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Abstract 

 
This study focuses on assessing the toxicity levels in fruits and vegetables based on the presence of 
polycyclic aromatic hydrocarbons (PAHs), particularly in regions affected by industrial and vehicular 
pollution where the particulate matter deposits on the plant surfaces. Traditional methods, including 
Gas Chromatography/Mass Spectrometry (GC/MS) and High-Performance Liquid Chromatography 
(HPLC), are used to measure PAH levels in fruits and vegetables which are found to be valuable but 
expensive and time-consuming. Although, the detection of toxicity relies on either expert knowledge 
or experimental analysis when compared with the limitations set by EFSA (European Food Safety 
Authority). Therefore, in this study, artificial intelligence techniques have been employed to evaluate 
the toxicity levels based on 16 PAHs. The PAHs concentrations in fruits and vegetables were collected 
from different articles corresponding to safe and unsafe dataset, then validated through statistical 
analysis. The validated dataset is classified using different machine learning algorithms. Based on the 
output from neural network, the level of toxicity is also scaled and compared with the targeted outputs. 
The promising results of the classification of toxicity using artificial intelligence methods are 
substantiated by an experimental study and validated through statistical methods. From the results, it 
can be observed that the machine learning algorithm has given classification accuracy more than 90% 
along with their degree of harmfulness. This research holds implications for food safety and public 
health, offering a novel approach to the interdisciplinary understanding of climate change by addressing 
the impact of environmental contaminants on the edibility of fruits and vegetables.  
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1 Introduction 
In recent years, there has been a growing concern about the impact of polycyclic aromatic hydrocarbons 
(PAH) on both environmental and public health (Abdel-Shafy & Mansour, 2016). These contaminants, 
which are generated from various anthropogenic and natural sources, have been found to have adverse 
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effects on ecosystems and human well-being. Multiple studies have shown that exposure to polycyclic 
aromatic hydrocarbons can harm human health, especially for vulnerable populations such as children, older 
adults, and individuals with existing health problems (Mallah et al., 2022; Organization, 2021; Singh & 
Agarwal, 2018). From the literatures, it is observed that fruits and vegetables are consumed in different 
forms for their nutritional values but, the growth of these fruits and vegetables are contaminated through 
pollution in different forms which results in the adsorption of Polycyclic Aromatic Hydrocarbons (Camargo 
& Toledo, 2003). Recent studies have shown that PAH contamination has an impact on public health, and 
mostly observed in urban areas due to the emission of PAHs from automobiles and cooking oil fumes. In 
Brazil, a case study on the impact of PAH contamination was examined in street food vendors that resulted 
in potential health risks such as diabetes, oxidative stress, cardiovascular and pulmonary disease, respiratory 
diseases, skin allergies and cancer among individuals(Deligannu & Muniandy, 2024). A study on the 
potential health risk due to PAH exposure in industrial areas was conducted in India. Soil samples were 
collected and assessed from two cities. PAH sources were identified as traffic emissions, industrial 
emissions and coal combustion for domestic livelihood. The health risk assessment resulted in a high 
potential risk of cancer due to the consumption of contaminated vegetables from these areas(Sankar et al., 
2023). In China, a study conducted on a farmland indicated the presence of 16 PAHs in soil and crops with 
varying concentrations. It showed that leafy vegetable crops had higher PAH concentration in leaves 
compared to the roots and fruits whereas the fruit and vegetable crops showed higher PAH concentration in 
fruits than in roots or leaves(Cui et al., 2022). During the health risk assessment, it posed high carcinogenic 
risk in adult males and females based on the dietary intake.  
 
