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ABSTRACT

The renewable sources, biodegradability, and customizable physicochemical features of
biopolymers make them viable alternatives to synthetic materials. Their use in wastewater, air,
and soil remediation offers promising answers to pollution problems. This comprehensive
analysis encompasses the natural extraction, microbial biosynthesis, and chemical polymerization
of biopolymers. Chitosan, alginate, bacterial cellulose, and polyhydroxyalkanoates (PHAs) are
excellent biopolymers for wastewater treatment because they effectively adsorb heavy metals,
dyes, and organic contaminants. Additionally, biopolymer-based membranes, composites, and
hydrogels are garnering attention for air filtration and soil stabilization. Functional modifications
have enhanced the efficiency and environmental sustainability of biopolymers through the
application of synthetic biology and nanotechnology. This paper explores the potential of
biopolymer-based environmental remediation technologies to replace synthetic materials in

sustainable pollution management, highlighting recent advances, challenges, and prospects.


mailto:drj.aravind@gmial.com

INTRODUCTION

The escalating environmental burden caused by non-biodegradable synthetic polymers—derived
primarily from fossil fuels—has emerged as a significant global concern due to their persistence,
toxicity, and contribution to pollution in water, soil, and air. These synthetic materials not only
deplete non-renewable resources but also generate long-lasting waste that poses threats to both
ecosystems and human health (Kibria et al. 2023; Islam et al. 2024). In response to these challenges,
biopolymers have garnered increasing attention as a sustainable alternative. Derived from
renewable sources and often biodegradable, biopolymers offer promising advantages in terms of
environmental compatibility, resource efficiency, and functional versatility. This review examines
recent strategies in biopolymer production and their emerging applications in environmental
remediation, highlighting how these natural and engineered materials can effectively replace
synthetic polymers in mitigating pollution and supporting a circular bioeconomy (Samir et al. 2022;
Edo et al. 2025).

Biopolymers play a vital role by competing with non-biodegradable synthetic polymers, offering
unique advantages such as eco-friendliness and a highly biodegradable nature. Moreover, they can
be biosynthesized from various biological resources. Biopolymers possess unique market potential
due to their extensive range of applications. Biopolymers are found in multiple sources, including
microbial and animal origins, and most are obtained from agricultural waste. Lignocellulosic-based
agricultural residues are gaining market traction from agricultural wastes due to their substantial
global production (Rai et al. 2021; Igbal et al. 2025). Biopolymers are defined as large molecules
synthesized by microbial, plant, and animal cells, composed of highly repetitive chemical repeating

units. Fig. 1 illustrates various natural sources of biopolymers, along with examples.
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The biochemical composition of biopolymers primarily comprises polysaccharides (cellulose,
starch, chitosan, chitin, alginic acid, hyaluronic acid, and pectin), proteins (collagen, elastin,
albumin, fibrin, gluten, and soy proteins), and nucleic acids (DNA and RNA), with primary sources
derived from plant, animal, and microbial origins. Investigating the physical, chemical, biological,
and mechanical properties of biopolymers enables their application in various industries, including
food, pharmaceuticals, medicine, and environmental sectors (Hassan et al. 2019). Biopolymers
synthesized through natural processes, including bioplastics, pullulan, dextran, xanthan, bacterial
cellulose, microbial exopolysaccharides, and capsular polysaccharides, are widely utilized in
medical, agricultural, agro-industrial, packaging, and environmental applications (Francis et al.
2013; Chaabouni et al. 2014; Manubolu et al. 2024; Lad et al. 2024). Based on literature and data,
the method of biopolymer production encompasses biopolymers extracted from agricultural waste
and animal origin, as well as similar biopolymers synthesized by classical chemical synthesis (e.g.,
polylactic acid, PLA). Additionally, polymers are produced from indigenous microorganisms and
genetically modified microorganisms. Table 1 shows various biopolymer production strategies.
According to the literature, technical advancements in synthesizing biopolymers from natural
sources and bioderived feedstocks have been noted (Volf and Popa, 2018; Chen et al. 2019; George
et al. 2020).

2. NATURAL BIO-BASED POLYMERS CAN BE HARNESSED WITH PARTIAL
MODIFICATION AS AN EFFECTIVE PRODUCTION STRATEGY

In recent years, bio-based polymers have seen a surge in demand for their versatile
applications. Primarily, modification of functional groups and their properties is sought in recent
technical advancements to meet our industrial application (Das et al. 2024). Table 1 presents three
significant types of biopolymers, along with their origins and sources.

Table 1. Biopolymer origin, synthesis, and sources

Biopolymer origin Types Examples Sources

Biomass 1. Polysaccharides Starch, cellulose, chitosan, | wild or  genetically

and gums or their derivatives.

2. Proteins collagen

Waxes wax

3. Lipids

alginate, carrageenan, pectin, | modified microorganisms

Gelatin, casein, whey, and | Animal and plant origin

Beeswax and carnauba




Synthesized from

bioderived monomers

Polylactic acids (PLA)

Renewable agro-wastes

Bioderived

monomers

Poly(hydroxyalkanoate)s
(PHAS),

wild  or  genetically

modified microorganisms

poly(hydroxybutyrate)s
(PHBs), bacterial cellulose,

xanthan, gellan, pullulan.

2.1 Functionality of biopolymer

The production of biopolymers from renewable biomass has become one of the most widely
adopted sustainable alternatives to fossil fuel-based synthetic polymers. Unlike traditional plastic
synthesis, which depends on non-renewable petrochemicals and generates long-lasting waste,
biopolymers are often biodegradable, non-toxic, and derived from abundant natural resources.
This shift aligns with the growing environmental regulations and increasing consumer demand
for eco-friendly materials (Pinaeva and Noskov, 2024; Jha et al. 2024).

