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ABSTRACT

Floods remain one of the most destructive climate-related disasters, necessitating effective tools for precise fore-
casting and prompt action. This study suggests a hybrid flood detection framework that integrates temporal rainfall
trend analysis with spatial image classification. The system makes use of a specially created dataset that includes
650 annotated images with flood and non-flood labels, along with the associated meteorological variables—tem-
perature, humidity, precipitation, and symbolic weather conditions. When used for image classification, Mo-
bileNetV2, which was chosen for its effectiveness in resource-constrained environments, achieves a 94.36% detec-
tion accuracy and a 32% decrease in misclassification when compared to conventional models. An 80:20 train-test
split with cross-validation is used to train and assess the model. The system's time-series component looks for
patterns in seasonal flood risk by analysing historical rainfall data. This work's integration of time-series and image-
based analysis into a single predictive platform, which permits spatial-temporal flood detection, is one of its main
contributions. To aid in decision-making, a visualization dashboard also shows rainfall trends. The findings imply
that the system can help with disaster preparedness and response planning and is appropriate for real-time deploy-
ment in flood-prone areas. To improve the system's predictive power, future research will concentrate on growing

the dataset and incorporating sophisticated forecasting models.
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INTRODUCTION

Climate-induced floods have become more frequent and severe in terms of loss, resulting in great socio-
economic loss across the world. The 2018 Kerala floods and the 2022 Pakistan floods remind us of the scale of
damage to infrastructure, agriculture, and human life. In India alone, the country has suffered economic losses
running into 52,500 crore in recent years from floods, with frequent events happening in Assam, Bihar, and
even urban areas like Mumbai. Traditional flood prediction and management systems rely on static data and
limited real-time capabilities, making them insufficient to handle the dynamic nature of climate-induced disas-
ters. Moreover, current approaches lack integration between datasets, such as weather data, geographical infor-
mation, and real-time visual evidence. These limitations call for an innovative, scalable solution that combines
data analysis with predictive capabilities. Technological advancements in machine learning have paved the way
for more efficient and responsive flood management systems. Deep learning models can analyze large datasets,
including images and environmental data, to identify flood patterns. Such systems provide real-time insights,
significantly improving decision-making processes for emergency responders and policymakers. This paper
presents the idea of a comprehensive platform entitled "Global Climate Disaster Database" to improve flood
predictions, monitoring, and responses. Through advanced machine learning techniques, this system provides
insight in real-time to first responders, policymakers, and city planners. This work is meant to provide an appli-
cation of an all-central platform integrating its image data with case studies to lead to a comprehensive overall
analysis of floods. The use of MobileNetV2 models helps achieve high accuracy in both flood detection and
classification. Its evaluation and comparison with contemporary techniques show major improvements not only
in the accuracy of performance but also in speed and scalability. The other strengths of the concerned approach
include two specific very important things: expandable and adaptable, such that it finds its applicability across
diversities of geographies and scenarios of disaster. By addressing the critical gaps in the current systems, this
platform will be of utmost importance to bring about better disaster preparedness, minimize response times, and
minimize economic and social losses due to flooding. Also, the proposed system allows collaboration because
of a centralized data repository, which can be utilized by researchers and disaster management authorities glob-

ally.
2. RELATED WORK

Flood management has seen significant advancements through the integration of deep learning and data-
driven techniques. This section explores existing work, highlighting their objectives, methods, accuracies, and
limitations, while positioning our approach as superior. Karanjit et al. 2023 introduced the "FloodIMG: Flood
Image Database System," which offers a specialized dataset for flood detection. This annotated dataset enriches
deep learning models with high-quality training data and obtains an accuracy of 92.5%. However, the geo-

