(Naresh Kumar et 

al., 2020) 
6 Polyhydroxy butyrate 

(PHB) 
Scenedesmus sp 

5 Alginate Sargassum muticum (Flórez-Fernández 

et al. 2019) 

6 Fucoidan Nizamuddinia zanardinii (Alboofetileh et al., 

2019) 

7 Fucoidan Saccharica japonica (Saravana et al. 

2018) 

8 Carrageenan Mastocarpus stellatus (Ponthier et al. 

2020) 

9 ĸ-carrageenan Kappaphycus alvarezii (Gereniu et al. 

2018) 

6. ENVIRONMENTAL REMEDIATION APPLICATIONS OF BIOPOLYMERS:  

The increasing environmental pollution resulting from industrialization, agricultural runoff, and 

urbanization has necessitated the search for sustainable remediation solutions. Conventional 

remediation strategies, such as the use of synthetic chemical adsorbents, incineration, and 

physicochemical treatments, often result in secondary pollution, high costs, and energy-intensive 

processes. In contrast, biopolymer-based materials derived from renewable natural resources offer 

biodegradability, biocompatibility, non-toxicity, and efficiency in removing various contaminants 

(Awogbemi et al. 2023; Al-Hazmi et al. 2024). 

Biopolymers, such as chitosan, alginate, cellulose, starch, xanthan gum, and microbial 

exopolysaccharides, have significant potential in addressing water pollution, soil contamination, air 

purification, and hazardous waste management. These materials function through diverse mechanisms, 



  

including adsorption, filtration, chemical binding, encapsulation, and microbial-assisted degradation. 

The following sections provide an in-depth exploration of their applications in various environmental 

remediation domains (Kaur et al. 2024; Al-Hazmi et al. 2024). 

6.1. Biopolymer-Based Materials for Wastewater Treatment 

Water pollution is one of the most pressing global challenges, with sources ranging from 

industrial effluents and agricultural runoff to domestic wastewater. Biopolymers have gained significant 

attention as effective and sustainable materials for treating contaminated water (Fakhri et al. 2023). 

6.1.1 Adsorption of Heavy Metals and Toxic Ions 

 Heavy metals, such as lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), and arsenic (As), 

are toxic pollutants that accumulate in the environment, posing serious health risks. Biopolymer-based 

adsorbents offer efficient, cost-effective, and environmentally friendly alternatives for removing heavy 

metals (Verma et al. 2021). 

Chitosan-Based Adsorbents: Chitosan, a deacetylated derivative of chitin, is widely studied due 

to its amino (-NH₂) and hydroxyl (-OH) groups, which enable metal ion chelation. Modified chitosan 

nanocomposites (e.g., chitosan-metal oxide hybrids, chitosan-carbon composites) enhance adsorption 

efficiency by increasing surface area and stability. Alginate-Based Adsorbents: Alginate, extracted from 

brown algae, contains carboxyl (-COO⁻) groups, which effectively bind heavy metals. Alginate-based 

hydrogels and beads have been used in continuous-flow systems for wastewater treatment (Siddiqui et 

al. 2025).  

Cellulose and Starch Derivatives: Functionalized carboxymethyl cellulose (CMC) and starch-

based bioadsorbents exhibit strong interactions with metal ions, providing an additional biodegradable 

option for water purification (Godiya et al. 2019). Chitosan's effectiveness largely stems from its 

abundant amino (–NH₂) and hydroxyl (–OH) groups, facilitating strong chelation with metal ions. For 

example, recent work has demonstrated that modifying chitosan with poly(vinyl alcohol) and nano‐

silica can significantly enhance its Cr(VI) adsorption capacity. Additionally, studies have shown that 

chitosan-based adsorbents retain high efficiency across multiple adsorption-desorption cycles, 

highlighting their potential for cost-effective and long-term use in industrial wastewater treatment 

(Alkhaldi et al. 2024). 