Among the most promising strategies in recent years is the cell factory approach, wherein
microorganisms are genetically engineered to convert simple carbon sources—typically glucose,
glycerol, or lignocellulosic hydrolysates—into high-value polymer precursors. Glucose, in
particular, is favoured for its low cost, wide availability, and compatibility with many microbial
systems. Using in vivo chemical synthesis and metabolic engineering, researchers have
significantly advanced the microbial biosynthesis of various biopolymer building blocks (Mitra
et al. 2020; de Souza and Gupta, 2024).

Over the past three decades, several notable milestones have been achieved in this field:

Glucaric acid: Produced using engineered E. coli strains (Moon et al. 2009), glucaric acid is
a precursor for biodegradable polyesters and has potential applications in detergents, hydrogels,
and biomedical devices. Its production exemplifies how central metabolism can be rerouted to
yield value-added products from glucose.

Putrescine: This diamine compound, synthesized by Corynebacterium glutamicum and E.
coli (Qian et al. 2009), serves as a monomer for nylon-4,6, a biodegradable polyamide. The
biosynthetic production of putrescine replaces the energy-intensive petrochemical routes typically
required for polyamide synthesis.

3-Hydroxybutyrate (3HB): A key monomer in the synthesis of polyhydroxybutyrate (PHB),
3HB is produced by various bacteria such as Ralstonia eutropha (Jung et al. 2010). PHB exhibits
thermoplastic properties similar to polypropylene, making it a potential substitute for petroleum-
derived plastics in packaging and agriculture.

1,4-Butanediol (BDO): Traditionally produced through petrochemical synthesis, BDO is

now biosynthesized by engineered microbes, such as E. coli and Clostridium species (Oliver et al.




2013; Kumar et al. 2020). BDO is a versatile precursor for biodegradable plastics, such as
polybutylene succinate (PBS) and polybutylene terephthalate (PBT).

These advancements underscore not only the functional versatility of biopolymers but also the
potential for modular customization, enabling the design of polymers with specific mechanical,
thermal, or chemical properties tailored for diverse applications, including biomedicine,
agriculture, packaging, textiles, and electronics. Significantly, the functionality of biopolymers is
determined not only by their monomeric composition but also by their molecular weight,
branching, crystallinity, and interaction with other molecules. Advances in synthetic biology and
protein engineering now enable researchers to fine-tune these properties by modifying
biosynthetic enzymes or incorporating non-natural building blocks into the polymer backbone
(Arif et al. 2022; Khalil et al. 2025).

Despite these successes, current biosynthetic approaches face several technical limitations:

Low titers and yields in industrial-scale fermentation processes, high recovery and
purification costs, limited tolerance of host organisms to toxic intermediates, and substrate
competition within central metabolism all affect growth and productivity. To overcome these
challenges, efforts are being directed toward optimizing host strains, developing co-culture
systems, and integrating dynamic pathway regulation to balance growth and production.
Furthermore, combining metabolic engineering with process innovations such as continuous
fermentation or in situ product recovery is expected to enhance overall efficiency and reduce costs.
The functionality of biopolymers derived from biomass not only fulfils sustainability goals but
also offers a broad spectrum of application-specific properties. Continued innovation in microbial
engineering and bioprocess design will be essential for translating these materials into scalable,
commercially viable solutions (de Souza and Gupta, 2024; Del Hierro et al. 2024).

2.2. Synthetic biology as a tool to modify biopolymers.

Synthetic biology has emerged as a transformative tool for modifying and producing
biopolymers with enhanced efficiency, precision, and sustainability. Traditional one-step microbial
production of polymers, while promising, often suffers from low yields, slow growth rates, and
inefficient substrate conversion, particularly when using wild-type or unoptimized strains.
Moreover, these processes typically require chemical catalysts and harsh solvents for polymer
extraction and purification, resulting in increased environmental and economic burdens (Anderson
et al. 2018; Kaur et al. 2024).

Currently, commonly produced biopolymers include chitin, alginate, polylactic acid (PLA), and
polyhydroxyalkanoates (PHAs). For instance, chitin—extracted primarily from -crustacean
shells—is limited by its animal origin, posing sustainability and allergenicity concerns. Similarly,
alginate, derived from brown algae, faces challenges due to seasonal availability and batch

variability, which can affect product consistency. PHAs and PLA, although microbial in origin,



often require complex feedstocks and multiple downstream purification steps due to the
accumulation of mixed metabolic byproducts (Sharma et al. 2024; Kaur et al. 2024).

One limitation of conventional metabolic engineering is the difficulty in controlling pathway
fluxes, which can lead to unintended accumulation of intermediates or metabolic burden that
compromises cell growth. Additionally, the limited range of naturally occurring monomers
restricts the mechanical and functional diversity of biopolymers, curbing their potential
applications. Synthetic biology addresses these challenges by enabling fine-tuned control over
gene expression, modular pathway design, and the incorporation of non-natural monomers
(Aravind et al. 2015; Arif et al. 2024). For example, engineered strains of E. coli have been
developed to produce cellulose nanofibers with customized lengths and crystallinity. At the same
time, synthetic pathways in Cupriavidus necator have been utilized to create novel
polyhydroxyalkanoates (PHAs) with side chains that confer elasticity and biodegradability. These
modifications not only enhance the functional properties of the polymers but also streamline
production by eliminating unnecessary enzymatic steps (Zhang et al. 2022).

CRISPR-based genome editing and biosensor-guided pathway optimization have enabled the
dynamic regulation of biosynthetic pathways, allowing microbial systems to adjust in real-time to
fluctuations in precursor availability or metabolic stress. This results in more robust production
systems that are resilient under industrial fermentation conditions (Xin et al. 2025). However,
challenges remain. Many engineered strains still face scale-up issues, such as instability of
synthetic pathways during prolonged fermentations and sensitivity to industrial stressors, including
pH and shear forces. Moreover, regulatory and safety concerns around the use of genetically
modified organisms (GMOSs) in open environments or consumer products may slow down the
commercial deployment of such technologies. Despite these limitations, the integration of
synthetic biology with computational modelling, machine learning, and high-throughput screening
holds promise to accelerate the development of next-generation biopolymers. These polymers can

be fully bio-based, biodegradable, and tailored for specific applications (Palladino et al. 2024).