graphic diversity of the dataset may limit the generalizability of the model. Our system extends this work by
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incorporating geographically diverse datasets to improve adaptability. Saha et al. 2024 presented a probabilistic
approach toward flash flood prediction in an urban area using statistical models like Frequency Ratio (FR) and
Weighting Factor (WF). Their approach is also very effective in identifying risk zones with an accuracy of §9%.
But these models are not highly adaptive to rural or geographically diverse contexts. Our deep learning approach
generalizes for a wide variety of situations with an accuracy of 94.36%. Hussain et al. 2024 showed that it is
possible to use the XGBoost and Random Forest machine learning models in detecting floods using environ-
mental factors such as rain and humidity. These models produced a high accuracy rate (>90%) but are sensitive
to the completeness and quality of the input data. Adding annotated image data to our system has eliminated
these issues, with a reduction of misclassification by 32%. Byaruhanga et al. 2024 reviewed the development
of flood prediction models in early warning systems between 1993 and 2023. Their scoping review evaluated
the problems with the data-scarce region and provided recommendations for interdisciplinary collaboration.
Although the review spanned a wide scope, the research did not experimentally validate. Our work provides
experimental evidence through extensive testing on various datasets, offering practical solutions. Zhong et al.
2024 combined Al and IoT to enable logistics automation in a flood monitoring scenario, offering a general
framework for any scenario. Their system promised real time monitoring with 90.2% accuracy but faced severe
deployment challenges since it is highly cost intensive, especially for resource-limited regions. Our system mit-
igates the costs of operating the system through the extensive usage of accessible machine learning methods
and curated datasets. The proposed Global Climate Disaster Database surpasses these approaches by realizing
higher accuracy (94.36%) and scalability in addition to addressing geographic bias and actionable insights
through visualizations in real time. So, these advancements position our platform as a comprehensive, superior
solution for flood management. Flood detection and prediction with the exceptional use of machine learning as
well as deep learning algorithms has been utilized for different researchers, including some state-of-the-art
works cited in this study. A combination of Machine Learning and Deep Learning models, together with Ran-
dom Forest, Naive Bayes, J48, and Convolutional Neural Networks (CNN), is exploited by the proposed system
by Hashi et al. 2021 as a real-time flood detection system. The work is aimed at providing an efficient and cost-
effective solution for flood-prone areas such as Somalia by interfacing Arduino-based systems with GSM mo-
dems for real-time flood monitoring. The experiment results show that Random Forest is outperforming other
classifiers with 98.7% accuracy, while Naive Bayes, J48, have 88.4%, and 84.2%, respectively. The deep learn-
ing-based CNN approach has gotten an accuracy of 87%, showing high precision and recall values. This work,
hence, contributes a very valuable and visible application to fields of Artificial Intelligence, Data Mining, and
Deep Learning as an innovative solution in flood detection and early warning systems. In an effort to better
ascertain the accuracy of flood prediction, researchers have extensively applied different kinds of deep learning
techniques. Stateczny et al. 2023 proposed a new hybrid deep model for flood prediction, now called DHMFP,
was presented while being trained based on the combined Harris Hawks Shuffled Shepherd Optimization
(CHHSSO) algorithm. The aim of the study was to increase the accuracy of traditional flood detection methods,

