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ABSTRACT

Heavy metal-laden contaminated water poses a severe environmental threat due to its
bioaccumulation tendency, persistent nature, and toxicity. Conventional wastewater
treatment techniques, such as ion exchange, chemical precipitation, membrane
separation, and electrocoagulation, can result in secondary pollutants, require high
energy use, and involve high costs. This review discusses environmentally friendly
methodologies for the removal of heavy metals from aqueous streams, and the
biosorption process is a viable alternative to address sustainability concerns in
conventional, energy-intensive industrial processes. The biosorption process utilizes a
wide range of natural biomasses, such as plants, fungi, algae, and bacteria, for the
sequestration and removal of heavy metals from aqueous solutions. Biosorption is
mediated through various mechanisms, including physical adsorption, ion exchange,
complexation, precipitation, and intracellular transport. The effectiveness of a
biosorbent is based on the efficiency of sequestration and removal of heavy metals
under given conditions. Some important factors affecting this include pH, temperature,
contact time, biomass loading, and initial heavy metal ion concentration in the solution.
Additionally, the capacity for biosorption for regeneration and reuse increases its
commercial viability. This work explored the sources of biosorbents and the driving
forces that govern their biosorption efficiency. Furthermore, this study provides an in-
depth discussion of the factors that affect the effectiveness of the process. It establishes
a fundamental understanding of biosorption mechanisms and influencing factors,
paving the way for future commercialization of this promising technology.

Introduction

Environmental pollution due to heavy metals has multiplied from a regional problem to a
worldwide one, exacerbated by rising urbanization, industrialization, and poor wastewater
treatment. Water pollution, which may arise from an array of things like agriculture,
wastewater, oil spills, and radioactive materials, is among the significant problems civilization
is currently experiencing (Jahan & Singh, 2023). Heavy metals (HMs) such as arsenic, copper,
cadmium, chromium, lead, nickel, and zinc are persistent pollutants that accumulate in the
environment, and industrial effluent in particular has the potential to be a substantial carrier of
these pollutants. (Aliyu Haruna Sani, Amanabo Musa And Musa Dickson Achimugu, 2023).
Because they contaminate the habitats of marine organisms, these heavy metals constitute a
serious hazard to water bodies, including streams, lakes, and oceans. (Jahan & Singh, 2023).
HMs bioaccumulate in the food chain, people inadvertently endanger their health when they
consume contaminated foods like fish and vegetables. Owing to the threat, regulatory bodies
worldwide have tightened permissible discharge limits and call for sustainable remediation
alternatives.

Biosorption, as a biologically inspired technique, has garnered attention due to diverse
biosorbents, ranging from microbial biomass to plant-based waste. However, in terms of data
comparability, method standardization, and clarity about sorption mechanisms across various
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biosorbent kinds, the area is still fragmented despite a large number of investigations. To create
systems that are adaptable, dependable, and economical for treating waters, more research and
development of bioprocesses is necessary. Presenting the state of the art in biosorption research
and contrasting findings from previous studies are the goals of this work.

The originality of this work lies in three main aspects:
Material Innovation: Modification (chemical/physical) enhances surface area and
functional groups, thereby increasing metal-binding affinity. Modified selected
biosorbents with their adsorption capacity are elaborated in the review.
Critical Analysis of Influencing Parameters: To assess how important aspects like
pH, temperature, contact time, biomass dosage, and initial metal ion concentration
affect biosorption performance. This work focuses on results from diverse
investigations rather than presenting experimental data. Based on kinetic and isotherm
models from the literature, the review also addresses the mechanisms at play, including
complexation, ion exchange, physical adsorption, and others.
Sustainability Emphasis: The use of abundant, biodegradable biomass supports
circular economy principles and promotes waste materials for environmental
remediation.

Overall, the findings contribute to expanding the library of efficient biosorbents and offer a

pathway for practical, sustainable heavy metal remediation technologies in developing regions.

2. Biosorption Insight

Plants and microorganisms produce many biomaterials in the form of biomass, which is utilized
in the biological physicochemical process of biosorption to absorb or adsorb a target species,
such as metal ions or dyes. (Gadd, 2009).

Biosorption using biomaterial is a two-phase process: one for the mobile or liquid phase and
one for stationary, which in this case was biomass. The mobile phase is usually an aqueous
solution of dissolved metal ions/dyes known as sorbates. Algae, bacteria, fungi, and plants act
as immobile or stationary phases of biosorbents in treatment processes. They act as effective
biomass for removing heavy metals from aquatic systems (Apriani et al., 2024). Metal ions get
adsorbed mainly through the cell walls of these biological sorbents (Ali Redha, 2020). A variety
of different biosorbents like Fungi and Algae consist of an extensive number of functional
groups in their cell walls, which play an important role in the process of biosorption.

These functional groups include carboxyl (-COOH) groups found in proteins, fatty acids, and
organic acids; esters (-O-) present in lipids; carbonyl groups (C=0O), which can be either
internal or terminal, as seen in ketones and polysaccharides; phosphate groups; ester linkages
(RCOOR") found in lipids and in alcohols and carbohydrates, hydroxyl (-OH) groups are
present (Silva et al., 2018). Certain biosorbents possess functional groups, such as imidazole,
amino, sulfonyl, sulphate, phenolic, thioether, and amide groups, which improve the adsorption
procedure. Calculation using Equation 1 is carried out to find the percentage removal of metal
during the biosorption process

%Removal of Cr(VI) = Sinitial=Cfinat ) Eq. No. 1

Cinitial

The biosorption capacity and equilibrium time of the adsorption process were calculated using
the following formulas:



(CD'CE) V
Q = =

m

Eq. No. 2

Where

-Cy: Final concentration of Cr(VI) in solution (mg/L)

-Ci: Initial concentration of Cr(VI) in solution (mg/L)

-Co: Initial concentration of Cr(VI) in solution (mg/L)

-Ce: Concentration of Cr(VI) in solution at equilibrium (mg/L)

-V: Volume of the solution (L)

-m: Mass of biomass (g)

-Q: Metal uptake or adsorption capacity (mg/g)

(Singh, Itankar and Patil, 2021).

The quantity of heavy metal ions that a biosorbent can adsorb or absorb (biosorbents) is
directly proportional to its sorption capability (Zyoud et al., 2019).

3. Mechanisms of biosorption

The ability of biological materials to accumulate heavy metals from wastewater through either
spontaneous or metabolically mediated uptake pathways (using ATP) is known as biosorption
and bioaccumulation, respectively ( Ahmed et al., 2022; Chugh et al., 2022).The biosorption
mechanism is also influenced by nature and number of binding/reactive sites, accessibility and
availability of binding sites, and affinity between the binding site of the biosorbent and the
concerned metal ion are just a few of the properties that affect the mechanism of biosorption
(Abdel -Aty et al., 2013). It can also occur as a result of certain types of inactive, non-living
microbial biomass that can bind and concentrate heavy metals even from very dilute aqueous
solutions.