3. PRODUCING BIO-BASED MONOMERS BY FERMENTATION AND/OR VIA
CONVENTIONAL CHEMISTRY FOLLOWED BY POLYMERIZATION
3.1 Method of preparation

Biopolymers possess excellent biological and biodegradable properties, but they lack specific
mechanical properties, including low chemical resistance, limited processing capacity, and short
storage duration. Various methods can be implemented to achieve maximum yield while retaining
the properties of biopolymers and overcoming challenges (Pinaeva and Noskov, 2024). Figure 2
illustrates various methods for preparing biopolymers. Table 2 Overview of the biopolymer

synthesis pathway
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Fig. 2 Method of preparation of biopolymers

3.1.1 Fermentation

This method utilized bacteria, fungi, and algal species to produce specific types or different
groups of biopolymers, which were produced using specific substrates as the sole carbon source
(Chang et al., 2015). Major biopolymers (Alginate, bacterial cellulose, dextran, Hyaluronic acid,
etc.) use glucose and/or sucrose as primary substrates. Very few groups of polymers (Gellan and
pullulan) are produced using industrial waste as substrate. Table 3 provides detailed information
on the types of polymers, substrates used for Fermentation, and polymer-producing
microorganisms.
3.1.2 Polymerization

The monomeric form of polymers is highly prepared for the synthesis of microstructure. In
this method, the polymerization of monomers occurs in a series of sequential reactions, with each
step representing the functionalities of the monomers and their steric effects. For example, in the
formation of alkene units, more straightforward steps are required, whereas carbonyl groups
necessitate more complex steps. In the presence of strong acids, alkane units are polymerized
(Doyle et al. 2010). Similarly, the production of Polycaprolactone (PCL) by two methods, which
include 1. polycondensation of hydroxycarboxylic acid and 2. ring-opening polymerization of ¢-

caprolactone (Udayakumar et al. 2020).



Table 2 Overview of the biopolymer synthesis pathway

Glucose Glucose Glucose Glucose
Glucose 6- Glucose 6-phosphate Acetyl Glucose 6-phosphate
Direction of phosphate coenzyme A
polymer Glucose 1- Glucose 1-phosphate Oxaloacetate Fructose 6-phosphate
synthesis phosphate
Glucuronic acid - Glucuronic acid - Fructose 6- Glucosamine 6-
glucose glucose phosphate phosphate
N-acetylglucosamine 1- Mannose 6- N-acetylglucosamine 6-
phosphate phosphate; phosphate
UDP-N- Mannose 1- N-acetylglucosamine 1-
acetylglucosamine phosphate phosphate
Cellulose Hyaluronan GDP-mannose UDP-N-
acetylglucosamine
GDP- Chitin
mannuronic acid
Alginate Chitosan

3.1.3 Solvent-based extraction.

In solvent-based extraction, the process is determined by mechanical operations, including
sifting, filtration, and centrifugation of biomass for biopolymer extraction (Faidi et al. 2019). To
improve efficacy, varying biopolymer solvents were extracted from pretreated biomass
(Mahmood and Moniruzzaman, 2019). Similarly, to overcome the toxicity potential of solvents,
green solvents such as ionic liquids, deep eutectic solvents, bio-derived solvents, non-halogenated
solvents, and accelerated solvent systems have been used to extract polymers from biomass (Gu
and Jérome, 2013).

3.1.4 Endo and exo biopolymer production.

Endo polymers, such as polyhydroxyoctanoate (PHO), possess unique characteristics and have
low melting temperatures, allowing for the formation of lightweight composites (Van de Velde
and Kiekens, 2002; Ujang et al. 2009). All these polymers are produced by eubacteria
intracellularly. Similarly, Ganoderma applanatum, Collybia confluens, and Pleurotus eryngii
were identified as potential sources of endopolymer. All these fungi can be cultivated using
Mushroom Complete Medium (MCM) (Yang et al. 2007; Jeong et al. 2008; Moradali and Rehm,

2020). In exopolymer production, submerged cultures of fungal species have been widely




employed, and parameters such as carbon and nitrogen sources, pH, temperature, and agitation
have been standardized to optimize exopolymer production from fungal mycelia. For example,
Pacecilomyces japonica was used to optimize the production of maximal dry-weight biomass for
extracting exopolymers (Bae et al. 2000). Similarly, Paecilomyces tenuipes C240 was studied to
optimize factors using a One-Factor-at-a-Time Approach and an orthogonal matrix (Xu et al.
2003). Besides fungi, Ganoderma lucidum mushrooms and Phellinus linteus KCTC 6190 were
studied to optimize mycelial growth. Similarly, Mushroom Complete Medium (MCM), Yeast
Malt (YM), and Potato Malt Peptone (PMP) were studied to standardize exo-biopolymer
production. PMP media was the best medium for maximal polymer production (Kim et al. 2002).
For a comparative study, Cordyceps militaris exhibited maximal mycelial growth at 7.5 days and
maximal exopolysaccharide formation at 9.5 days (Park et al. 2001).
3.1.5 Bulk synthesis

Biopolymers are extracted and synthesized from various sources, including microbes, plants,
and natural renewable sources such as food and animal waste (Kaplan, 1998). The extraction
method may differ from source to source. Generally, biopolymers are produced under submerged
conditions in fed-batch mode. For example, PHB was synthesized by optimizing carbon and
nitrogen sources using reactor-fed bacteria of the species Ralstonia eutropha. Various factors,
including pH, substrate concentration, retention time, and substrate feeding rate, are necessary for
the optimal production of biopolymers. Similarly, the genetic algorithm for fed-batch cultivation
was studied using nutrient feeding rates and dilution rates to maximize PHB production (Khanna

and Srivastava, 2005; Lai et al. 2013; Stanley et al. 2018).