especially for urbanized regions like Kerala, where drainage systems are not capable of handling the torrent of
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rainwater. The methodology applied the preprocessing of satellite images with median filtering and segmenta-
tion with cubic chaotic map weighted K-means clustering. To strengthen feature representation, different vege-
tation indices such as Difference Vegetation Index (DVI), Normalized Difference Vegetation Index (NDVI),
and Soil Adjusted Vegetation Index (SAVI) were extracted. Extracted features were classified in a hybrid way
based on CNN-Deep ResNet framework fine-tuned using weight optimization by CHHSSO. The experimental
results gave high performance, providing a sensitivity of 93.48%, specificity of 98.29%, accuracy of 94.98%,
false negative rate of 0.02%, and false positive rate of 0.02%. The DHMFP-CHHSSO showed an improved
sensitivity, specificity, and accuracy of 0.932, 0.977, and 0.952, validating the model's efficacy further in the
aspect of flood prediction. Hasan et al. 2018, the proposed model was a Deep Convolutional Neural Network
(DCNN) that acts in detecting Burst Header Packet (BHP) flooding attacks in Optical Burst Switching (OBS)
networks. The paper brought out the criterion that the existing methods-e.g., Naive Bayes, K Nearest Neighbors
(KNN), and Support Vector Machines (SVM)-are not sufficient because they become ineffective when the num-
ber of samples is small in dataset. The proposed model DCNN outperformed these traditional methods by cre-
ating a very early scenario for attack identification. The experimental results also proved that DCNN gave a
classification accuracy of 99% and was much better than KNN (93%), SVM (88%), and Naive Bayes (79%).
The sensitivity, specificity, precision, and F1-score were also proved as 99% each, while both the false positive
rate (FPR) and the false negative rate (FNR) were found to be only 1%. These and several others also found out
that most traditional ML models showed overfitting and misclassification. In contrast, DCNN showed a constant
level of performance across both training and validation dataset conditions. This showed that deep learning
models were effective in applying network anomaly detection- demonstrating how beneficial DCNN is against
traditional classification techniques. A new designed deep learning architecture was introduced by Tuyen et al.
2021 called PSO-UNET to enhance flash flood segmentation from satellite images. This model integrates Par-
ticle Swarm Optimization (PSO) and UNET to optimize segmentation accuracy, thereby optimizing the number
of layers and layer parameters. Instead of keeping the same symmetrical architecture usually observed in con-
ventional UNET models, the ultimate difference in the proposed work PSO-UNET is that it dynamically mod-
ifies the contracting and expanding paths for optimal performance. The model was tested under a dataset con-
sisting of 984 satellite images, against the other deep learning models such as UNET, LINKNET, and SEGNET.
The results of the experiment demonstrated that the model achieved an F1 score of 87.17% + 0.36%, which is
greater than the original UNET model by 8.59%. Also, the model proved better performance in terms of Dice
Coefficient and Intersection over Union (IoU). Although the authors highlighted very good performance in
segmentation accuracy, they found some slight errors due to related pixel features. They suggested that post-
processing techniques should be supplemented and further validation be done on datasets that are more varied.
This research work contributes towards developing an optimized UNET-based segmentation model, demon-
strating just how much evolutionary algorithms can achieve in the field of deep learning-based flood detection.
Floodwater segmentation of the 290 flood-affected images was carried out by SegNet, UNet, and FCN32 in
Bahrami & Arbabkhah 2024, the aim of the study was to improve the accuracy of flood detection using deep
learning models. Among these, SegNet achieved the highest precision of 88% and validated its efficiency in
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locating water areas. This study emphasizes the importance of deep learning in enhancing flood forecasting and
disaster responses. Flood-ResNet50, as proposed by Khan et al. 2023, is developed with optimized deep learning
model architecture intended mainly to detect floods in UAV images while maintaining an excellent trade-off
between performance and computational cost. After modifying enhancements of ResNetS0 through transfer
learning and additional layers in model architecture, the classification accuracy of 96.43% was attained, which
was significantly more than comparable larger models like those of VGG16/19 and DenseNet161. Experimental
results showed that it outperformed the conventional models in terms of inference speed and power consumption
through the edge device, thus recommending it as real-time flood detection solutions. Deep learning models
have been extensively utilized in flood prediction and frequency assessment as by Pandey et al. 2023. Conven-
tional statistical techniques and traditional forecasting approaches could hardly capture any nonlinear interaction
among flood variables. Cat Swarm Optimized Spatial Adversarial Network (CSO-SAN) proposed for flood
forecasting that combines real-time meteorological and hydrological data. It has also been proven from studies
that CSO-SAN was by far better than the rest, achieving an accuracy of 98.3%. Despite its effectiveness, it could
be made better by applying hyperparameter tuning and some additional machine learning techniques for tuning
further. Urban flood monitoring is genuinely hampered by not having sufficient runoff data which leads to a
loss of hydrological model and early warning systems accuracy. With the recent advances in deep learning,
image recognition has become a significant approach toward flood measurement. Studies have proven that
YOLOvV4 works well during floods in identifying submerged objects like vehicles and pedestrians, with 89.29%
mean average precision for flood depth recognition. Depending on the reference object used, this method can
give higher accuracy in results, where vehicles give better results than pedestrians. Also, image augmentation
methods such as Mosaic were proposed to increase recognition accuracy. This presents an economical option
for existing traffic cameras to be put to effective use, doing away with the need for further infrastructure as in
Zhong et al. 2024. The conventional method of detecting floods using SAR images has its own set of challenges,
such as speckle noise and distortions. In overcoming these, WDNet fuses CNN with a self-attention mechanism
to enhance spatial and channel-wise feature extraction. WDNet performs better concerning accuracy against the
convention methods with an F1 score of 0.987 on the Poyang Lake flood dataset. This model (Huang et al. 2024)
thus helps in real-time flood mapping and disaster management. Convolutional neural networks, particularly U-
Net and FCN, have been implemented on remote sensing data to conduct flood mapping in the Kan basin in
Tehran. Compared to FCN, U-Net achieved a better performance of 88% accuracy and a much higher mloU of
0.65, demonstrating its application for detecting floods. The research by Roohi et al. 2025 shows the efficiency