Biosorption mechanism includes ion exchange, physical adsorption, chemical adsorption,
precipitation, complexation, and electrostatic interactions. (Javanbakht, Alavi and Zilouei,
2014; Ismail and Moustafa, 2016; Nadeem et al, 2016). In certain situations, many
mechanisms may occur together in a multistage procedure (Noli et al., 2019). Biosorption
efficiency and specificity depend on the type of biosorbent used and the physicochemical
characteristics of the pollutants. Furthermore, because of the biological complexity of
biosorbents, the majority of these processes are not completely known in detail.
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Fig. 1. Mechanism of biosorption

Biosorption can be (i) metabolism-dependent or (ii) non-metabolism-dependent according to
biomass activity. The non-metabolic mechanism is depicted in Figure 1, which covers the
mechanisms involved, such as intracellular accumulation, precipitation, ion exchange, and
cell-surface adsorption/precipitation (Manmohan & Gajalakshmi, 2024).

Precipitation and passage across the cell membrane are mechanisms of biosorption or
bioaccumulation that are dependent on cell metabolism, whereas physical adsorption, ion
exchange, precipitation, and complexity are mechanisms of biosorption that are independent
of cell metabolism (Avanzi et al., 2014; Rene et al., 2017). Regarding the second criterion,
transport across the cell membrane results in extracellular accumulation and precipitation,
while ion exchange, complexation, physical adsorption, and precipitation result in cell surface
sorption and precipitation. Precipitation, on the other hand, results in intracellular accumulation
(Ali Redha, 2020). Another fundamental mechanism observed in the majority of biosorption
types is simple diffusion. The coordination, stereochemical, and chemical properties of the
target metal, which comprise the ionic radii, ion mass, and oxidation state of the metal ion, as
well as other variables, may play a role in regulating these processes (Kanamarlapudi,
Chintalpudi, and Muddada, 2018).

Other parameters, such as concentration, time, pH, temperature, and the complex matrix of the
solution containing the metal ion, depend on the operational conditions in which biosorption
occurs. (Kanamarlapudi, Chintalpudi and Muddada, 2018).

3.1. Physical adsorption



Physical adsorption is one of the major biosorption processes, in which adsorbates adsorb onto
biosorbent surfaces by weak interactions such as van der Waals forces, dipole-dipole
interaction, London dispersion forces, and hydrogen bonding. Such forces tend to interact with
functional groups on the biosorbent surface, such as those found on cell walls. Physical
adsorption can lead to the development of several layers of adsorbates on the biosorbent.
Several factors impact the efficiency of physical adsorption, including biosorbent surface area,
temperature, pressure, pore structure, nature of the adsorbate and adsorbent, and, in some
instances, solution pH (Bashir et al., 2019). Research on Pb biosorption using hami melon peels
revealed that physical adsorption was highest in alkaline media. This resulted from the
engagement of hydroxyl (-OH) and carboxyl (-COOH) groups on the surface of the biomass,
which enhanced metal binding (Bashir et al., 2019). Similarly, pinewood biomass-derived
biochars through hydrothermal liquefaction have been used to remove Pb from water, affirming
physical adsorption's efficiency in metal recovery processes. These results confirm the
relevance of surface functional groups as well as environmental parameters to guarantee
optimal physical adsorption to treat wastewater."

3.2. Ion exchange

Ion exchange is an immobile solid material-bound, stoichiometric, and reversible chemical
process whereby ions of an electrolyte solution or molten salt are exchanged with ions of like
charge bound to an immobile, solid material, to achieve overall electroneutrality. (Gadd, 2009).
The most widely used ion-exchange materials are synthetic

Organic resins, inorganic matrices, and advanced hybrid materials are the most widely used
synthetic ion-exchange materials.

For instance, Ganoderma lucidum fungus has been found to biosorb copper ions through ion
exchange, as enabled by polysaccharide-rich cell walls of microorganisms such as bacteria and
fungi, which allow counter-ion exchange (Ali Redha, 2020).

Studies have proven that heavy metal ions like cadmium(II), copper(Il), and zinc(II) are bound
to brown algae, with release of lighter ions such as sodium, potassium, magnesium, and
calcium (Abdi & Kazemi, 2015; Volesky & Holan, 1995). Similarly, rice straw, which is a non-
metabolism-dependent biosorbent, removes cadmium (II) ions effectively by ion exchange of
lighter ions. Solution pH plays an extremely crucial role in ion-exchange mechanisms. For
instance, ion exchange is responsible for lead ion biosorption by hami melon peels at pH levels
that are relatively low, while electrostatic interaction is responsible at pH levels that are
relatively high.

Between lead ions and such functional groups as hydroxylate and carboxylate on biomass
becomes increasingly prevalent (Bashir et al., 2019).

Furthermore, cyanobacteria like Spirulina were able to biosorb copper(Il), chromium(III), and
cadmium(II) ions by means of ion exchange, facilitated by functional groups like carboxyl,
phosphate, and hydroxyl groups on their surface (Kanamarlapudi et al., 2018). Such findings
exhibit the diversity of ion exchange in biosorption processes in different biosorbents and
environmental circumstances.

3.3. Complexation



Complexation is the process of electrostatic attraction or covalent bonding of metal ions and
organic molecules that serve as ligands capable of donating electrons (Weng et al., 2022).
Chelation is an advanced form of complexation where an organic ligand forms covalent
bonding with the metal ion from multiple directions and results in more stable resultant
complex. Hard and Soft Acids and Bases (HSAB) theory predicts that elements be classified
as hard or soft bases (mainly non-metals) and as hard or soft acids (mainly metals) is the
premise upon which metal ions and organic ligands' affinity depends, is the most crucial
parameter in complexation. For being of soft acidic type, lead selectively covalent binds to
biosorbent organic ligands that bear soft base like nitrogen or sulphur. Moreover, borderline-
classified ions like manganese, zinc, cadmium, as well as copper, also possess high affinity to
form compound's complex with organic compounds that bear nitrogen or sulphur (Afolabi &
Musonge, 2025). But availability and accessibility of that binding site that contains base's
donor atom matter to influence complexation. One can confirm that biosorption mechanism is
done by complexation or not by performing desorption experiments using energy dispersive
X-ray analysis (EDX), transmission electron microscopy (TEM), and scanning electron
microscopy (SEM) (Bhat et al., 2024).

Wastewater can be treated effectively using complexation to strip metal ions like Pb, Cu, Zn,
and Cr. In undertaking this, it is important to take into consideration parameters like ligands,
cost, toxicity, and possible environmental implications (Chai, et al., 2021).

3.4. Precipitation

One of the metabolism-dependent processes in biosorption is precipitation, which is the
formation of insoluble forms of metals as precipitates; however, precipitation can also lead to
metabolism-independent biosorption.
Precipitation results from the active defence process of microorganisms in metabolism-
dependent biosorption upon exposure to toxic metal ions (Ali Redha, 2020). Precipitation is
triggered by chemical interaction of metal ions with the functional groups of the cell wall of
the biosorbent in metabolism-independent biosorption (Kanamarlapudi, Chintalpudi and
Muddada, 2018). Such processes might involve oxidation-reduction reactions.

3.5. Transport across the cell membrane

Microorganisms are the only organisms that often exhibit the mechanism of heavy metal ion
transport across cell membranes (Patil et al., 2024; Shafiq & Rehman,2024). This mechanism
consists of two stages, the first is called independent binding metabolism and involves the
binding of metal ions to binding sites on the microorganism's cell wall (Spain et al., 2021). The
second stage is metabolism-dependent intracellular uptake and involves the transport of metal
ions into the cell through the cell membrane (Ali Redha, 2020). This technique is analogous to
how necessary metal ions are absorbed by cells. Heavy metal ions with charges and ionic radii
comparable to those of essential metal ions have been reported to deceive cellular metal
transport mechanisms.