Alginate, derived from brown algae, contains carboxyl (–COO⁻) groups that are highly effective 

at binding heavy metals. Recent developments include the synthesis of Ca-alginate beads embedded 

with magnetic nanoparticles, which achieve high adsorption efficiency for Pb(II) ions while facilitating 

facile magnetic separation of the treated water (Ayach et al. 2024). Furthermore, integrating alginate 

with chitosan to form interpenetrating polymer networks has improved mechanical stability and 



  

adsorption performance, making these hybrid materials promising for scalable water treatment systems 

(Sundararaman et al. 2024). 

Cellulose derivatives, such as carboxymethyl cellulose (CMC), offer versatility due to their 

modifiable structures. Recent research indicates that grafting polyethylenimine onto CMC enhances its 

adsorption capacity for Cd(II) and Pb(II) ions by increasing the density of active binding sites (Ghanbari 

et al. 2024). Similarly, starch-based adsorbents functionalized with amine or thiol groups have produced 

nanocomposites with enhanced porous structures, resulting in improved removal efficiencies for Hg(II) 

and As(V) (Sahu et al. 2024). 

Across these studies, kinetic analyses often reveal that adsorption processes on biopolymer-

based materials follow pseudo-second-order kinetics, suggesting chemisorption as the dominant 

mechanism. The adsorption isotherms frequently conform to the Langmuir model, indicating monolayer 

adsorption on a homogeneous surface. These mechanistic insights are crucial for optimizing adsorbent 

performance in real-world applications (Sundararaman et al. 2024). 

Modifying biopolymers, such as chitosan, alginate, cellulose, and starch derivatives, has 

enhanced their adsorption capacities and improved their operational stability in dynamic treatment 

environments. Their natural abundance, low cost, and biodegradability make them particularly 

attractive for sustainable wastewater treatment strategies. Integrating these advanced materials into 

continuous-flow systems enables effective remediation while reducing secondary pollution and overall 

treatment costs (Ghanbari and Zare, 2024). 

6.1.2 Removal of Organic Pollutants and Dyes 

Organic pollutants—including synthetic dyes, pharmaceuticals, and pesticides—are persistent 

contaminants in wastewater that pose serious environmental and health risks. Their chemical stability 

and resistance to degradation make them challenging to remove using conventional treatments. 

Biopolymers, due to their natural abundance, biodegradability, and tunable functional groups, have 

emerged as promising materials for the removal and degradation of these compounds (Negrete-Bolagay 

et al. 2021; Peramune et al. 2022; Manubolu et al. 2024). 

Chitosan, a cationic biopolymer rich in amino (–NH₂) and hydroxyl (–OH) groups, exhibits a 

strong affinity toward anionic dyes such as methylene blue and malachite green, resulting from 

electrostatic attraction and hydrogen bonding. Chemical modifications or blending with other polymers 

can further enhance its performance to improve mechanical stability and adsorption capacity 

(Vijayasree and Manan, 2023; Kurczewska, 2022). Alginate, derived from brown algae and featuring 

carboxyl (–COO⁻) groups, is effective for adsorbing cationic dyes such as rhodamine B. Recent studies 

on alginate-based hydrogels have shown that tuning the porosity and functional group density can lead 

to high removal efficiencies even in complex textile effluents (Wang et al. 2022; Dhanalekshmi et al. 

2021). 



  

Biopolymers can support semiconductor photocatalysts in facilitating the degradation of 

organic dyes under light irradiation. For example, TiO₂–chitosan composites combine the excellent 

adsorption properties of chitosan with the photocatalytic activity of TiO₂, resulting in enhanced 

degradation of dye molecules under visible light. Similarly, biopolymer–ZnO hybrids have been 

demonstrated to stimulate the production of reactive oxygen species (ROS), which expedite the 

degradation of complex organic dyes (Weon et al. 2023; Mendis et al. 2023). 