4. PRODUCING BIO-BASED POLYMERS DIRECTLY VIA
MICROORGANISMS

4.1 Alginate
Alginates are water-soluble, linear, anionic heteropolysaccharides. It is distributed in the cell
wall of the algae family Phaeophyceae. Which include., Laminaria hyperborean, Macrocystis
pyrifera, Laminaria digitat, and Ascophyllum nodosum. Besides algae, many bacterial species, such
as Pseudomonas and Azotobacter, also produce alginate-like polymeric materials (Sabra and
Deckwer, 2005; Abka-Khajouei et al. 2022).
4.2 Dextran
Dextrans are hydrophilic polysaccharides produced by species like Leuconostoc mesenteroides
and Streptococcus mutans. It has a (1-6)-linked glucan side chains attached to the 3-positions of
the glucose units, forming the backbone. Class 1 - a (1 — 6)-linked d-glucopyranosyl backbone
modified with side chains of d-glucose branches with o (1 — 2), a. (1 — 3), and a. (1 — 4)-linkage,
class 2 - a backbone structure of alternating a (1 — 3) and a (1 — 6)-linked d-glucopyranosyl

units with o (1 — 3)-linked branches, whereas class 3 - a backbone structure of consecutive o (1



— 3)-linked d-glucopyranosyl units with o (1 — 6)-linked branches. Dextran's physical and
chemical properties generally vary depending on the source and production methodologies
(Saboktakin et al. 2010; Diaz-Montes, 2021).
4.3 Xanthan
Xanthan is B-(1, 4)-linked heteropolymer with pentasaccharide units found in Xanthomonas
species. This polysaccharide is widely used in food products as a thickening and gelling agent (Rehm,
2010; Martinez-Burgos et al. 2024).
4.4 Gellan

Gellan is a heteropolymer widely extracted from Sphingomonas species and is a B-(1, 3)-linked,
containing tetrasaccharide units (West, 2021).

4.5 Curdlan

Curdlan, a B-(1,3)-linked homopolymer, is isolated chiefly from a few species, including
Agrobacterium, Rhizobium, and Cellulomonas (Al-Rmedh et al. 2023).
4.6 Polyhydroxyalkanoates (PHA)

PHA is a unique and ideal example of intracellular biopolymers mainly produced by many bacterial
species. It has B-hydroxy fatty acids, where the R group substituted from methyl to tridecyl. In particular,
the main biopolymer is PHB (polyhydroxybutyrate), a prominent member of the PHA family. Apart
from that, there are many more copolymers synthesized, namely, PHB family such as., [poly
(hydroxybutyrate-co-hydroxyvalerate) (PHBV), poly (hydroxybutyrate-co-hydroxyhexanoate)
(PHBH), poly (hydroxybutyrate-co-hydroxyoctanoate) (PHBO) (Vicente et al. 2023).



Table 3 Substrate and biopolymer-producing microorganisms

Skno. | Type of | Producing microorganism Substrate References
Biopolymers used
1 Alginate Pseudomonas and Azotobacter spp. (mostly | Sucrose (Valentine et al. 2020; Dudun
A. vinelandii) et al. 2021)
2 Bacterial Gluconacetobacter, Agrobacterium, | Glucose and (Chawla et al. 2009;
cellulose Aerobacter, Achromobacter, Azotobacter, | sucrose Almihyawi et al. 2024;
Escherichia, Rhizobium, Sarcina, and Mishra et al. 2022)
Salmonella sp
3 Cyanophycin | Cyanobacteria, Acinetobacter spp., | Arginine and (Solaiman et al. 2011;
Bordetella spp., and Desulfitobacterium | protein Aravind et al. 2016; Zou et al.
hafniense hydrolysate 2022)
4 Dextran Leuconostoc, Streptococcus and | Sucrose and | (Patel et al. 2010; Wang et al.
Lactobacillus  sp., L. mesenteroides, | maltodextrins 2023; Baek et al. 2025)
Gluconobacter sp. and  Pediococcus
pentosaceus
5 Gellan Pseudomonas elodea and Sphingomonas | Industrial (Fialho et al. 2008; Sa-
spp., S. paucimobilis waste Correia et al. 2002; Wu et al.,
products 2011)
6 Hyaluronic Streptococcus zooepidemicus, S. equi, and | Glucose, (Kogan et al. 2007; Zakeri et
acid Pasteurella multocida amino acids, | al. 2017; Shikina et al. 2022)

nucleotides,

salts, trace




elements, and

vitamins
7 PHAs Cupriavidus necator and Phaeodactylum | Starch, (Koller et al. 2010; Morlino et
tricornutum alcohol, and al. 2023)
industrial
waste
products
8 Poly-¢-lysine | Streptomyces albulus Glucose (Hamano et al. 2011)
9 Pullulan Aureobasidium  pullulans,  Tremellales | Industrial (Singh et al. 2008; Cruz-
enterica, Cytaria sp., Cryphonectria | waste Santos et al. 2023; West,
parasitica, and Rhodotorula products 2022)
10 Xanthan gum | Xanthomonas campestris Glucose and (Palaniraj et al. 2011)

SucCrose




4.7 Cyanophycin

Cyanophycin is a polyamide most widely extracted from cyanobacteria. Biochemically, it consists
of a repeating heteropolymer composed of dipeptide units of aspartate and arginine. Cyanophycin is
commonly used as a water softener and dispersant (Markus et al. 2023).