From these studies, it is evident that PAH’s analysis on consumables is necessary to be studied and detection 
of toxicity should be considered as an important measure to protect the environment. Contrarily, the toxicity 
of food products or consumables may be a potential threat to mankind putting individual lives at high health 
risk. This resulted us to initiate exploring and evaluating PAHs, as well as developing an intelligent system 
for detecting toxicity. PAHs are formed during the incomplete combustion of garbage, organic waste, 
sewage sludge, wood, gas etc. PAHs are composed of carbon and hydrogen atoms and contain two or more 
aromatic rings (Khalili et al., 2021a). The contamination of PAH is widespread in the environment both in 
terrestrial and aquatic organisms due to which the presence of PAH in food supply is considerably high(Paris 
et al., 2018).The contamination of PAH in agricultural and animal food products can occur during growth, 
transportation ( exhaust from combustion engines) , storage and also when the food is smoked, grilled, 
roasted, fried and cooked (Paris et al., 2018). While there are over 100 recognized PAHs, the United States 
Environmental Protection Agency (UPESA) has identified only 16 as the primary concern(Abou-Arab et 
al., 2014) because these PAHs are unsafe and can enter variety of life on earth through inhalation, ingestion, 
and even through skin contact (Omoyeni et al., n.d.). PAH contamination in raw food such as fruits and 
vegetables are through soil, water and air(Paris et al., 2018). In addition to this, the amount of PAH 
concentration depends on environmental PAH (urban areas have high amount of PAH), soil characteristics 
(weak soil needs to be strengthened using chemical fertilizers) and physiological properties e.g., the longer 
the growth period of the plant, higher the absorption of PAH contaminants(Khalili et al., 2021a). Fruits and 
vegetables can get contaminated with PAHs when air particulate matter settle on their surfaces. Plants near 
industries or roads tend to have more PAH deposits, including Benzo[a]pyrene, dibenz[a,h]anthracene, and 
chrysene, compared to plants in rural areas(Ashraf & Salam, 2012). In fruits and vegetables, low molecular 
weight (LMW) PAHs and high molecular weight (HMW) PAHs are adsorbed by the waxy surface, 
particularly on outer leaves and fruit peels(Camargo & Toledo, 2003). The concentration of PAHs tends 
to be higher on these exposed surfaces. Studies reveal variations in PAH concentrations among different 
parts of plants, with root vegetables potentially having higher levels than stem vegetables(Zhong & Wang, 
2002). Research in China identified factors affecting PAH levels in vegetables, including anthropogenic 
emissions, vegetable species, and wind direction(Jia et al., 2018). Common PAHs found in fruits and 
vegetables include fluorene, fluoranthene, pyrene, anthracene, phenanthrene, benzo(a)anthracene, and 
benzo(a)pyrene, with leafy and stem vegetables having higher concentrations(Zhong & Wang, 2002). 
Similarly, C. Choochuay  (Choochuay et al., 2023) have analyzed the toxicity and health risk assessment 
based on the PAH concentration in Thai and Myanmar rice. From this study, it is identified that the level of 
PAHs with its toxicity and health risk assessment. The findings can be summarized as follows: a) The level 
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of PAHs in Thailand varied from 0.09 - 37.15 ng.g-1 with an arithmetic mean of 18.22 + 11.76 ng.g-1, 
whereas that in Myanmar varied from 0.07 – 150.73 ng.g-1 with an arithmetic mean of 34.70 + 40.57 ng.g-

1.Due to increased food security concerns, numerous studies explore threats associated with consuming 
contaminated food(Abou-Arab et al., 2014). 
In a 2021 study conducted by Khalil F et al. in Iran, the analysis of PAHs in fruits and vegetables revealed 
high concentrations of acenaphthene (135.1 ± 7.1 µg/kg) and naphthalene (114.1 ± 5.0 µg/kg), while 
benzo(k)fluoranthene, benzo(a)pyrene, benzo(g,h,i)fluoranthene, Indeno(1,2,3-cd)pyrene, and 
benzo(g,h,i)perylene were not detected(Khalili et al., 2021a). Another study by Alice Paris et al. in 2018 
reported relatively low PAH levels ranging from 0.01 to 0.5 µg/kg in wet weight for fruits and 
vegetables(Paris et al., 2018). However, plants near roadways and urban areas can exceed the concentration 
of 5 µg/kg(Paris et al., 2018). 
The experiments conducted in Pakistan and Saudi Arabia in 2013 by Mohammad W. Ashraf, root vegetables 
like carrot and potato exhibited high PAH concentrations of 13 µg/kg and 11 µg/kg, respectively, while 
turnip had concentrations of 10.9 µg/kg and 9.26 µg/kg. The study also observed higher contamination in 
the peels than the cores of fruits and vegetables, with cabbage having the highest concentration among leafy 
vegetables (Ashraf et al., 2013), (Ashraf, n.d.; Ashraf & Salam, 2012). In India, a study by Bishnoi N et 
al. in 2006 identified Anthracene, Naphthalene, Fluorene, Pyrene, Phenanthrene, and Fluoranthene as 
predominant PAHs in vegetable and soil samples. The use of an Isocratic High-Performance Liquid 
Chromatography (HPLC) system with UV detection revealed carcinogenic compounds such as BAP and 
dibenz(a,h)anthracene, with LMW-PAHs more abundant than HMW-PAHs(Narsi.R.Bishnoi et al., 2006). 