of applying Al-based geospatial analysis in improving flood monitoring and disaster management.

3. PROPOSED METHODOLOGY
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Fig. 1: Block Diagram of Flood Detection System.

Fig (1) describes about the flow of the flood detection and analysis with alerts generated on the website.

The architecture consists of the following key components:

3.1. Customized Database

The 650 annotated images in the dataset used in this study are divided into two classes: "Flood" and "Not Flood." Three
main sources were used to create this customized dataset: curated datasets on Kaggle, publicly accessible images obtained
from Google Images, and a subset of labeled flood images sourced from the FloodIMG dataset, which was suggested by

nn

Karanyjit et al. [1]. Keyword-based searches (such as "flooded roads," "urban flooding," "dry street," etc.) were used to gather
the images, and then duplicates, watermarks, and low-resolution photos were manually filtered out. All photos were manually
annotated based on visible indicators of flooding (such as water accumulation, submerged vehicles, or muddy roads) or the
lack of flooding in order to guarantee label accuracy. Only images with unambiguous visual proof and reviewers' agreement
were included after the authors labeled them. A combination of street-level and aerial views are included in the dataset, along
with a variety of environmental features such as lighting, weather, and scene complexity. The visual context shows coverage
from a variety of urban and semi-urban regions, mainly from India and Southeast Asia, with a smaller number from Europe,
even though precise geolocation metadata was not available for all images. By integrating multimodal inputs and visual diver-
sity, this dataset construction method enhances the system's capacity to generalize across various flood scenarios.

The "Guwahati Weather Data (1973-2023)" dataset on Kaggle, which offers more than 50 years of daily weather records
from Guwabhati, a city vulnerable to seasonal flooding, is the source of the textual (temporal) dataset. Numerous meteorological
features are included in this dataset, including the highest and lowest temperatures, dew point, humidity, precipitation (precip,
precipprob, and precipcover), wind direction and speed, solar radiation, UV index, and symbolic weather descriptors like
conditions, icon, and description. Preprocessing included classifying weather conditions into four symbolic types: clear, cloudy,
partly cloudy, and rainy; handling missing values through interpolation; and eliminating outliers using IQR-based filtering.
Seasonal decomposition and long-term trend analysis were performed on the refined dataset, which allowed the system to align
rainfall anomalies with flood image patterns and identify periods that are prone to flooding. The hybrid prediction engine used
the rainfall trends as temporal input, which improved the system's capacity to identify floods by utilizing both historical climate

context and visual features. The overview of the dataset is given in Table (1).
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Table 1: Overview of Dataset.

Dataset Source(s) Size / Duration Key Features Purpose

Type
Image Da- | Google Images, Kaggle, 650 images Annotated as "Flood" / "Not Flood", | Used for flood classifi-
taset FloodIMG (Karanjit et al. includes aerial and ground-level per- cation using CNN
[1]) spectives
Rainfall Kaggle — Guwahati 50 years (1973— tempmax, tempmin, precip, humid- | Used for trend analysis
Dataset Weather Data (1973— 2023) daily ity, wind, conditions, icon, and more and hybrid prediction
2023)

3.2. CNN-Based Image Processing Module

The CNN-Based Image Processing Module is a deep learning-based image classifier that analyzes flood-related images and
classifies them into two categories: "Flood" and "Not Flood." Through TensorFlow and Keras, deep learning models are ap-
plied to a dataset of 650 flood images which have been marked. Four classic deep learning networks: EfficientNetB0, ResNet50,
InceptionV3, and MobileNetV2 were initially tested with InceptionV3, and MobileNetV2, were chosen for their high perfor-
mance.