4. Types of Biosorbents

4.1 Bacteria



Gram-positive and gram-negative bacteria are categorized according to cell wall thickness and
composition, which is the primary distinction between the two types of bacteria(Zyoud et al.,
2019). Thicker peptidoglycan layers linked by amino acid bridges were observed on the cell
walls of gram-positive bacteria. Gram-positive bacteria contain polyalcohols by name, teichoic
and teichuronic acids, which are connected by phosphodiester bonds and adhere to the
peptidoglycan of the cell wall; therefore, they have a greater capacity to eliminate heavy metal
cations because of their substantial electronegative charge density (Tsezos, Remoundaki and
Hatzikioseyian, no date; Abdi and Kazemi, 2015)

Heavy metal biosorption by bacteria is commonly facilitated by functional groups, including
oxygen, nitrogen, sulphur, or phosphorus. Using FTIR spectrum data, a finding on the
biosorption of lead(Il) ions by Aeromonas hydrophila revealed that the hydroxyl, sulphate,
thiol, thioether, phosphate, phosphonate, carboxyl, and amine groups of the biosorbent surface
exhibit higher removal capacity of lead(II) ions from aqueous medium. In a fairly recent study,
the removal of Uranium (VI) biosorption onto Bacillus amyloliquefaciens was investigated.
FTIR and XPS of Bacillus amyloliquefaciens suggest the presence of functional groups like -
COOH, -OH, and -NH; (Liu et al., 2019).

4.2 Algae

Micro-algae and macro-algae are two main phyla of algae. Macro-algae are
multicellular marine algae (macroscopic) that can grow in saltwater and freshwaters (Pinto et
al., 2023). Macro-algae can be differentiated into three divisions based on pigmentation:
Chlorophyta (green macroalgae), Rhodophyta (red macroalgae), and Phaeophyta/Ochrophyta
(brown macroalgae) (Handayani et al., 2023).

Micro-algae, on the other hand, are photosynthetic one-celled plants that can grow in
surface water (Goswami et al., 2022). Micro-algae can be distinguished based on their
morphology, color, and orientation of photosynthetic membranes (Fernandez et al., 2018).
Blue-green algae (cyanobacteria), green algae, diatoms, and golden algae further classify the
microalgae (Rajkumar & Yaakob, 2013).

Algae hold high biosorption capacity thanks to cell wall structure that is made up of
chitin, polysaccharides, proteins, and lipids (Ahmed et al., 2022). All these components have
important functional groups that support biosorption. Algae contain oxygen, nitrogen,
phosphorus, and sulphur as the major functional groups that support heavy metal adsorption
on the algae surface.

When comparing different macroalgae, it was observed that brown algae exhibited high
metal binding. Cellulose, alginic acid, polymers(such as mannuronic and guluronic acids)
complexed with light metals (such as calcium, potassium, and sodium), and polysaccharides
(such as fucoidan) make up the majority of cell walls. Fucoidan and alginate both can bind
metals by ion exchange; alginate's primary binding sites for biosorption are carboxyl groups,
followed by sulphate groups (Hamza et al., 2022). Proteins, which comprise functional groups
such as amino, carboxyl, hydroxyl, and sulphate that aid in metal biosorption, constitute the
majority of the material in the cell walls of green algae. However, despite having mostly
cellulose in their cell walls, red algae can biosorb substances because they contain sulphated
polysaccharides derived from galactans. The cell wall composition of microalgae varies
slightly from that of other algae because they are primarily composed of polysaccharides,



lipids, and proteins. These substances include carboxyl, hydroxyl, phosphate, and sulphate
groups that give the surface of algae an overall negative net charge, which facilitates the
biosorption of metal cations by counter-ion interactions.

Of all the different types of algae and biosorbents, brown algae have shown the highest capacity
for biosorption of various metal ions. It’s surface area to volume ratio is large.It’s readily
available, produces little sludge. Furthermore, biosorbed metals may be recovered and
regenerated by brown algae. All things considered, algae are the most extensively used
biosorbents due to their accessibility, comparatively low processing costs, and exceptional
efficiency.

It was studied that the Blue-green algae, Spherical Anabaena, were efficient at extracting Pb
(IT) and Cd (II) from aqueous solutions (Ali Redha, 2020). The results show that the algae can
remove lead (II) and cadmium (II) with relatively high biosorption capacities, with estimated
levels of 111.1 mg/g and 121.95 mg/g, respectively (Abdel-Aty et al., 2013). The FTIR analysis
of functional groups on algal surfaces indicates that amino, carboxyl, hydroxyl, and carbonyl
groups bio-sequester metal ions (Abdel-Aty et al., 2013).

4.3 Fungi

Fungi possess a unique high cell wall composition, which in turn shows the existence of a
variety of functional groups that may affect the elimination of metals. Mannoproteins (
glycoproteins), B-Glucans( polysaccharide), chitin (Polymer), cellulose, chitosan, a-glucans,
galactomannans, galactosaminogalactan and pigments are components of fungal cell walls.
Fungal biomass is more easily generated on a large scale using straightforward fermentation
procedures at a relatively low cost, in contrast to yeast, algae, and plants. FTIR study on Mucor
rouxii fungi suggests that the presence of amine and phosphate groups contributed most to the
biosorption of Pb, Cd, Ni, and Zn ion (Ali Redha, 2020).

Using Aspergillus niger fungi, (isolated from electroplating industry effluent), 97% removal of
Pb(II) ions was observed (Dhaka et al., 2025). Myconanotechnology” is a promising field that
employs fungal biomass for the making of nanoparticles. Fungal species,
including Penicillium, Aspergillus, Alternaria, Chrysosporium, Cladosporium, Candida,
Cryptococcus, Neurospora, Fusarium, Trichoderma, Pleurotus, Agaricus, Coriolus,
Ganoderma, Verticillium, etc., are broadly employed in nanoparticle synthesis (Meera et al.,
2025).

4.4 Plant

Plants have been employed as biosorbents for the reuse and recycling of waste products from
the food and agricultural sectors. Consequently, plant materials are inexpensive. The cell walls
of plants contain a cellulosic matrix, which is known to have carboxylic or phenolic functional
groups or cellulose-related components, such as lignin and hemicellulose, which are primarily
responsible for the potential of plant biosorbents. The binding of a metal ion with a functional
group causes biosorption, which removes the metal ions from the medium based on cation
exchange between functional groups and metal ions (Abdel -Aty ef al., 2013). It was discovered
that the carboxyl, carbonyl, and hydroxyl groups promoted metal binding when Aloe vera waste
was employed as a biosorbent to remove uranium and cadmium from water (Kapashi et al.,
2019). Mango seed cover with kernels and jamun seed cover with kernels removed lead to
94.85% and 92.78%, respectively (Pal et al., 2022).
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4.5 Yeast

Yeast is a topic of interest in biosorption, as several studies have been successfully conducted
(Danouche et al., 2021). The most significant commercial yeasts belong to the Saccharomyces
genus, specifically baker's and brewer's yeasts. With basic growing media, they are non-
pathogenic, simple to cultivate, and provide high biomass production. A literature review
reveals that yeast biomass may be efficiently consumed as a biosorption agent for metals such
as Au, Ag, Cd, Cu, Ni, Pb, Cr, and radioactive metals such as Th and U (Danouche et al.,
2021). Yeasts such as Candida, Saccharomyces, and Pichia are effective biosorbents for metals
like Pb, U, Hg, and Cd (Jamir et al.,2024). Most yeasts can be selective to one metal or can
sorb a broad category of metals (Ahmed et al., 2022).