A study in Jordan by Farh Al-Nasir in 2022 evaluated four vegetables, finding tomatoes with the 
highest concentration of 21.774 µg/kg and zucchini with the lowest concentration of 10.649 µg/kg(Al-Nasir 
et al., 2022a). In summary, the literature also emphasizes the use of various detection methods, including 
High-Performance Liquid Chromatography with fluorescence detection (HPLC-FLD) an excellent 
quantification and separation tool, Solid phase microextraction (SPME) a sensitive solvent-free sample 
preparation technology, Gas Chromatography with Mass Spectrometry (GC-MS) a method where two 
analytical tools combined to identify and measure the concentration of chemicals in food and environment, 
and Gas Chromatography with flame ionization detector (GC-FID) an analytical technique that is used to 
separate and analyse mixtures consisting of volatile compounds (Abou-Arab et al., 2014). 

Similar to these technologies, chemical analysis have also been done using various techniques such 
as saponification/ ultrasonication, clean-up using a silica solid phase extraction cartridge and GC-MS, 
liquid-liquid extraction with solvents like n-hexane to determine the elements of eight PAHs (BaA, BkF, 
BbF, DahA, BaP, BghiP, IP, Chry) in fruits and vegetables. The results show that the PAH concentration in 
fruits is 0.67µg/kg and in vegetables it is 0.82µg/kg (Lee et al., 2019). In Egypt(Abou-Arab et al., 2014), a 
study made on the level of PAH in vegetables and fruits such as potatoes, spinach, apple and guava using 
GC-MS, showed high level concentration in spinach (8.977µg/kg), potatoes (6.196µg/kg), apple 
(2.867µg/kg) and guava (2.334µg/kg). The researcher concluded with preventive measures such as thorough 
washing, boiling, and peeling of skin of fruits and vegetables is effective in reducing the amount of PAH 
consumption(Abou-Arab et al., 2014). Okaba, Fidelis A,2020, reported that vegetables grown in Nigerian 
traffic routes were tested for PAH concentration and evaluated using GC-MS and AAS (Atomic Absorption 
Spectrophotometer) which determined the presence of high PAH in vegetables(Okaba et al., 2020). 
Although vegetables were boiled, it did not show notable difference (p>0.05) in the PAH concentration 
between fresh and boiled vegetables. Boiling the vegetables only reduced the mean concentration of 
PAHs(Okaba et al., 2020). Another study determined the concentration of PAH by growing plants in 
contaminated and uncontaminated soil, the results showed elevated levels of PAH in vegetables and fruits 
grown in contaminated soil(Samsøe-Petersen et al., 2002a). In samples of tomatoes and okra, the Σ16 PAH 
concentration was in the range of 2.12±1.5 and. 99.88±29.18 respectively. Also, naphthalene exhibited high 
concentration of 60% in   vegetables (Omoyeni et al., n.d.) , (Tesi et al., 2021). The concentration of Σ16 
PAH in vegetables was in the range of 532 to 2261 in leafy vegetables of southern Nigeria (Tesi et al., 
2021). Ce-Hui Mo, 2009 reported that the determination of PAH and PAE (Phthalic Acid Esters) in 
vegetables in South China, indicated that PAE was present in higher amount than total PAH. However, due 
to the seasonal changes of PAHs in vapor and particulate matter in the region, more study is to be done to 
test variations of PAHs in various classes of vegetables (Mo et al., 2009). Therefore, from the review it can 
be observed that the analysis of PAH, and their effects on the health and environment are alarming. There 
are many studies on the identification of hazards and toxicity using machine learning algorithms; however, 
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there are no research on the statistical measures of the PAHs of the samples or measuring the PAH levels 
(Al-Nasir et al., 2022b; Khalili et al., 2021b; Samsøe-Petersen et al., 2002b). There are some studies such 
as, Vinay Kumar Pandey et.al, (2023) have used machine learning algorithms in the applications of food 
processing industry to identify the hazards associated with preservation of fruits and vegetables (Pandey et 
al., 2023a). PAHs are present in various fruits and vegetables due to factors like location, agricultural 
practices, and storage. This indicates the widespread presence of PAHs, necessitating monitoring. It is also 
observed from WHO, under the natural toxins in food (WHO/V. Gupta-Smith, 2023), stated that research 
experts review all the available study and suggested with an outcome based on level of health concern, 
which includes measures to prevent and control contamination. The authors have provided a detailed 
discussion on the future of machine learning algorithms in the food industry, the factors that affect the 
quality of food being preserved and assist in determining the optimal parameter combinations for deciding 
the maximum produce preservation. 