Incorporating activated carbon into biopolymer matrices further improves the removal of dyes 

by leveraging the high specific surface area and porosity of activated carbon. Combined with 

biopolymers such as chitosan, cellulose, or xanthan gum, the resulting composites exhibit enhanced dye 

adsorption kinetics and capacities. For instance, chitosan–activated carbon composites have been 

reported to achieve rapid adsorption of methylene blue, making them suitable for treating textile 

wastewater (Rehman et al. 2023; Kolya et al. 2023; Mittal et al. 2024). 

6.1.3 Biopolymer-Based Membranes for Water Filtration 

Biopolymer-based membranes and hydrogels have emerged as advanced solutions for water 

purification by combining sustainability with high filtration efficiency. Membranes fabricated from 

biopolymers, such as chitosan and cellulose acetate, exhibit high porosity, mechanical strength, and 

favourable surface charge properties. These features allow them to effectively remove bacteria, viruses, 

and suspended solids from water. Chitosan-based microfiltration (MF) membranes can achieve high 

rejection rates for microbial contaminants, while cellulose acetate ultrafiltration (UF) membranes offer 

robust performance in terms of flux and fouling resistance (Gough et al. 2021; Mamba et al. 2021; Fijoł 

et al. 2022). 

Advances in membrane technology have led to the development of nanofiltration (NF) 

membranes by incorporating nanoparticles into the biopolymer matrix. Modified membranes—for 

example, chitosan–TiO₂ or cellulose–ZnO hybrids—enhance the separation of multivalent ions and 

organic contaminants, providing additional functionalities such as photocatalytic degradation of 

pollutants. These systems achieve higher selectivity and improved permeate quality, making them 

attractive for selective separation processes (Li et al. 2023; Spoială et al. 2021). 

Biopolymer-based hydrogels, formed by cross-linking polymers such as chitosan, alginate, or 

cellulose, offer an alternative strategy for pollutant removal. Their highly tunable pore structures and 

responsiveness to environmental stimuli (e.g., pH and temperature) enable controlled adsorption and 

subsequent desorption of pollutants. This controlled release is particularly valuable for designing 

innovative water treatment systems that require regenerability and precise pollutant management (Rana 

et al. 2024; Ahmadi et al. 2024). 

 



  

6.1.4 Biopolymer Applications in Air Purification 

Air pollution—from particulate matter (PM), volatile organic compounds (VOCs), and toxic 

gases—poses significant threats to human health and the environment. Biopolymer-based solutions 

have emerged for the filtration of airborne contaminants and the catalytic degradation of pollutants 

(Gough et al. 2021; Ji et al. 2023). Table 5 lists various biopolymers and their environmental 

applications.  

Table 5 Biopolymers in Environmental Applications 

 

Biopolymer Application Target Pollutant Efficiency/Capacity Reference 

Chitosan Heavy Metal 

Adsorption 

Multi-metal 99% removal (Ashraf et al. 

2024) 

Alginate Heavy Metal 

Adsorption 

As, Pb, Zn 67.42%, 95.31%, and 

93.96% 

(Spoială et al. 

2021) 

Cellulose Heavy Metal 

Adsorption 

As, Hg, Pb 177.1, 110.2 and 234.2 

mg/g 

(Zhan et al. 

2018) 

Starch+ 

Cellulose 

Heavy Metal 

Adsorption 

Pb, Zn, Cu 66.66, 58.82, and 

47.61 mg/g 

(Anghel et al. 

2019) 

Xanthan 

Gum 

Heavy Metal 

Adsorption 

Cd, Cu, Pb, and Zn 16.0 mg/g, 8.5 mg/g, 

38.3 mg/L, and 7.2 mg/L 

(Ko et al. 

2022) 

Chitosan Wastewater 

Treatment 

Dyes, Heavy Metals 99% and 98% (Ayach et al. 

2024) 

Alginate Wastewater 

Treatment 

Organic Pollutants 89.3% removal (Marques-da-

Silva et al. 
2022) 

PHA Wastewater 

Treatment 

Acid Orange 7 96.44% removal (Chang et al. 