4.8 g-poly-l-lysine

g-poly-L-lysine is a polyamide, similar to cyanophycin and is widely found in the bacterial species
Streptomyces albulus. It is a homopolymer; lysine is one of the main amino acids present in this polymer.

In the food industry, e-poly-L-lysine is used as a food preservative and adsorbent (Pan et al. 2019).

5. PRODUCING BIO-BASED POLYMERS VIA ALGAE

Biopolymers are produced from algae in 3 ways: algal Fermentation, algal cell factories, and adding
additives in algal biomass. In Fermentation, algal enzymes produce biopolymers from algal biomass

(Khan et al. 2018). Fig. 3 shows three ways to produce biobased polymers from algae.

Bio-based
polymer from

1. Algal
fermentation

2. Algal cell

3 ways to produce biopolvimers S
factories

3. Adding
additives i algal
biomass

Fig. 3 Ways to produce bio-based polymers from algae

Algae undergo photosynthesis, producing essential nutrients that are used to synthesize
biopolymers (Costa et al., 2018). Compression of algae and additives is the most common method used
to prepare biocomposite (Ciapponi et al. 2019). Biopolymers such as Alginate, PHA, PHB, Carrageenan,
Fucoidan, and «-carrageenan from various algal sources were isolated using different methods,

including solvent extraction, Microwave-assisted extraction, Ultrasound-assisted extraction, and



Subcritical water extraction (Kartik et al. 2021). Yield (%) from these methods varies from source to
source and extraction method. 4.50 % of PHB was extracted from algal sources by using CHCI3 with
benzoic acid and MeOH with H,SOy, as solvent (Rueda et al. 2020), and 78.75% for x-carrageenan was
extracted from seaweed Kappaphycus alvarezii by using solvent 1-Butyl-3-methylimidazolium acetate

by Subcritical water extraction method (Gereniu et al. 2018).

By comparing all other biological sources, algae are one of the most promising sources for the
production of biopolymers due to their scalability in production and the availability of biopolymer
extraction strategies. Moreover, it can synthesize a wide range of bioproducts, including carbohydrates,
lipids, pigments, polysaccharides, proteins, polymers, and other biocompounds. Due to their Low-cost
production and sustainable nature, biopolymers from algae serve as the best model organism for
producing various bioproducts (Khoo et al. 2019; Parsons et al. 2020; Lutzu et al. 2021). Table 4

summarises various biopolymers and biopolymers produced by algae.
5.1 Comparative Insight on Scalability of Algal-Based Biopolymer Production Methods:

Among the various approaches to producing biopolymers from algae—namely algal Fermentation,
algal cell factories, and additive-assisted biomass processing—the most scalable method is continuous
Fermentation using engineered algal strains in closed photobioreactors. This approach offers several
key advantages: it enables precise control over growth conditions, maximizes biomass productivity, and
supports the high-yield production of target biopolymers, such as polyhydroxyalkanoates (PHAs) and
polyhydroxybutyrate (PHB). Genetic enhancements can further improve strain efficiency, substrate
utilization, and tolerance to stress, making algal cell factories highly adaptable for industrial-scale
applications. In contrast, direct enzyme-mediated or additive-based extraction from algal biomass is
comparatively less scalable due to variability in biomass composition, dependence on seasonal

availability, and batch-to-batch inconsistency (Gaur et al. 2024; Adetunji and Erasmus, 2024).

Similarly, advanced extraction techniques, including microwave-assisted and solvent-based
methods, offer higher purity and yield but are limited by high energy consumption, equipment costs,
and environmental considerations—factors that challenge their economic viability at commercial scales.
Therefore, while these techniques are valuable at laboratory and pilot levels, their transition to full
industrial deployment is less straightforward. Overall, the use of genetically optimized algae in
controlled bioreactor systems represents the most scalable and sustainable pathway for consistent, high-
volume biopolymer production, particularly when integrated with downstream biorefinery processes

(Gautam et al. 2024; Cannavacciuolo et al. 2024).



Table 4:

Biopolymer-producing algae.

S1.No Biopolymer Algal species References
1 Polyhydroxy alkanoates | Ulva Sp (Steinbruch et al.
(PHA) 2020)
2 Polyhydroxy butyrate | Nostoc sp.
(PHB) (Morales-Jiménez et
3 Polyhydroxy butyrate | Synechocystis sp al. 2020)
(PHB)
4 Polyhydroxy butyrate | Porphyridium purpureum
(PHB)
5 Polyhydroxy butyrate | Chlorella sp.
(PHB) (Naresh Kumar et
6 Polyhydroxy butyrate | Scenedesmus sp al., 2020)
(PHB)
5 Alginate Sargassum muticum (Flérez-Fernandez
et al. 2019)
6 Fucoidan Nizamuddinia zanardinii (Alboofetileh et al.,
2019)
7 Fucoidan Saccharica japonica (Saravana et al.
2018)
8 Carrageenan Mastocarpus stellatus (Ponthier et al.
2020)
9 K-carrageenan Kappaphycus alvarezii (Gereniu et al.

2018)

6. ENVIRONMENTAL REMEDIATION APPLICATIONS OF BIOPOLYMERS:

The increasing environmental pollution resulting from industrialization, agricultural runoff, and

urbanization has necessitated the search for sustainable remediation solutions. Conventional

remediation strategies, such as the use of synthetic chemical adsorbents, incineration, and
physicochemical treatments, often result in secondary pollution, high costs, and energy-intensive
processes. In contrast, biopolymer-based materials derived from renewable natural resources offer
biodegradability, biocompatibility, non-toxicity, and efficiency in removing various contaminants

(Awogbemi et al. 2023; Al-Hazmi et al. 2024).