 
Rajesh Megalingam et al., employed different machine learning like k- cluster, computer vision and artificial 
intelligence techniques along with colour classification to determine rotten food (Megalingam et al., 2019). 
Therefore, it can be observed from the above literature that PAHs adhere to the surfaces of fruits and 
vegetables, particularly on outer leaves and peels. It highlights variations in concentration of PAH among 
different plant parts and factors influencing PAH levels.  While there are multiple methods to analyse the 
PAH values, artificial intelligence techniques have a potential to outreach in the field of toxicity detection. 
Analysing the PAH values using machine learning algorithm is one of the initial works to determine the 
toxicity of PAH in fruits and vegetables. It can also be perceived that Machine learning algorithms and 
various AI (Artificial Intelligent) techniques are used to examine the perishing nature of food, but there is 
no research conducted to measure the toxicity level nor predict the degree of harmfulness of PAH in fruits 
and vegetables. Hence, in this study an intelligent toxicity detection system has been developed to explore 
the impact of PAH toxicity in fruits and vegetables.  Machine learning algorithms have been used to analyze 
PAH contamination (Vasantha et al., 2023) in fruits and vegetables, providing an efficient and accurate 
monitoring method. Machine learning algorithms can handle complex data and detect even trace levels of 
PAHs in which traditional methods have some limitations. By training models on historical data, the 
intelligent model can be used to predict contamination trends and circumstances for proactive measures 
ahead. Incorporating recent data and case studies highlights the critical issue of PAH contamination. Thus, 
the proposed system on toxicity detection can be helpful to society, ensuring food safety and protecting 
public health. 

The proposed system depicted in Figure 1, utilizes machine learning algorithms to analyse the 
collected empirical data and provide results on toxicity. A detailed explanation on the implementation of 
the proposed system have been discussed in the subsequent sections of this article, where section 2.1 
describes data collection, section 2.2 elaborates on the statistical analysis of the collected data followed by 
section 2.3which provides the design and evaluation of the machine learning algorithms used in this research 
and the results of the proposed system are also discussed in section 2.4. 

 
Fig. 1 The Proposed PAH based Toxicity Detection Model 
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2 Methodology              
The main aim of this study is to employ artificial intelligence techniques for assessing the toxicity 

levels of fruits and vegetables based on 16 PAHs. A classification system is proposed, utilizing the machine 
learning algorithms such as Support Vector Machine (SVM), Ensemble, Regression, Discriminant, Tree, k-
Nearest Neighbour(k-NN), Naïve Bayes, Artificial Neural Network (ANN) to classify the toxicity in fruits 
and vegetables. Additionally, the research aims to compare the outcomes of these models.  

The classification model takes the concentration of 16 PAHs in fruits and vegetables as input and 
classifies the level of toxicity based on the machine learning algorithm. The subsequent section details the 
data collection process, it’s validation, design and evaluation using machine learning algorithms. 