2022) 

Pectin Wastewater 
Treatment 

Suspended Solids - (Jha and 
Mishra, 

2024) 

Chitosan Air Filtration  PM2.5 99.5% (Hao et al. 
2022) 

Cellulose Air Filtration & 

VOC Removal 

Dust, Allergens, 

Microbes 

99% (Lippi et al. 

2022) 

Gelatin Air Filtration & 
VOC Removal 

VOCs, 
Formaldehyde 

95% (Kadam et al. 
2021) 

Chitosan Soil Remediation Heavy Metals 99% (Pal et al. 

2021) 

Alginate-
hydrogel 

Wastewater Hydrocarbons 78.8% (Farid et al. 
2024) 

Pectin 

functionaliz

ed metal-
organic 

frameworks 

Soil Remediation Pesticides 99% (Liang et al. 

2022) 

pectin/chito
san/zinc 

oxide 

nanocompo

site 

Wastewater Carbamazepine 68% (Attallah et 
al. 2020) 



  

Bacterial 

Cellulose 

Wastewater Microplastics 99% (Faria et al. 

2022)  

Bacterial 
Cellulose 

Bioremediation  Oil Spill Absorbents - (Fürtauer et 
al. 2021) 

 

Electrospinning can produce chitosan nanofiber mats with high surface area and interconnected 

porous structures. These mats effectively capture delicate particulate matter (such as PM2.5 and 

PM10) and exhibit inherent antimicrobial properties, improving indoor air quality. Functionalized 

cellulose membranes have been designed to enhance the removal of dust, allergens, and microbial 

contaminants. Their excellent mechanical and chemical stability makes them suitable for both 

indoor and industrial applications (Zhang et al. 2017; Lv et al. 2018; Borah et al. 2024). 

Combining biopolymers with activated carbon yields composite filters that harness carbon's 

high adsorption capacity while retaining the biopolymer's biodegradability and processability. 

Such composites can efficiently capture VOCs from indoor and industrial air environments 

(Akhtar et al. 2024). By immobilizing TiO₂ onto biopolymer supports (such as chitosan or 

cellulose), researchers have developed photocatalytic materials capable of degrading air 

pollutants like NOₓ and VOCs under light irradiation. This combination benefits from the 

biopolymer's adsorption properties and TiO₂'s ability to generate reactive species that degrade 

contaminants (Balakrishnan et al. 2022; Wei et al. 2023). Biopolymers also serve as matrices for 

immobilizing enzymes that break down toxic pollutants. These bio-filters leverage microbial 

enzymatic activity to transform and remove contaminants from the air in an energy-efficient and 

eco-friendly manner (Abdelhamid et al. 2024). 

6.2 Soil Remediation Using Biopolymers 

Soil contamination by heavy metals, oil spills, pesticides, and industrial waste can reduce soil 

fertility and harm the environment. Biopolymers provide multiple approaches for remediating 

contaminated soils, including pollutant stabilization, nutrient delivery, and erosion control 

(Dhanapal et al. 2024). Chitosan forms complexes with heavy metal ions via its amino and 

hydroxyl groups, reducing metal bioavailability in the soil. This binding prevents plant metal 

uptake and minimizes leaching into groundwater (Ahmad et al. 2017; Zheng et al. 2024) 

Alginate hydrogels can encapsulate and immobilize heavy metals, reducing their mobility and 

bioavailability. These hydrogels help contain contaminants within the soil, thereby reducing the 

risk of environmental spread and plant uptake (Colin et al. 2024). Biopolymer matrices made from 

starch can be engineered to release nutrients over time gradually. This controlled-release 

mechanism minimizes nutrient runoff and soil depletion, supporting sustainable agricultural 

practices (Firmanda et al. 2024; Govil et al. 2024). 



  

Coating seeds with chitosan has improved germination rates and enhanced plant resilience to 

environmental stresses. This treatment not only boosts early seedling growth but also offers 

protection against soil-borne pathogens (Samarah et al. 2020; Paravar et al. 2023). Hydrogels 

synthesized from xanthan gum and alginate enhance soil water retention and help prevent erosion. 