Residual Network (ResNet50) is a very deep CNN model originally developed to avoid the problem of vanishing gradients
by embarking on a road of residual learning [1]. The model was designed to provide smooth gradients during the course of
backpropagation with the help of shortcut connections, and thus the effective convergence. The application of ResNet50 for
flood detection yielded a fairly moderate accuracy with respect to 64.7%, primarily attributed to its stickiness towards over fit-
ting on a very small dataset. It, however, was capable of adequately capturing hierarchical features of flood imagery; high
computation complexity hindered its adoption in streaming, as extensive GPU resources are required. There is room for im-
proving this model's performance with data augmentation techniques and larger and more diverse datasets.

Architecture InceptionV3 is another model in the competition for multi-scale feature extraction based on factorized convolu-
tions design with asymmetric kernel designs [2]. The fundamental equation that drives factorized convolutions is :
F(x) = f1(2) * f2(x) (1)
Where f1(x) and f2(x) are two separate convolution operations, reducing computational complexity while preserving feature
extraction capabilities.
The total number of parameters is given by:
P = (k? - Cin* Cour) + (Cou * Cin) -(2)

Where k is the kernel size, C;,, and C,,,; are the number of input and output channels, respectively.

These improvements in performance lead to an improved computational effectiveness in reducing the number of parameters
while maintaining very high accuracy. In flood classification, InceptionV3 achieved a high rate of 93%, thus marking its
position as one of the standout models in the study. Its strengths include excellent capture of both local and global flood
patterns. However, due to its deep and complex architecture, the inference time was shown to be higher compared to Mo-
bileNetV2, making it less favorable for real-time applications where deciding in the moment was of essence.

EfficientNetB0 was established to maximize accuracy while maintaining efficiency by scaling its dimensions (i.e. depth, width,
and resolution) with compound scaling factors [3]. The compound scaling formula is given by:

depth = a®, width = B¢, resolution = y*¢
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Where o, B, y are constants determined through grid search, and d is a scaling coefficient. The overall computational cost
(FLOPs) can be estimated as
FLOPs =2 - (Cyp " Copyr* k% "H-W) ...(3)
Where H and W are the height and width of the input feature map.
It achieved a high accuracy with a smaller number of parameters. Though EfficientNetBO performed too poorly in our flood
detection study, with an accuracy of only 39%, primarily due to non-availability of high-quality, large-scale datasets for ap-
propriate feature extraction, low-light conditions caused performance issues with classifying floods, suggesting extreme tuning
and transfer learning tweaks are required. Nonetheless, in its inefficiency, EfficientNetBO remains a promising model for
lightweight work where power consumption is a restraint.
Among all the trained models, MobileNetV2 showed the best performance in terms of flood detection by achieving an accuracy
value of 94.36% [4]. Designed for mobile and edge devices, it uses depth wise separable convolutions to reduce computation
while maintaining high classification performance.
Y=(X «D)*P .. (4)
Where X is the input, D is the depthwise convolution, and P is the pointwise convolution.
The total computation cost can be approximated as:
FLOPs=H W -Cy, - k* +H-W - Cpyy - Cin, ...(5)
This architectural choice allows MobileNetV2 to perform well in real-time applications while keeping computational costs
low.
It is also designed with an inverted residual structure and linear bottlenecks, allowing feature propagation and reducing re-
dundancy. This aspect enables the architecture to process flood imagery easily for real-time detection with slight resource
consumption. Optimally balances accuracy, speed, and computational efficiency; hence, ideal for deployment in flood moni-
toring applications.
The comparative analysis showed that deeper models like InceptionV3 and ResNetS0 could extract complex flood-related
features, but most of them are not best suited for real-time usage because of the extreme space and time requirements. Despite
being more efficient than some others, EfficientNetBO struggled with classification performance in this domain. Finally,
MobileNetV2 was identified as the most fit model because of its high accuracy with low computation requirements, thus
being the best-suited candidate for implementation in the proposed system.
This module integrates deep learning with real-time video analysis to cover a complete monitoring of floods as part of a larger
predictive and alert system. Also, by deploying deep learning mechanism, the system can keep improving the analysis of new

flood imagery, meaning that the system is efficient and expandable in disaster scrutiny and handling.