 
2.1 PAH Data Collection, 
The data collected for this study is based on the experimental analysis from different research in the 

field of environmental pollution, environmental contamination and toxicology, polycyclic aromatic 
compounds, toxic chemical hazards in food and feed (Paris et al., 2018).From the literature, it can be 
summarized that PAH deposit is found more on the surface of the fruits, leaves and vegetables than the inner 
tissues. As stated in WHO, “natural toxins need to be kept as low as possible to protect people”. Therefore, 
in this study fruits and vegetables were considered for the toxicity detection using AI techniques. The PAHs 
corresponding to the proposed objectives were collected from 24 articles published in various platforms 
such as IEEE, Nature Environment and Pollution Technology, Elsevier, International Journal of Nutrition 
and Food sciences, MDPI, Journal of Environmental Science and Health and others. The total number of 
samples are 519. These samples represent different fruits and vegetables, and these are experimented from 
various parts of the world. Therefore, the data relating to concentration of PAH on leafy vegetables like 
spinach, jute and pumpkin leaves(Camargo & Toledo, 2003), (Khalili et al., 2021a), (Omoyeni et al., n.d.), 
(Tesi et al., 2021), (Mo et al., 2009), (Janska J et al., 2006), as well as small, medium and large sized 
vegetables(Khalili et al., 2021a), (Zhong & Wang, 2002), (Ashraf et al., 2013)(Ashraf, n.d.)(Al-Nasir et 
al., 2022a), (Lee et al., 2019),  (Tuteja et al., 2011)   and fruits (Camargo & Toledo, 2003), (Khalili et al., 
2021a), (Narsi.R.Bishnoi et al., 2006)(Janska J et al., 2006), other  leafy vegetables (romaine lettuce, 
Chinese cabbage and Shanghai green cabbage), stem vegetables (lettuce), seed and pod vegetables (broad 
bean), rhizome vegetables (daikon) were considered in this research. PAHs concentration of samples are 
collected from different experimental results reported in research articles are summarized in Table 1. 

 
 
 

Table 1 Different Fruits and Vegetables for PAH Analysis 

 
The PAHs of fruits and vegetables collected in this analysis include Acenaphthene (Ace), 
Acenaphthylene(Aceph),Anthracene(An), Benzo[b] fluoranthene  (BbF), 

Categories of fruits & 
vegetables  

No. of samples  
References 

Leafy vegetables 122 
(A. Ramezan et al., 2019), (Samsøe-Petersen et 
al., 2002a)(Al-Nasir et al., 2022c), (Lee et al., 
2019), (Mo et al., 2009), (Paris et al., 2018) 

Root vegetables 108 (A. Ramezan et al., 2019), (Ashraf & Salam, 
2012), (Ashraf et al., 2013) 

Stem vegetables 157 
(Al-Nasir et al., 2022c), (Ashraf, n.d.), (Ashraf 
& Salam, 2012), (Ashraf et al., 2013), (Janska 
J et al., 2006), (Jia et al., 2018) 

Fruits 132 
(A. Ramezan et al., 2019), (Samsøe-Petersen et 
al., 2002a), (Camargo & Toledo, 2003), (Paris 
et al., 2018) 

Total 519  
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Benzo[g,h,i]perylene(BgP),Benzo[k]fluoranthene(BkF),Chrysene(Chr),Dibenz[a,h]anthracene(DBA),Fluo
ranthene(Flu),Fluorene(Fl),Indeno[1,2,3-c,d] pyrene(Inp), Phenanthrene(Ph), Pyrene(Pyr) and Naphthalene 
(Nfl). Among these PAHs, Scientific Committee on Food, European Food Safety Authority (EFSA) which 
is an agency that provides scientific advice to risk managers and communicates the risk associated with food 
chain, considers BaP, DBahA, BaA, BbF, BjF, BkF, CHR, BghiP, and IP as potentially carcinogenic and 
genotoxic compounds (Paris et al., 2018). 

According to US Environmental protection agency (USEPA), fruits and vegetables have lesser 
concertation of PAH when compared to processed and unprocessed meat and meat products. The minimum 
and maximum recommended limit is 0.01 and 0.5 µg/kg (Paris et al., 2018). Based on the Maximum 
Contamination limit and expert knowledge, the 519 data have been sorted as safe and unsafe for 
consumption. The total number of data corresponding to safe and unsafe are 231 and 288 respectively. The 
segregated dataset is validated using ANOVA and the outcomes are reported in the subsequent section. 