Biopolymers, such as chitosan, alginate, cellulose, starch, xanthan gum, and microbial
exopolysaccharides, have significant potential in addressing water pollution, soil contamination, air

purification, and hazardous waste management. These materials function through diverse mechanisms,



including adsorption, filtration, chemical binding, encapsulation, and microbial-assisted degradation.
The following sections provide an in-depth exploration of their applications in various environmental

remediation domains (Kaur et al. 2024; Al-Hazmi et al. 2024).
6.1. Biopolymer-Based Materials for Wastewater Treatment

Water pollution is one of the most pressing global challenges, with sources ranging from
industrial effluents and agricultural runoff to domestic wastewater. Biopolymers have gained significant

attention as effective and sustainable materials for treating contaminated water (Fakhri et al. 2023).
6.1.1 Adsorption of Heavy Metals and Toxic Ions

Heavy metals, such as lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), and arsenic (As),
are toxic pollutants that accumulate in the environment, posing serious health risks. Biopolymer-based
adsorbents offer efficient, cost-effective, and environmentally friendly alternatives for removing heavy

metals (Verma et al. 2021).

Chitosan-Based Adsorbents: Chitosan, a deacetylated derivative of chitin, is widely studied due
to its amino (-NHz) and hydroxyl (-OH) groups, which enable metal ion chelation. Modified chitosan
nanocomposites (e.g., chitosan-metal oxide hybrids, chitosan-carbon composites) enhance adsorption
efficiency by increasing surface area and stability. Alginate-Based Adsorbents: Alginate, extracted from
brown algae, contains carboxyl (-COO") groups, which effectively bind heavy metals. Alginate-based
hydrogels and beads have been used in continuous-flow systems for wastewater treatment (Siddiqui et

al. 2025).

Cellulose and Starch Derivatives: Functionalized carboxymethyl cellulose (CMC) and starch-
based bioadsorbents exhibit strong interactions with metal ions, providing an additional biodegradable
option for water purification (Godiya et al. 2019). Chitosan's effectiveness largely stems from its
abundant amino (-NH:) and hydroxyl (—OH) groups, facilitating strong chelation with metal ions. For
example, recent work has demonstrated that modifying chitosan with poly(vinyl alcohol) and nano-
silica can significantly enhance its Cr(VI) adsorption capacity. Additionally, studies have shown that
chitosan-based adsorbents retain high efficiency across multiple adsorption-desorption cycles,
highlighting their potential for cost-effective and long-term use in industrial wastewater treatment

(Alkhaldi et al. 2024).

Alginate, derived from brown algae, contains carboxyl (—-COQO") groups that are highly effective
at binding heavy metals. Recent developments include the synthesis of Ca-alginate beads embedded
with magnetic nanoparticles, which achieve high adsorption efficiency for Pb(II) ions while facilitating
facile magnetic separation of the treated water (Ayach et al. 2024). Furthermore, integrating alginate

with chitosan to form interpenetrating polymer networks has improved mechanical stability and



adsorption performance, making these hybrid materials promising for scalable water treatment systems

(Sundararaman et al. 2024).

Cellulose derivatives, such as carboxymethyl cellulose (CMC), offer versatility due to their
modifiable structures. Recent research indicates that grafting polyethylenimine onto CMC enhances its
adsorption capacity for Cd(Il) and Pb(II) ions by increasing the density of active binding sites (Ghanbari
et al. 2024). Similarly, starch-based adsorbents functionalized with amine or thiol groups have produced
nanocomposites with enhanced porous structures, resulting in improved removal efficiencies for Hg(II)

and As(V) (Sahu et al. 2024).

Across these studies, kinetic analyses often reveal that adsorption processes on biopolymer-
based materials follow pseudo-second-order kinetics, suggesting chemisorption as the dominant
mechanism. The adsorption isotherms frequently conform to the Langmuir model, indicating monolayer
adsorption on a homogeneous surface. These mechanistic insights are crucial for optimizing adsorbent

performance in real-world applications (Sundararaman et al. 2024).

Modifying biopolymers, such as chitosan, alginate, cellulose, and starch derivatives, has
enhanced their adsorption capacities and improved their operational stability in dynamic treatment
environments. Their natural abundance, low cost, and biodegradability make them particularly
attractive for sustainable wastewater treatment strategies. Integrating these advanced materials into
continuous-flow systems enables effective remediation while reducing secondary pollution and overall

treatment costs (Ghanbari and Zare, 2024).
6.1.2 Removal of Organic Pollutants and Dyes

Organic pollutants—including synthetic dyes, pharmaceuticals, and pesticides—are persistent
contaminants in wastewater that pose serious environmental and health risks. Their chemical stability
and resistance to degradation make them challenging to remove using conventional treatments.
Biopolymers, due to their natural abundance, biodegradability, and tunable functional groups, have
emerged as promising materials for the removal and degradation of these compounds (Negrete-Bolagay

et al. 2021; Peramune et al. 2022; Manubolu et al. 2024).

Chitosan, a cationic biopolymer rich in amino (-NH:) and hydroxyl (~OH) groups, exhibits a
strong affinity toward anionic dyes such as methylene blue and malachite green, resulting from
electrostatic attraction and hydrogen bonding. Chemical modifications or blending with other polymers
can further enhance its performance to improve mechanical stability and adsorption capacity
(Vijayasree and Manan, 2023; Kurczewska, 2022). Alginate, derived from brown algae and featuring
carboxyl (-COO") groups, is effective for adsorbing cationic dyes such as rhodamine B. Recent studies
on alginate-based hydrogels have shown that tuning the porosity and functional group density can lead
to high removal efficiencies even in complex textile effluents (Wang et al. 2022; Dhanalekshmi et al.

2021).



Biopolymers can support semiconductor photocatalysts in facilitating the degradation of
organic dyes under light irradiation. For example, TiO.—chitosan composites combine the excellent
adsorption properties of chitosan with the photocatalytic activity of TiO., resulting in enhanced
degradation of dye molecules under visible light. Similarly, biopolymer—ZnO hybrids have been
demonstrated to stimulate the production of reactive oxygen species (ROS), which expedite the

degradation of complex organic dyes (Weon et al. 2023; Mendis et al. 2023).