4.6. Moss and Lichen:

Some lichen species, along with mosses, have been widely investigated for their ability to
adsorb heavy metals from the environment (A et al., 2022). Lichens, which are composite
plants made up of fungi and algae, are thought to be an indication of the quality of the
environment because of their capacity to absorb and hold onto a wide range of pollutants,
including heavy metals and radionuclides (Boruah et al., 2024). The batch approach was used
to assess the capacity of lichen biomass (Xanthoparmelia conspersa) to remove mercury(Il)
ions from aqueous solutions via biosorption. kinetic studies were carried out, which revealed
that it followed second-order kinetics, whereas AG°, AH®, and AS° indicated that the process
was exothermic. Living lichens such as R. fraxinea accumulate metals across their surfaces
(Lestari et al., 2020). An investigation on seven different types of moss species growing in the
area of the Bory stobrawskie forest (southern Poland) was carried out in the laboratory. The
study revealed that the sorption of Zinc (Zn) and Cadmium (Cd) depends on moss species, and
the percentage sorption increases in the following order: P commune < L.
glaucum < Eurhynchium praelongum < T. tamtariscifolium < D. scoparium < P.
schreberi < Sphagnum sp. (Klos et al., 2014)

Comparison of the biosorption efficiency of different biosorbents shows that fungi and plants
exhibit the highest efficiency, followed by bacteria and algae (Figure 2).
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Figure 2: Biosorbent type and its biosorption efficiency %

A trend line graph (Figure 3) indicates how biosorption efficiency has increased over the
years for different biosorbents. The data implies that fungi and plants have exhibited the most
consistent increase in efficiency, followed by bacteria and algae.
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Figure 3: Trend line graph indicating biosorption efficiency

The scatter plot (Figure 4) shows the relationship between pH levels and biosorption
efficiency for different biosorbents. It highlights that fungi and plants exhibit higher
biosorption efficiency across a wide pH range, while bacteria and algae show optimal
performance in neutral to slightly acidic conditions
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Figure 4: Influence of pH on biosorption efficiency

Pie chart (figure 5) demonstrates the impact of different biosorbents to overall biosorption.
Fungi (30%) and plants (28%) give the most, while bacteria (22%) and algae (20%) play
slightly smaller roles.
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Figure 5: Impact of different biosorbents on overall biosorption

Using a predictive regression model, the biosorption efficiency of fungi—the best-performing
biosorbent—shows a rising tendency over time. Future developments in biosorption methods
may further increase efficiency, as seen by the black regression line, which shows a
consistent improvement (figure 6).
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Figure 6: Regression model to predict biosorption efficiency trends

5. Biosorption of selected heavy metals

Heavy metals, including lead (Pb), chromium (Cr)(VI), arsenic (As), cadmium (Cd), and
mercury (Hg), are non-threshold poisons that may cause harm even at low doses (Chen et al.,
2023; Campbell, 2023). These are toxic heavy metals (THMs) and are the most hazardous
heavy metals. Owing to several industrial operations, as well as some natural operations, the
environment is heavily contaminated. Elevated levels of heavy metals in many natural systems,
including the atmosphere, pedosphere, hydrosphere, and biosphere, have recently emerged as
a worldwide concern. THMs severely damage a wide range of plants, animals, and microbes
(Gupta et al., 2022). Human exposure to THMs can cause serious health issues, impairments,
and in rare circumstances, death in certain extremities (Gupta, 2024). Heavy metals must be
eliminated from wastewater and effluents before their release into the environment, owing to
their toxicity, and to ensure that they meet safe discharge regulations (Liberti, 2024). The
discharge limit set for the above-listed metals: Lead (Pb) = 0.01mg/L, Chromium (Cr) = 0.05
mg/L, Arsenic (As) =0.01 mg/L, Cadmium (Cd)=0.003mg/L, and Mercury (Hg)=0.006mg/L
(BIS, 2012).

5.1. Biosorption of Arsenic (As)

Arsenic is a naturally occurring element that often exists in two forms: organic and inorganic.
More harmful inorganic arsenic compounds are frequently present in food and water, and can
seriously harm human health (Rahaman et al., 2021).
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Table 1. Biosorption capacity of different biosorbents for the removal of Arsenic ions from aqueous media

. % Adsorption
Adsorbent Biosorbent Tempf rature pH Metal OR Adsorption Reference(s)
type °O) ion .
capacity (mg/g)
Bacillus thuringiensis
strain WS3, . As (1IT) 95%, Altowayti et al.,
Pseudomonas Bacteria 37 7.0 As (V) 98% (2020)
stutzeri strain WS9 °
Bacillus sp. Bacteria As(V) T7% ,
KL1,KL4, KL6 40 5.0 91.66%, Taran et al., (2019)
88%
Bosea sp. AS-1 Bacteria 35 7.0 As (Il 99% Luetal., (2018)
Chlorella vulgaris Algae 2 6.0 As (Il 93% Alharbi et al., (2023)
Senthilkumar et al.,
Ulva reticulata Algae - 4.0 As(V) 59.5% (2020)
Ghayedi, Borazjani
Chlorella vulgaris Algae 50 6.0 As(V) 13 mg/g and Jafari, (2019)
Indigenous fungi Fungi 2742 6.0 As 70 mg/g Jaiswal et al., (2018)
Aspergillus spp .
APR-1 and APR-2 Fungi 40 2.0 As (Il 53.94%,  lanvieral, (2020)
Talaromyces sp. Fungi 30 6.0 (As) 70 % Nam et al., 2019)
Mucor circinelloides Fungi 25 6.0 (As) 29.4mg/g  Lietal, (2021)
. Sandhi, Landberg
0, s
Warnstorfia fluitans moss 20 6.5 (As) 90% and Greger, (2018)
Saccharomyces Yeast 35 50 As()  62.90mglg YU al(2012)
cerevisiae
Saccharomyces As (1IT) 66.2%, Hadiani, Khosravi-
cerevisiae Yeast 25 7.0 As (V) 15.8% Darani and
070 Rahimifard, (2019)
Psychrotolerant . .
Yersinia sp. Strain Yeast 30 7.0 As (II) 96v, ~‘vadiHarisetal,
(2018)
Altowayti et al.,
Bacillus thuringiensis Yeast 37 7.0 As (1I) 10.94 mg/g  (2019)
Cassia fistula pods Plant 30 6.0 As (Il 91% Giri et al., (2022)
Leaves of Tectona .
Lagerstroemia Plant 25 6.0 As(V) 94.6% Verma & Singh,

speciosa (2019)
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Industries such as mining, smelting, and pesticide production can release arsenic into the
environment. (Bundschuh et al., 2021; Khatun and Intekhab, Ashad, 2022) Which in turn
contaminates nearby water bodies, enters the food chain, and causes toxicity in plants and
animals (Verma and Prakash, 2022). Table 1 depicts the potential of the different biosorbents.
It causes toxicity through several methods. Oxidative stress causes the body to produce reactive
oxygen species (ROS), damaging lipids, proteins, and DNA.(Hu et al., 2020; Kumar, 2021).
Arsenic exposure causes enzyme inhibition, resulting in cellular malfunction and death by
inhibiting the vital enzymes required for DNA repair and cellular respiration. (Mukherjee and
Valsala Gopalakrishnan, 2023). Prolonged exposure to arsenic leads to epigenetic
modifications changing gene expression without affecting the DNA sequence, which may
result in cancer. (Mukherjee and Valsala Gopalakrishnan, 2023). Acute exposure leads to
gastrointestinal distress, hypertension, skin diseases, and headaches.