3.3. Time-Series Analysis Module

To complement the image processing module, the Time-Series Analysis Module focuses on rainfall textual data, which ex-
tracts trends and patterns to understand seasonal variations. The analysis revealed that there are some significant rainfall
concentrations between June and September, with Mawsynram receiving the highest rainfall. Coastal Karnataka follows at
an average of 2973.5 mm, while the Konkan and Goa regions record 2804.2 mm on average. These temporal insights are

critical in identifying regions prone to floods and periods of increased risk, which aid in the system's predictive capabilities.

3.4. Hybrid Prediction Engine
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At the heart of the architecture is the Hybrid Prediction Engine, which brings together the outputs from the CNN-Based Image
Processing Module and the Time-Series Analysis Module. This engine brings together spatial and temporal data through
advanced machine learning models implemented in TensorFlow, Keras, and PyTorch. By fusing these two streams of data,

the system achieves a robust and holistic prediction mechanism that ensures accuracy and reliability.
3.5. Analytical Insights and Decision-Support Integration

Insights

Fig. 2: Insights page

In Fig. (2) Insights page showcases analysis of precipitation.

Seasonal Contribution to Total Rainfall
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Fig. 3: Seasonal Contribution to Total Rainfall
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In Fig. (3) Insight showcasing Seasonal Contribution to Total Rainfall.

Sessonsl Remfsl stensity Ovet Years

Fig. 4: Seasonal Rainfall Intensity Over Years

In Fig. (4) Insight showcases Seasonal Rainfall Intensity over years.
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Fig. 5: Annual Rainfall Trend Over Years

In Fig. (5) Insight showcases Annual Rainfall Trend over years.
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In Fig. (6) Insight showcasing Seasonal Rainfall by Subdivision.

Fig. 6: Seasonal Rainfall by Subdivision
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In Fig. (7) Insight showcases Average annual Rainfall by Subdivision.
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Fig. 7: Average Annual Rainfall by Subdivision
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Fig. 8: Average Annual Rainfall by Subdivision

In Fig. (8) Insight shows the Average Monthly Rainfall Trend.

An analytical module called the Insights Page combines the system's flood prediction architecture with long-term rainfall trend
analysis. This module visualizes key hydrometeorological indicators, such as annual precipitation trends, seasonal rainfall
contributions, and spatial rainfall distribution across subdivisions, using a 50-year time-series dataset of Guwahati weather
(1973-2023) (Figs. 2-8). In addition to being descriptive, these visualizations provide important background information for
analysing flood risk across time and space. While annual trends (Fig. 5) show evidence of long-term variability possibly related
to climate change, the analysis of seasonal rainfall intensity (Fig. 4) aids in identifying flood risks driven by the monsoon.
Localized flood preparedness planning is made possible by subdivision-level views (Figs. 6-8), which direct infrastructure
planning and resource allocation in high-risk areas. The Insights Page features machine learning-based forecasting models that
extrapolate future rainfall intensity under changing climatic conditions in addition to static trend analysis. This feature increases
the system's usefulness as a real-time decision-support tool and facilitates early warning system calibration. By enabling cross-
validation with the real-time image-based flood classification engine, these insights help stakeholders correlate detection alerts
with past and forecasted weather patterns, boosting confidence and lowering false alarms. It expands the system's usefulness
beyond flood detection to include flood preparedness, policy support, and climate-resilient planning by converting unstructured
meteorological data into organized, actionable visual analytics. It provides a framework for creating early warning systems,
assisting with the optimization of urban drainage, directing the scheduling of agricultural operations, and facilitating more

efficient emergency response systems.