Incorporating activated carbon into biopolymer matrices further improves the removal of dyes
by leveraging the high specific surface area and porosity of activated carbon. Combined with
biopolymers such as chitosan, cellulose, or xanthan gum, the resulting composites exhibit enhanced dye
adsorption kinetics and capacities. For instance, chitosan—activated carbon composites have been
reported to achieve rapid adsorption of methylene blue, making them suitable for treating textile

wastewater (Rehman et al. 2023; Kolya et al. 2023; Mittal et al. 2024).
6.1.3 Biopolymer-Based Membranes for Water Filtration

Biopolymer-based membranes and hydrogels have emerged as advanced solutions for water
purification by combining sustainability with high filtration efficiency. Membranes fabricated from
biopolymers, such as chitosan and cellulose acetate, exhibit high porosity, mechanical strength, and
favourable surface charge properties. These features allow them to effectively remove bacteria, viruses,
and suspended solids from water. Chitosan-based microfiltration (MF) membranes can achieve high
rejection rates for microbial contaminants, while cellulose acetate ultrafiltration (UF) membranes offer
robust performance in terms of flux and fouling resistance (Gough et al. 2021; Mamba et al. 2021; Fijot

et al. 2022).

Advances in membrane technology have led to the development of nanofiltration (NF)
membranes by incorporating nanoparticles into the biopolymer matrix. Modified membranes—for
example, chitosan—TiO: or cellulose—ZnO hybrids—enhance the separation of multivalent ions and
organic contaminants, providing additional functionalities such as photocatalytic degradation of
pollutants. These systems achieve higher selectivity and improved permeate quality, making them

attractive for selective separation processes (Li et al. 2023; Spoiala et al. 2021).

Biopolymer-based hydrogels, formed by cross-linking polymers such as chitosan, alginate, or
cellulose, offer an alternative strategy for pollutant removal. Their highly tunable pore structures and
responsiveness to environmental stimuli (e.g., pH and temperature) enable controlled adsorption and
subsequent desorption of pollutants. This controlled release is particularly valuable for designing
innovative water treatment systems that require regenerability and precise pollutant management (Rana

et al. 2024; Ahmadi et al. 2024).



6.1.4 Biopolymer Applications in Air Purification

Air pollution—from particulate matter (PM), volatile organic compounds (VOCs), and toxic

gases—poses significant threats to human health and the environment. Biopolymer-based solutions

have emerged for the filtration of airborne contaminants and the catalytic degradation of pollutants

(Gough et al. 2021; Ji et al. 2023). Table 5 lists various biopolymers and their environmental

applications.
Table 5 Biopolymers in Environmental Applications
Biopolymer | Application Target Pollutant Efficiency/Capacity Reference
Chitosan Heavy Metal | Multi-metal 99% removal (Ashraf et al.
Adsorption 2024)
Alginate Heavy Metal | As, Pb, Zn 67.42%, 95.31%, and | (Spoiald etal.
Adsorption 93.96% 2021)
Cellulose Heavy Metal | As, Hg, Pb 177.1, 110.2 and 234.2 | (Zhan et al.
Adsorption mg/g 2018)
Starch+ Heavy Metal | Pb, Zn, Cu 66.66, 58.82, and | (Anghel et al.
Cellulose Adsorption 47.61 mg/g 2019)
Xanthan Heavy Metal | Cd, Cu, Pb, and Zn 16.0 mg/g, 8.5mg/g, | (Ko et al
Gum Adsorption 38.3 mg/L, and 7.2 mg/L | 2022)
Chitosan Wastewater Dyes, Heavy Metals | 99% and 98% (Ayach et al.
Treatment 2024)
Alginate Wastewater Organic Pollutants 89.3% removal (Marques-da-
Treatment Silva et al.
2022)
PHA Wastewater Acid Orange 7 96.44% removal (Chang et al.
Treatment 2022)
Pectin Wastewater Suspended Solids - (Jha and
Treatment Mishra,
2024)
Chitosan Air Filtration PM2.5 99.5% (Hao et al
2022)
Cellulose Air Filtration & | Dust, Allergens, | 99% (Lippi et al.
VOC Removal Microbes 2022)
Gelatin Air Filtration & | VOCs, 95% (Kadam et al.
VOC Removal Formaldehyde 2021)
Chitosan Soil Remediation | Heavy Metals 99% (Pal et al
2021)
Alginate- Wastewater Hydrocarbons 78.8% (Farid et al.
hydrogel 2024)
Pectin Soil Remediation | Pesticides 99% (Liang et al.
functionaliz 2022)
ed metal-
organic
frameworks
pectin/chito | Wastewater Carbamazepine 68% (Attallah et
san/zinc al. 2020)
oxide
nanocompo

site




Bacterial Wastewater Microplastics 99% (Faria et al.
Cellulose 2022)
Bacterial Bioremediation Oil Spill Absorbents | - (Fiirtauer et
Cellulose al. 2021)

Electrospinning can produce chitosan nanofiber mats with high surface area and interconnected
porous structures. These mats effectively capture delicate particulate matter (such as PM2.5 and
PM10) and exhibit inherent antimicrobial properties, improving indoor air quality. Functionalized
cellulose membranes have been designed to enhance the removal of dust, allergens, and microbial
contaminants. Their excellent mechanical and chemical stability makes them suitable for both

indoor and industrial applications (Zhang et al. 2017; Lv et al. 2018; Borah et al. 2024).