As has been extracted from aqueous solutions using blue pine, walnut shells, and chickpea test
(Bibi et al., 2017). Blue-green algae and the cyanobacterium Spirulina sp. may be used to
extract arsenic from polluted waterways. At pH 6, the highest sorption capacities of both dead
and live spirulina were 402 and 525 mg/g, respectively.

5.2. Biosorption of Cadmium (Cd)

Cadmium (Cd) is hazardous to both the environment and human beings. Cadmium, present in
the atmosphere, water, and food, when exposed to low concentrations of Cd, causes serious
health problems.

Cd exposure through water, air, and soil results in Cd toxicity, which can affect the respiratory
system, bones, kidneys, and reproduction, and, in some cases, can lead to cancer in humans.
Low concentrations of Cd are highly toxic and carcinogenic to plants. (Hayat et al., 2018).
Cadmium can bind to ligands such as cysteine, glutamate, histidine, and aspartate in the human
body, which can result in iron deficiency (Burnase, Jaiswal and Barapatre, 2022). Cd can induce
hepatotoxicity when it binds to cysteine-rich proteins such as metallothionein in the liver.
Mining, alloys, batteries, paint pigments, smelting, electroplating, and fertilizer sectors are
sources of Cd. The biosorption capacities of several biosorbents investigated for the removal
of Cd ions are compared in Table 2.
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Table 2. Biosorption capacity of different biosorbents for the removal of Cadmium ions from aqueous
media

Biosorbent  Temperature % Adsorption OR
Adsorbent po pH Adsorption Reference(s)
type O :
capacity (mg/g)
Bacillus subtilis Bacteria 30 4.0 83.5% Devatha and S, (2020)
Eseudomonas Bacteria 32.7 6.01 90% Rahman ef al., (2022)
uorescens
Bacillus subtilis Bacteria 30 4.0 83.5% Devatha and S, (2020)
Pseudomonas Bacteria 32.7 6.01 90% Rahman ef al., (2022)
fluorescens
Halomonas BVR 1 Bacteria - 8.0 12.023 mg/g  Manasi et al., (2014)
Chlorella sp. Algae - gg_ 59.67% Matyas et al., (2018)
Ulva lactuca sp. Algae 25 5.0 43.12 mg/g Ghoneim et al., (2014)
Caulerpa fastigiata  Algae 25 5.5 92.01% Sarada et al., (2014)
Sargassum Jayakumar et al.,
polycystum Algae 25 4.65 86.20 mg/g (2022)
Phlebia brevispora ~ Fungi 25 7.0 91.6% Sharma et al., (2020)
Fusarium solani Fungi 28+ 1 10.0 92.4% Kumar et al., (2019)
Phanerochacte Fungi ; 4.15 60% Rudakiya ef al., (2018)
chrysosporium
Saccharomyces Yeast
cerevisiae + Alg 25 6.0 83% Rivas et al., (2019)
beads
Saccharomyces Yeast ; 6.0 90% Arora, (2019)
cerevisiae
Xanthate-modified  Yeast
baker’s yeast 46 8.0 239.80 mg/g  Song et al., (2019)
Hovenia acerba Plant 25+2 3.0 56.99% Pyrzynska, (2019)
.. Plant Mukherjee et al.,
Murraya koengii 25 7.0 22.29 mg/g (2020)
Poplar sawdust Plant - 5.0 49.32 mg/g Cheng et al.,(2021)
Corn stalk Plant - 7.0 40 mg/g Chen et al., (2020)
Moringa oleifera  Plant 20+ 1 3.0 97% Aziz et al., (2016)
(Moringa) seeds

5.3. Biosorption of Chromium (Cr)

According to Chen et al. (2024), chromium (Cr) is a heavy metal that is toxic, carcinogenic,
mutagenic, and teratogenic. Hexavalent and trivalent versions are the most common (Itankar
& Patil, 2021). The hexavalent form of Cr(VI), which is roughly 500-1000 times more
dangerous than the trivalent form, is a major contaminant in both surface water and
groundwater due to its high mobility and solubility in aqueous environments ( Itankar & Patil,
2022). It can damage the kidneys, liver, and stomach in addition to causing allergic reactions,

respiratory problems, and compromised immune systems.



Table 3: Biosorption capacity of different biosorbents for the removal of Chromium ions from aqueous

media
. % Adsorption
Adsorbent Biosorbent Toemperature pH Metal OR Adsorption Reference(s)
type °O) ion capaci y
pacity (mg/g)
dcah:glig;cs‘i’scus Bacteria 50 70 Cr(VD)  88.89% fze(l)’?gl)’dez etal,
Klebsiella sp Bacteria 30 9.0 Cr (VD 95% Hossan et al., (2020)
Bacillus : 0 Ramachandran et al.,
amyloliquefaciens Bacteria 37 6.0 Cr (VD 79.90% (2022)
Escherichia coli ~ Bacteria 37 - Cr (1IT) 91.29%, Wang et al., (2021)
Rhizobium Bacteria 28=+1 - gi ESII))’ 76 % (Szr(l)r;;/)a sRavietal,
L . Cr(IID), 0 .
Spirulina platensis Algae 60 1.0 Cr (V1) 82.5% Nithya et al., (2019)
Durvillaca Algae 45 20 Cr (VD) 66.6% él(fg’)ma‘da“ etat,
iﬁiﬁfﬂiﬁ“&? Algae 5-35 20 Cr (VI 100% gzﬁ?;;lvar etal,
Sargassum o
filipendula Algae 60 3.5 Cr (IIT) 67.5% da Costa et al., (2022)
Green microalgae Algae 80 3.0 Cr (VI 99.75% gg}l‘zgnath‘ etal,
Aspergillus niger Fungi 40 3.0 Cr(VI) 99y, ~ Chatterjeeeral,
(2020)
. . Espinoza-Sanchez et
0
Rhizopus sp. Fungi 30 2.0 Cr (VD 95% al., (2019)
Aspergillus flavus . (5.0— o Kumar & Dwivedi,
CR500 Fungi 2040 9.0) Cr (V]) 89.1% (2019)
Aspergillus niger Fungal 25 3.0 Cr (VD 90% Kanamarlapudi,
Biomass Chintalpudi and
Muddada, (2018)
Penicillium Fungal 25 5.0 Cr (VD) 80% Sheikhi & Rezaei,
chrysogenum Biomass (2021)
Penicillium sp. Fungal 30 4.0 Cr (IID) 75% Sheikhi & Rezaei,
Biomass (2021)
Cladonia Lichen 25 2.0 Cr (VD 92% Pakade, Tavengwa
rangiferina and Madikizela,
(2019)
Sphagnum Moss 20 5.0 Cr (IID 75% Pakade, Tavengwa
squarrosum and Madikizela,
(2019)
Moss (Sphagnum Moss 25 4.0 Cr (VD 85.5% Kabdasl & Tiinay,
spp-) (2023)
Lichen (Cladonia Lichen 28 6.0 Cr (IID 88.7% Kabdasl & Tiinay,
spp-) (2023)
o
Saccha.romyces Dead yeast 25 4.0 Cr (V] 85.4% Saini ef al., (2023)
cerevisiae cells
Candida utilis Live yeast 30 5.5 Cr (IID 92.3% Saini et al., (2023)
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Sacch.aromyces Yeast cells 25 2.0 Cr (V] 83.5% Acharyya, Das &
cerevisiae Thaker, (2023)
Saccharomyces  Immobilized 30 4.0 Cr (IID) 78.2% Arrisujaya et al
cerevisiae yeast (2023) .’
Kluyveromyces  Yeast 25 3.0 Cr (VD 88.0% Arrisujaya ef al
marxianus biomass (2023) v
Avocado seed Plant 25 2.0 Cr (V]) 98.5 Sen, (2023)