4. RESULTS AND DISCUSSIONS
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The proposed flood detection methodology was tested with four of the most widely developed deep con-
volutional neural network (CNN) models. It is evident that, the performance metrics specifically, the accuracy
characteristic has significantly differed from model to model meaning different strengths and weaknesses. The
performance of the models has been compared in the context of each city and Table 2 provides the summary.
Authors used 5-fold cross-validation on the training data to guarantee robustness and lessen the impact of vari-
ance brought on by dataset split or model initialization. Five separate runs, each with retrained models and
shuffled data, are averaged to produce the reported results (Accuracy, Precision, and Recall). The model's be-
haviour was consistent and generalizable, as evidenced by the performance metrics' standard deviation across
the folds being within £1.2%. The proposed system was tested on a dataset of 300 labelled images, covering
different types of images. Table 2 shows the key performance metrics achieved by the customized MobileNetV2
model which includes precision, recall which were calculated using macro-averaging across both classes ensur-

ing equal weights to both of the classes. All reported values represent the mean across five validation folds.

Table 2: Performance Metrics of the Proposed System

Metric Proposed System Averaging Method
Precision 0.95 Macro-average
Accuracy 0.94 Macro-average
Recall 0.93 Overall accuracy

The results obtained point out that the proposed system achieves much better accuracy and precision, reducing the
chances of incorrect classifications. Fig(9) represents Precision-Recall curve which gives the insight of how well

the model works.

Precision-Recall Curve
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Fig. 9: Precision and Recall Curve
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Receiver Operating Characteristic (ROC)
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Fig. 10: Receiver Operating Characteristic (ROC) curve for the flood detection system.

In Fig. (10) The high AUC of 0.99 gives a clear indication of the reliability and reliability in identifying flood
occurrences with minimal cases of false alarms.

Of the Four trained models as discussed in Table 2 MobileNetV2 turned out to be the fastest and most accurate
model of flood detection for practical applications when both speed and accuracy are important. InceptionV3 was
also able to provide adequate results with a slight difference and provided excellent result in cases that needed
multiscalar analysis. However, ResNet50, and EfficientNetBO reported worse accuracy, underlining that there is
still significant potential for architecture tailored modifications and preprocessing of the dataset, in order to in-
crease model accuracy. These findings call for light-weight, but strong models such as MobileNetV2 to be adopted
in the flood detection systems, particularly in the real-time disaster surveillance and risk evaluation applications.
The same train-test split (80:20) was used to train and assess every model in Table 2, including MobileNetV2,
InceptionV3, ResNet50, and EfficientNetB0. Furthermore, pre-trained ImageNet weights were used to initialize
all models, and our flood dataset was used to fine-tune the final classification layers for binary classification.
Authors applied the same early stopping criteria, input resolution (224x224), and preprocessing pipeline to all
models. Using the validation set, grid search was used to choose hyperparameters like learning rate (originally le-
4), batch size (32), and number of epochs (30). To ensure statistical reliability and fairness, each model was trained

five times using different random seeds, and the average performance was reported.

Table 3: Comparative Analysis of Sorting Models

Accuracy (Mean + | Observations
Model Standard Deviation)
MobileNetV2 | 94.36% =+ 0.85% Best performer, highly efficient for deployment with
robust results
InceptionV3 93% + 1.02% Comparable to MobileNetV2; effective multi-scale
feature extraction contributed to strong results
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ResNet50 64.7% * 1.76% Underperformed; potential challenges with dataset
features or overfitting.
. 39% +£2.12% Struggled significantly; requires fine-tuning or addi-
EfficientNetB0O tional data preprocessing.
Model Accuracy Comparison
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80 -
E 601
z
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Fig. 11: Comparative Performance Metrics of Different Models

Fig. (11) compares classification accuracy across different models
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Fig. 12: Depicting the confusion matrix of the research

Fig. (12) shows the confusion matrix which provides detailed insight into the classification accuracy for
different classes. The matrix showcases high true positive rates across categories, validating the model's effec-

tiveness in distinguishing between flood types with minimal misclassification.