These materials support plant growth in arid environments and stabilize soils against wind and 

water erosion (Bajestani et al. 2025; Ali et al. 2024). Biodegradable mulch films derived from 

biopolymers are used in agriculture to reduce water evaporation, suppress weed growth, and 

maintain optimal soil temperatures. As they naturally degrade over time, they contribute to 

sustainable land reclamation practices (Menossi et al. 2021; Mansoor et al. 2022). 

6.3 Biodegradation and Bioremediation Applications 

Biopolymer-based carriers play a crucial role in supporting microbial-assisted degradation of 

pollutants, thus enhancing overall bioremediation efficiency (Ayilara and Babalola, 2023). 

Encapsulating bacteria within chitosan matrices creates a protective environment that enhances 

microbial survival and activity. In bioreactor applications, these encapsulated microbes can more 

efficiently degrade organic pollutants due to sustained high-density microbial populations (Das et 

al. 2024). 

Bioremediation beads composed of alginate or cellulose provide controlled release of 

biodegrading microbes into contaminated environments. These beads create a stable 

microenvironment that supports prolonged microbial activity, resulting in efficient pollutant 

degradation (Dzionek et al. 2016). Bacterial cellulose forms highly porous, lightweight sponges 

that are excellent at absorbing oil while allowing water to pass through. These properties make 

them practical for marine oil spill cleanup and reduce the environmental impact of oil 

contamination (ben Hammouda et al. 2021; Li et al. 2024). Chitosan-based materials have been 

developed into oil absorbents that are both biodegradable and efficient in selectively adsorbing 

oil from water. Their high adsorption capacity and ease of recovery provide a sustainable approach 

for oil spill containment and remediation in both marine and industrial settings (Mallik et al. 2022; 

Basem et al. 2024; Kaczorowska and Bożejewicz, 2024). 

7. FUTURE PERSPECTIVES AND CHALLENGES 

Biopolymer-based environmental remediation strategies have demonstrated promising results, but 

challenges remain regarding scalability, cost, and long-term stability. Future research should focus on: 

• Enhancing the mechanical strength and durability of biopolymer materials for large-scale remediation 

applications. 



 

 

• Developing multifunctional biopolymer composites that integrate adsorption, catalysis, and biodegradation 

into a single system. 

• Optimizing production processes to reduce costs and increase biopolymer availability for environmental 

applications. 

8. Conclusion 

        Biopolymers have emerged as a compelling alternative to synthetic polymers, offering biodegradability, 

renewability, and functional versatility for environmental remediation. Their successful application in 

wastewater treatment, air purification, and soil restoration demonstrates their potential to mitigate pollutants 

ranging from heavy metals and dyes to microplastics. However, real-world implementation continues to face 

significant hurdles. These include biodegradation efficiency under mixed-contaminant conditions, high 

production and downstream processing costs, and limited mechanical robustness in large-scale deployments. To 

accelerate the translation from laboratory to field, future research should prioritize improving the structural and 

chemical stability of biopolymer-based materials in complex, real-world environments while optimizing 

biosynthetic pathways to enhance yield, purity, and economic feasibility. Additionally, developing 

multifunctional composites capable of addressing multiple contaminants simultaneously is crucial. Scaling up 

cost-effective production methods using waste-derived substrates or engineered microbial systems and assessing 

environmental fate and lifecycle impacts under diverse remediation scenarios. 

Equally important are policy and regulatory frameworks that can facilitate the shift toward biopolymer adoption. 

Incentives for biopolymer-based product development, stricter regulations on persistent plastics, and public 

procurement programs favouring biodegradable alternatives can significantly accelerate market uptake. 

Furthermore, standardizing testing protocols and safety assessments for environmental applications will be 

crucial for regulatory approval and public trust. 

With continued interdisciplinary collaboration—spanning biotechnology, materials science, environmental 

engineering, and policy—biopolymers can play a transformative role in enabling a circular, sustainable 

bioeconomy. 
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