0,
Prosopis 0 Fernandez et al.,
spicegera Plant - 2.0 Cr (V) 97.69 % (2018)
i:;%i%sl?l?n Plant 50 70 Cr (VI 99.68%  Husien et al., (2019)

The primary industrial sources of chromium include foundries for iron and steel, electroplating,
metallurgy, metal finishing, welding of alloys/steel, ceramic manufacturing tanneries, textiles,
leather tanning, and inorganic chemical facilities (Nilisha Itankar & Yogesh Patil, 2022).
Before releasing the effluent into the environment, the industry must eliminate all traces of
chromium.

Experimental studies were carried out to demonstrate the ability of various biomasses to
eliminate chromium from aqueous media, and the results are shown in Table 3, which contrasts
the biosorption capacity of each biosorbent.

5.4. Biosorption of Lead (Pb)

Lead(Pb) is emitted into the atmosphere by burning fossil fuels, lead compounds, automobile
emissions, and companies that use lead (Violante ef al., 2010). It usually combines with other
elements to generate lead compounds. Lead sulphate, lead carbonates, and lead oxide are the
products of the reaction of lead with air and water. Although lead is prevalent, human activity
has been identified as the primary reason for rising lead levels in the environment (Hakeem,
2015).

The estimated lead(Il) ion concentration released in the environment from the battery sector is
5-66 mg/L, the mining industry is 0.02-2.5 mg/L, and the oil industry is 125-150 mg/L (Tasar
et al., 2014). 173.8 Mt of Pb was released into the atmosphere between 1930 and 2010, with
the majority coming from the manufacturing (26%), consumption (20%), and waste
management and recycling (48%) phases. PbSO4, PbO, Pb, and PbS were the primary species
released, accounting for 61.2% of the total emissions (Hettiarachchi et al., 2024).

Animals and plants are considered to be fatally affected by lead. It results in several illnesses
in humans, including anaemia, brain damage, mental deficiency, renal damage,
encephalopathy, anorexia, cognitive impairment, behavioural problems, and vomiting (Singh
et al., 2023). Pb may bioaccumulate in bones over more than 20 years and alter the cellular
membrane permeability of organs and haemoglobin production in people when it binds to those

18



Table 4. Biosorption capacity of different biosorbents for the removal of Lead ions from aqueous media

Biosorbent Temperature 7o Adsorption OR
Adsorbent type l()o ) pH Adsorption capacity Reference(s)
(mg/g)
Bacillus licheniformis Bacteria 30 6.0 98% Wen et al., (2018)
Pseudomonas Choinska-Pulit,
azotoformans Bacteria 30 6.0 88.58% Sobolczyk-Bednarek
and Laba, (2018)
Pannonibacter Bacteria Saravanan et al.,
phragmitetus 30 6.0 49.79 mg/g (2021)
Ralstonia Bacteria o Pugazhendhi et al.,
solanacearum 35 6.0 90% (2018)
g’t{‘:leg‘:ecuhure Algae 2542 6.0 95.43% Mousavi et al., (2019)
Sargassum muticum Algae 25 5.0 76 mg/g Hannachi & Hafidh,
(2020)
Algae Amro & Abhary,
Cladophora - 4.0 20.56 mg/g (2019)
Talaromyces islandicus T P81 30 5.0 90.06% Sharma et al., (2020)
Rhizopus arrhizus Fungi 25 4.0 103.70 mg/g Senol et al., (2021)
Filamentous fungus Fungi 28 5.0 53.7% Wang et al., (2019)
f}}l‘lj“’y“sfggfliie Fungi ; 5.5 75% Zhao et al., (2020)
Sphagnum peat moss Moss 26+2 8.0 97.6% Lubbad & Al-Batta,
(2020)
. Mukherjee ef al.
- 0, s
Guar gum Plant Material 5.0 83% (2018)
Arundinaria alpina Plant Material 25 5.0 99.8% Asrat et al., (2021)
0 0
Rice husk, wheat Plant Material - 5.5 96'41920’933/'38 %, Amen et al., (2020)
straw, and corncob a0
Phytolacca americana Plant Material 25 6.0 93.29% Wang et al., (2018)
L.
Banana Peels Plant Material - 5.0 98.14 % Afolabi, Musonge &

Bakare, (2021)

enzymes (Singh et al., 2023). Pb (II) ions have a strong affinity for thio, oxo, and phosphate
groups, which are found in a variety of enzymes and macromolecules in living organisms
(Morozanu et al., 2017). Several experiments were carried out to assess the ability of various
biosorbents to remove lead (II) ions from aqueous environments; a selection of these
investigations, comparing the biosorption capacities of each, are shown in Table 4.

5.5. Biosorption of Mercury (Hg)

According to USEPA, Mercury is a ubiquitous contaminant, a global pollutant that is highly
toxic and is readily gathered in ecosystem (USEPA). It has been linked to public health
catastrophes in Iran and Japan (Minamata Bay). Exposure to mercury vapours is the primary
pathway affecting the human brain and lungs. Mercury poisoning primarily affects the nervous



system, kidneys, and immune system. It also endangers aquatic and wild species (Ahmed,
Zakiya and Fazio, 2022).

It's salts, such as mercurous and mercuric salts, attack the gut lining and kidney. According to
WHO, the main sources of exposure include degassing of mercury from dental amalgam,
consumption of contaminated fish, and other seafood. It enters by multiple pathways, both
natural and anthropogenic, and contaminates the ecosystem air, water, and soil. Natural forest
fires, weathering of mercuriferous regions, degassing from surface water and the Earth’s crust
through volcanic eruptions, and biogenic emissions are all sources of naturally occurring
mercury emissions into the environment (Gworek, Dmuchowski and Baczewska-Dabrowska,
2020). Mercury pollution also originates from human activities, such as agriculture, battery
manufacturing, burning fossil fuels, mining and metallurgical processes, paint and chloralkali

Table 5. Biosorption capacity of different biosorbents for the removal of Mercury ions from aqueous media

Biosorbent Temperature 7o Adsorption OR
Adsorbent po pH Adsorption capacity Reference(s)
type O y
(mg/g)

Pseudomonas putida Bacteria 30 8.0 99.72% Zhao et al., (2021)
Klebsiella sp. NT8 . 2597.62 , .
and Bacillus sp. NT10 Bacteria 25 6.0 2617.23 mg/g Xia et al., (2020)
Live or dead 0
biomass of A. Bacteria 35 7.0 2750//0’ 1(\;[811(19(; taetal,
marina SSS2 °