4.1 Comparative Analysis

Table 4: Comparative Analysis of Research

MODEL ACCURACY REFERENCE
Hussain et al. (2024) — Deep learning on | 92.5% A. Hussain, G. Latif, J. Alghazo, and E. Kim, "Flood detec-
visual images tion using deep learning methods from visual images," AIP

Conf. Proc., vol. 3034, no. 030004, 2024. doi:
10.1063/5.0090702

Yede et al. — CNN-based flood detec- | 82% R. B. Yede, K. D. Yedale, R. S. Wagh, and R. K. Shastri,
tion (Original Paper) "Automatic Flood Detection Using CNN," Department of
Electronics and Telecommunication Engineering, VPK-

BIET, Baramati, Savitribai Phule Pune University, Pune, In-
dia.

Our Work (MobileNetV2, Custom | 94.36% -
Dataset)

Table 4 provides a summary of the reported accuracy of current flood detection models from recent literature to
put our model's performance in perspective. Yede et al. created a CNN-based flood detection system with an accu-
racy of 82%, while Hussain et al. (2024) reported a 92.5% accuracy rate using a deep learning approach on visual
flood images. Using a dataset of custom images, our suggested MobileNetV2-based model obtained a classification
accuracy of 94.36%. It is crucial to remember that these findings were derived from distinct datasets and experi-
mental setups; as a result, the comparison is offered solely for qualitative purposes and is not intended to serve as
a performance standard. These numbers demonstrate the overall advancements in deep learning-based flood detec-
tion, but they should be viewed within the constraints of various scenarios, data sources, and verification proce-
dures.

The suggested model uses Batch Normalization and Dropout to enhance training stability and generalization. By
normalizing the activations across mini-batches, batch normalization reduces internal covariate shift during train-
ing, resulting in more stable learning, shorter training times, and enhanced performance in a variety of environ-
mental conditions which are frequently present in flood imagery (e.g., varying lighting, water reflections, shadows).
This is particularly advantageous when training on datasets of a moderate size, like the ones used in this study. To
avoid overfitting, Dropout is used concurrently at a rate of 0.5. By forcing the network to learn distributed and
generalized representations during training instead of memorization of patterns, random deactivation of neurons
increases the network's resilience to novel flood scenarios. These methods help the model minimize false positives
while maintaining high precision and recall, which is essential for implementation in flood risk assessment systems.
Effective training, competitive performance, and the possibility of real-time applications are made possible by the
combination of these methods in a lightweight architecture such as MobileNetV2. To assess the model's resilience
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on more extensive and geographically varied datasets and to determine whether real-time deployment is feasible

through field testing or edge computing simulations, more research is necessary.

5. CONCLUSIONS
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Fig. 13: Training and validation accuracy and loss curves over 30 epochs

This study suggested a hybrid flood detection system that combines long-term rainfall trend analysis with deep
learning-based image classification. The system made use of a 50-year Guwahati weather time-series dataset
and a customized dataset of 650 annotated photos. With a classification accuracy of 94.36% and macro-averaged
precision and recall of 0.95 and 0.93, respectively, MobileNetV2 outperformed the other models in the test. The
robustness of the model, with minimal variance across folds, was validated by cross-validation. Because dropout
and batch normalization were used, the learning curves showed minimal overfitting and good generalization.
Learning curves, which plot the accuracy and loss of training and validation over 30 epochs, were used to further
assess the system's training behaviour (Fig. 13). The model generalizes well to unseen data with little overfitting,
as shown by the curves' stable convergence, validation accuracy stabilizing between 93% and 94%, and valida-
tion loss around 0.2. This stability was facilitated by methods like dropout regularization and batch normaliza-
tion. The system's decision-support component incorporated the rainfall analysis module's insightful infor-
mation on historical precipitation trends, regional variances, and seasonal rainfall intensity. By adding the In-
sights Page, stakeholders were able to better understand situational awareness by interpreting flood alerts in
light of past climatic conditions. Overall, the findings support the viability and efficiency of integrating temporal
and visual data for flood detection. In order to improve predictive capabilities, future work will concentrate on
growing the dataset, adding multi-region weather data, and enhancing model performance with sophisticated

temporal models.
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