Combining biopolymers with activated carbon yields composite filters that harness carbon's
high adsorption capacity while retaining the biopolymer's biodegradability and processability.
Such composites can efficiently capture VOCs from indoor and industrial air environments
(Akhtar et al. 2024). By immobilizing TiO: onto biopolymer supports (such as chitosan or
cellulose), researchers have developed photocatalytic materials capable of degrading air
pollutants like NOx and VOCs under light irradiation. This combination benefits from the
biopolymer's adsorption properties and TiO:'s ability to generate reactive species that degrade
contaminants (Balakrishnan et al. 2022; Wei et al. 2023). Biopolymers also serve as matrices for
immobilizing enzymes that break down toxic pollutants. These bio-filters leverage microbial
enzymatic activity to transform and remove contaminants from the air in an energy-efficient and

eco-friendly manner (Abdelhamid et al. 2024).
6.2 Soil Remediation Using Biopolymers

Soil contamination by heavy metals, oil spills, pesticides, and industrial waste can reduce soil
fertility and harm the environment. Biopolymers provide multiple approaches for remediating
contaminated soils, including pollutant stabilization, nutrient delivery, and erosion control
(Dhanapal et al. 2024). Chitosan forms complexes with heavy metal ions via its amino and
hydroxyl groups, reducing metal bioavailability in the soil. This binding prevents plant metal

uptake and minimizes leaching into groundwater (Ahmad et al. 2017; Zheng et al. 2024)

Alginate hydrogels can encapsulate and immobilize heavy metals, reducing their mobility and
bioavailability. These hydrogels help contain contaminants within the soil, thereby reducing the
risk of environmental spread and plant uptake (Colin et al. 2024). Biopolymer matrices made from
starch can be engineered to release nutrients over time gradually. This controlled-release
mechanism minimizes nutrient runoff and soil depletion, supporting sustainable agricultural

practices (Firmanda et al. 2024; Govil et al. 2024).



Coating seeds with chitosan has improved germination rates and enhanced plant resilience to
environmental stresses. This treatment not only boosts early seedling growth but also offers
protection against soil-borne pathogens (Samarah et al. 2020; Paravar et al. 2023). Hydrogels
synthesized from xanthan gum and alginate enhance soil water retention and help prevent erosion.
These materials support plant growth in arid environments and stabilize soils against wind and
water erosion (Bajestani et al. 2025; Ali et al. 2024). Biodegradable mulch films derived from
biopolymers are used in agriculture to reduce water evaporation, suppress weed growth, and
maintain optimal soil temperatures. As they naturally degrade over time, they contribute to

sustainable land reclamation practices (Menossi et al. 2021; Mansoor et al. 2022).
6.3 Biodegradation and Bioremediation Applications

Biopolymer-based carriers play a crucial role in supporting microbial-assisted degradation of
pollutants, thus enhancing overall bioremediation efficiency (Ayilara and Babalola, 2023).
Encapsulating bacteria within chitosan matrices creates a protective environment that enhances
microbial survival and activity. In bioreactor applications, these encapsulated microbes can more
efficiently degrade organic pollutants due to sustained high-density microbial populations (Das et

al. 2024).

Bioremediation beads composed of alginate or cellulose provide controlled release of
biodegrading microbes into contaminated environments. These beads create a stable
microenvironment that supports prolonged microbial activity, resulting in efficient pollutant
degradation (Dzionek et al. 2016). Bacterial cellulose forms highly porous, lightweight sponges
that are excellent at absorbing oil while allowing water to pass through. These properties make
them practical for marine oil spill cleanup and reduce the environmental impact of oil
contamination (ben Hammouda et al. 2021; Li et al. 2024). Chitosan-based materials have been
developed into oil absorbents that are both biodegradable and efficient in selectively adsorbing
oil from water. Their high adsorption capacity and ease of recovery provide a sustainable approach
for oil spill containment and remediation in both marine and industrial settings (Mallik et al. 2022;

Basem et al. 2024; Kaczorowska and Bozejewicz, 2024).

7. FUTURE PERSPECTIVES AND CHALLENGES

Biopolymer-based environmental remediation strategies have demonstrated promising results, but
challenges remain regarding scalability, cost, and long-term stability. Future research should focus on:
¢ Enhancing the mechanical strength and durability of biopolymer materials for large-scale remediation

applications.



e Developing multifunctional biopolymer composites that integrate adsorption, catalysis, and biodegradation
into a single system.
e Optimizing production processes to reduce costs and increase biopolymer availability for environmental
applications.
8. Conclusion
Biopolymers have emerged as a compelling alternative to synthetic polymers, offering biodegradability,
renewability, and functional versatility for environmental remediation. Their successful application in
wastewater treatment, air purification, and soil restoration demonstrates their potential to mitigate pollutants
ranging from heavy metals and dyes to microplastics. However, real-world implementation continues to face
significant hurdles. These include biodegradation efficiency under mixed-contaminant conditions, high
production and downstream processing costs, and limited mechanical robustness in large-scale deployments. To
accelerate the translation from laboratory to field, future research should prioritize improving the structural and
chemical stability of biopolymer-based materials in complex, real-world environments while optimizing
biosynthetic pathways to enhance yield, purity, and economic feasibility. Additionally, developing
multifunctional composites capable of addressing multiple contaminants simultaneously is crucial. Scaling up
cost-effective production methods using waste-derived substrates or engineered microbial systems and assessing
environmental fate and lifecycle impacts under diverse remediation scenarios.
Equally important are policy and regulatory frameworks that can facilitate the shift toward biopolymer adoption.
Incentives for biopolymer-based product development, stricter regulations on persistent plastics, and public
procurement programs favouring biodegradable alternatives can significantly accelerate market uptake.
Furthermore, standardizing testing protocols and safety assessments for environmental applications will be
crucial for regulatory approval and public trust.
With continued interdisciplinary collaboration—spanning biotechnology, materials science, environmental
engineering, and policy—biopolymers can play a transformative role in enabling a circular, sustainable
bioeconomy.
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