. Kumar, Singh, and

0 s )
Chlorella vulgaris Algae 35 6.0 95.5% Sikandar, (2020)
Ulva intestinalis, Ulva
lactuca, Fucus spiralis, 87.2 %, 94.0 %,
Fucus vesiculosus, Algae Room Temp. 8.5 88.0 %, 93.0 %,  Fabre ef al., (2020)
Gracilaria sp., Osmundea 86.0 %, 87.7 %
pinnatifida
Ulva lactuca Linnaeus Algae 22.2 4.0 96.1% + 0.7 Cetintas ef al., (2022)
Sargassum Room o Putri and Syafiqa,
crassifolium Algae Temp. 9.0 8% (2019)
F. velutipes Fungi Room Temp. 7.0 69.35% Lietal., (2018)
Saccharomyces Fungi 25 54 89% Hadiani et al.,(2018)
cerevisiae
R . Sanchez-Castellon et
- o
Penicillium sp. Fungi 60 4-5.0 99.6% al., (2022)
Saccharomyces Yeast 25 5.4 88.9% Hadiani et al.,(2018)
cerevisiae
Roasted Date Pits Plant material 25 6.0 95 % (Azl(;%h)outl etal,
Pine biochar Plant material 25 5.0 1641 mg/g Johs et al., 2019)
Coffee waste Plant material 33 700 97% Mora Alvarez et al.,
(2018)

Thymus schimperi Plant material 25 7.0 90% Geneti et al., (2022)

industries, and wood pulping. Other significant sources of mercury pollution include
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thermometers, electronic devices (LEDs, CFLs), wiring and control devices, the paper and pulp
industries, and oil refining (Kumar et al.,2020).

In a recent study on Lentinus edodes, U. lactuca, and Typha domingensis, the mercury removal
efficiency was found to be 100-337 mg/g (Rani, Srivastav and Kaushal, 2021). According to
research on biosorption, the hydrocolloid Gum Karaya had a maximum biosorption capacity
of 62.5 mg/g and suited the Langmuir isotherm (R? > 0.999)( Padil et al., 2021). Experimental
results showed that algal biomass (Cristoseira baccata) removed 178 mg/g of Hg*" at 4.5 pH
and 329 mg/g at 6 pH. In batch mode, it was found that lichen biomass (Xanthoparmelia
conspersa) removed 82.8 mg/L of Hg?" ions. In laboratory settings, Pseudomonas aeruginosa
was found to exhibit a Hg?" bioremediation capability of 62% (Tanwer et al., 2022).
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Figure 7: Heavy metals adsorption by different biosorbents

Figure 7 shows the heat map that summarizes the function of different biosorbents towards
different metals, displaying the percentage adsorption capacity. It demonstrates the
biosorption efficiency of different biosorbents for several heavy metals. The darker shades
suggest higher efficiency, with fungi consistently achieving the best across all metals,
followed by plants, bacteria, and algae.

6. Factors affecting biosorption capacity

Numerous crucial operational and physicochemical factors regulate biosorption, such as pH,
contact time, initial metal ion concentration, temperature, and biomass quantity. As covered
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below (Table 6), these have an impact on how metal ions and biosorbent functional groups
interact.

Table 6. Factors affecting biosorption

Optimal Range /

Observation Reference(s)

Parameters Effect on Biosorption

Regulates metal ion speciation

and  charge on  biosorbent Optimal range: 4-7;  Gadd (2009),

pH surfaces. Protonation of binding Precipitation at Priya et al. (2022),
sites at low pH decreases higher pH Bilal et al.,2018
biosorption

Affects biosorption kinetics and

thermodynamics. Exothermic 20-35°C stable for A'h Redha (2020),
processes show decreased Bilal et al., (2018)
removal at higher temperatures

Temperature
most biosorbents

Establishes the time required for

equilibrium to be achieved. 60-120 minutes;not Nemes & Bulgariu
Greater contact enhances uptake  significantly altered  (2016)

up to the saturation point after equilibrium

Contact Time

Increases the number of binding

. ) . A i 1., (2014
Biomass Dose  sites present. Too high a dose 0.5-6.0 g/L vanzi et al., (2014),

) . Ali Redha (2020)
causes site overlap or aggregation
Initial Metal Determines saturation level and Al-Azzawi et al.,
Concentration  helps assess biosorbent capacity 5-200 mg/L (2013)

Surface area, Functional groups

present on biomass, particle size, Modified biomass Kumar et al., (2020),
porous nature, agitation, and pre- increases biosorption Agoun & Avci (2024)
treatment affect efficiency

Other Factors

6.1. Other factors

Surface properties including surface functional groups, surface area, pore size distribution, and
particle size all play an important role in determining biosorption efficiency. Functional groups
involving carboxyl, hydroxyl, amino and sulphuryl groups have been found to be active in
metal ion binding as evidenced using FTIR analysis in Chlorella vulgaris biomass for mercury
removal. Increased surface areas and optimal pore sizes enhance metal ion capture, while
smaller sizes improve the ratio of surface area to volume, further boosting sorption. Powdered
forms excelled over dried leaves in extracting Zn, Pb and Cu ions in a study involving lettuce
leaves, indicating that particle size is crucial. The presence of more than one metal ion causes
competition for binding sites and hence a reduction in sorption, depending on the affinity of
each ion to the biosorbent. Agitation enhances interaction between metal and biomass but be
carefully controlled to avoid fracturing particles. Pre-treatment processes involving washing,
modification by chemicals (acid/base/surfactant treatment), and physical treatment (drying and
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grinding) change surface properties and improve biosorption capacity. Chemically altered
biosorbents have been found to exhibit significantly improved performance; for example,
grafted copolymer-treated orange peel exhibited 4.2 to 16.5 higher biosorption capacity for
Pb?*, Cd** and Ni** ions as compared to untreated material, demonstrating strongly the efficacy
of modifying surfaces to improve metal capture orange peel.

7. Desorption

Metals are precious, and desorbing agents help in the removal of biosorbed species (metal ions)
from the biosorbent surfaces. The recovered metal species can be reused in the industry, and
biosorbents can be reprocessed (Bayuo et al., 2024; Raji et al., 2023; Patil, 2021).

Desorption is the step adopted by most researchers after biosorption. Desorption can be
performed by removing the biosorbed metal ions utilizing a desorbing agent, which enables the
reuse of the exhausted biosorbent (Bauyo et al., 2024; Calero et al., 2013). However, challenges
related to the loss of biosorption efficiency after regeneration have not been thoroughly studied.

The following formula is used to compute the proportion of desorbed species:
%Desorption = (q desorbed/q adsorbed) * 100
Where:

e ( desorbed = amount of substance desorbed (released) from the material (in appropriate
units such as moles, grams, etc)

e ( adsorbed = the amount of substance originally adsorbed onto the material

A high desorption percentage indicates a higher degree of biosorbent regeneration for future
usage; this should be considered when selecting a biosorbent to increase sustainability.

Desorbing agents are typically categorized into three groups: chelating agents (EDTA,
ethylenediaminetetraacetic acid), alkalis (sodium hydroxide, sodium hydrogen carbonate,
potassium hydroxide, and hydrochloric acid), and acids ( hydrochloric acid, sulphuric acid,
nitric acid, and acetic acid) (Calero ef al., 2013). In terms of speed and desorption %, acidic
desorbing agents have been reported to be more effective than basic and neutral agents (Calero
et al., 2013). As indicated in Table 7, Desorption efficiencies of heavy metals varied from
50.29% to as high as 99.99%, with EDTA and HCI proving to be most efficient. Reusability
was in a range from 3 to 10 cycles, reflecting a high regeneration potential in various
biosorbents such as cryogels and modified silicas. High desorption (>85%) was often found
for Pb(II) as well as Cd(II) with potential recovery by low-concentration acids
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Table 7. Desorption Efficiency and Reuse Potential of Different Adsorbents in Heavy Metal Ion
Recovery

Heavy Type of Desorbing Desorption Reuse Reference(s)

Metal absorbent agent (%) cycle

Cr(V]), Groundnut husk HCI and 76.1, 5 Bayuo, Abukari and

Pb(1l) H>SO4 82.1 Pelig-Ba, (2020)

Pb(II) Magnetic 1.00 mol/L 90.21 6 Zou et al.,(2019)
bentonite (M-B) NaNOs

Cu(1D), A-MIL-121 80 °C in water 90.0 10 Jietal, (2021)

Cdn,

Pb(II),

Ni(II)

Zn (II) Mango leaf 0.1mol/L 94.7, 3 Kaushal, (2023)
powder HCI, 89.5

0.1mol/L
HNOs3

Cd (I Soil + humic 0.05M EDTA 50.29 3 Zheng et al., (2022)
acid

Cu(1D) Poly(vinyl 0.1 M Na, 99.99 5 Zhong et al., (2021)
imidazole) EDTA and 1
cryogel M HCI

Hg(II) Sulfhydryl- 1 M HCI 89.0 5 Zhu et al., (2021)
modified SiO;
cryogel

Cddn MgO-SiO 0.05 M HCl 84.5, 89.9 - Ciesielczyk,

Pb(II) Bartczak and

Jesionowski, (2016)

Pb(II) Brown 0.2 M HCI 88.0 3 Tabaraki, Nateghi
macroalga and Ahmady-
Sargassum Asbchin, (2014)
ilicifolium

Cd (I1) Araucaria 2 N HCI 84.45 4 Sarada et al., (2017)
heterophylla

Cd (II) Mealworm frass 0.02 M HCl 90.0 5 Kim et al., (2025)
(MF).

Analysis of Biosorption

The biosorption performance of plants, fungi, algae, and bacteria for the removal of various
heavy metals, such as As, Cd, Cr, Pb, and Hg, was studied. Biosorption exhibits good
adsorption effectiveness, is economically viable, and is simple to use and operate (Torres,
2020). Waste, such as agricultural residues, agro-industrial wastes, dairy waste, industrial
waste,

and leftover plant materials (such as peels, seeds, skin, shells, and stones) can be converted
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into biomass (Taneja et al., 2023). These wastes, which are viewed as trash, can be acquired
without charge. In developing nations with limited technological advancements, biosorption
techniques are highly beneficial. Another benefit of plant-based biosorbents is that they reduce
the biological and/or chemical sludge (Hassan et al., 2020). In addition to providing the
possibility of metal recovery for various industrial applications, several types of biosorbents
have the ability to both desorb and regenerate, making their use compatible with sustainable
development. Much research has looked at the removal of one or two metals through
biosorption; however, the results of these studies may not be applicable in real-world situations
because contaminated water might contain a wide range of heavy metals. Additionally, organic
pollutants may be present in water, which could alter the composition of metal ions and the
biosorption process. One recommended step in biosorption research is to look at how lab results
are applied to real contaminated water samples (Nathan et al., 2022).

For instance, it would be difficult to maximize the water pH in practical settings, despite it
being the most important component. The biosorption capabilities of biosorbents measured for
particular pH values in laboratory settings might not be accurate in real life because there are
many other environmental factors that affect pH (Fertu et al., 2022). The intricacy and matrix
structures of polluted water were typically not reflected in the tested water samples.

Furthermore, the removal of heavy metals is the primary goal of the majority of biosorption
research; nevertheless, the removal of hazardous organic pollutants has not received much
attention. Actually, a lot of studies focus on removing heavy metals in their cationic state rather
than their anionic form (e.g., CrO4>).
Early biosorbent saturation may be one of the drawbacks of biosorption processes; therefore,
biosorbents need to be changed often. The recovered metal must be carefully disposed of or
used when the saturated biosorbent is desorbed from the biosorbed metal.

The efficiency of the recycled or repurposed biosorbent and the desorption procedure are also
negotiable. According to the Scopus database, 16,202 publications on the subject of
"biosorption" were released between 1970 and December 4, 2024. Unfortunately, companies
have not yet brought biosorbents to the market (Gadd, 2009). Industries often choose the use
of oxidation-reduction methods, reverse osmosis, ion exchange, and chemical precipitation
(Wang et al., 2021).

Chemical precipitation is preferred because it is highly effective in removing a variety of heavy
metals, even if it is not selective (Pohl, 2020). However, this process generates a large amount
of solid sludge, which is detrimental to the environment (Fei & Hu, 2023). Another challenge
for the industrial use of biosorption is that existing methods, such as ion exchange and
precipitation, are well-established in their processes and have proven to be suitable on a large
scale. Industries may find it unsafe and unfeasible to adopt new procedures in place of
established ones.

The fundamentals of the main factors affecting biosorption efficacy have been established,
including the effects of different experimental settings, batch and continuous process
operations, and the manner in which different kinds of biosorbents absorb metals. The next
stage is to apply this economical and effective technique in a business context. Researchers
should carry out further research for this reason.
It is more difficult to scale up the continuous biosorption process to pilot or industrial scale due
to the behavior of biosorbents in real industrial effluents.
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Conclusion and future perspectives

A low-cost, sludge-free, and environmentally friendly substitute for traditional heavy metal
cleanup techniques is biosorption. It works by complexation, ion exchange, and physical
adsorption; biosorbents with strong metal-binding capabilities include fungi and brown algae.
However, despite extensive lab-scale research that frequently utilizes synthesis solutions,
biosorption still faces critical challenges in real-world applications, such as variability in
wastewater composition, biosorbent stability, and scalability.

To advance biosorption from experimental to practical application, the following research
gaps and future directions must be addressed:

o Real wastewater validation: Evaluating the performance of biosorbents using real
industrial effluents to reflect complex matrices.

o Pilot-scale and commercial trials: Demonstrating scalability, economic viability, and
process reliability in real settings.

o Long-term regeneration and reuse: Evaluating the durability and reusability of
biosorbents over multiple adsorption—desorption cycles.

o Hybrid technology development: Integrating biosorption with chemical, membrane,
or advanced oxidation processes for enhanced performance.

o Nanomaterial integration: Improving surface characteristics, selectivity, and
adsorption kinetics through nanoparticle functionalization.

e Multi-metal and competitive ion studies: Identifying biosorption behaviour in
complex, multi-contaminant systems.

o Standardization and regulatory frameworks: Establishing guidelines and protocols
to support biosorption as a dependable and acceptable technology.

In conclusion, biosorption has great potential as an eco-friendly and effective approach for
heavy metal removal. Bridging the gap between laboratory research and field implementation
requires interdisciplinary collaboration among researchers, industries, and policymakers to
translate biosorption technology into sustainable environmental practice.
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