 
2.2 Statistical Analysis on PAHs   
The examination of the 16 PAHs across the 519 samples reveals a non-linear pattern, making it 
challenging to determine any possible significance through visual inspection for categorizing the data 
as safe or unsafe. Consequently, adhering to established standards and limitations for specific PAHs, 
the data was categorized into safe and unsafe. This research endeavours to validate whether there is any 
significant difference between these segmented datasets(Frossard & Renaud, 2021), (Yang 
et al., 2020). In this study, the data collection techniques or experiments were not used to measure the 
PAHs. Instead, the toxicity of PAHs was assessed in fruits and vegetables using machine learning 
methods. The data were acquired from a variety of articles that use experimental measures. As a result, 
there is no possibility of missing data. In addition, the dataset has also been processed using Analysis 
of variance (ANNOVA) to access the level of significance. The preprocessing findings and variance 
analysis are reported in the subsequent sections. 

In the initial analysis, the 16 PAHs of both safe and unsafe datasets were subjected to ANOVA 
statistical analysis, but the results failed to meet the required hypothesis. The hypothesis for the validation 
process is as follows: 
 1. Null hypothesis is that there is no significant difference among the samples. 
 2. Whereas the alternate hypothesis is that at least a sample should differ significantly from other samples.  

The level of significance considered is 0.05. The null hypothesis will fail to accept if the probability 
value that is, p value is less than 0.05.  The results indicated a significant difference between the safe and 
unsafe datasets, contradicting the latter hypothesis. Further investigation revealed that the variance stemmed 
from the missing PAHs in some samples, as researchers focused on measuring the main PAHs to determine 
toxicity. To address this, various statistical measures were employed to ascertain if a regression line 
adequately fits the data. The validation in this analysis involved calculating the sum of square values of the 
PAHs. The results of each analysis are detailed below. 

From the ANOVA analysis, to determine the significance between safe and unsafe, the F value for 
the 519 samples resulted in 1.3067 and the p-value is 0.001 which evidently confirmed that there is a 
significant difference between the safe and unsafe data. Hence, the determination of toxicity in fruits and 
vegetables by expert knowledge and the standard limit has been validated by analysis of variance. The 
results of variance analysis done on the data set are consolidated in Table 2. 

 
Table 1 ANOVA Measures Corresponding to Safe and Unsafe Data 

 
Source of 

SS df MS F P-value F crit Variation 

Between Samples 1E+09 518 2E+06 1.3067 0.0012 1.1556 

Within Samples 9E+08 519 2E+06    

 
From the ANOVA analysis, to determine the significance between the samples of safe data, the F-value for 
231 samples resulted in 0.6794 and the p-value is 0.9982. As the level of significance is more than the 
threshold limit, samples of the safe category fail to differ significantly from each other. The test results are 
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presented in Table 3. 

Table 2 ANOVA Measures between Samples of Safe Data 
 

Source of Variation 
SS df MS F P-value F crit 

 

Between Samples 123.87 230 0.5386 0.6794 0.9983 1.2425 

Within    Samples 183.12 231 0.7927    

 
Similarly, from the ANOVA analysis, to determine the significance between the samples of unsafe data, the 
F-value for 288 samples resulted in 1.2918 and the p-value is 0.0151. As the p value is less than 0.05, 
samples of unsafe category differ significantly from each other.  Therefore, it can be concluded that there is 
a significant difference between the concentration of PAHs of the samples corresponding to unsafe 
categories as the samples are collected from fruits and vegetables grown in different regions across the globe 
which are subjected to different environmental conditions like temperature variations, air pollution, water 
and soil quality. 
. The test results are presented in Table 4.  
 

Table 4 ANOVA Measures between Samples of Unsafe Data 
 

Source of Variation SS df MS F P-value F crit 

Between Samples 1E+09 287 4E+06 1.2918 0.0151 1.2145 

Within Samples 9E+08 288 3E+06       
 
From the above statistical analysis, it has been observed that there is no significant difference between the 
samples for the safe data set whereas for the unsafe data set, there is a significant difference between the 
samples. This is due to a large variation between the PAH of fruits and vegetables, with scattered 
concentration of PAHs across the dataset. The minimum and maximum values of such PAHs are tabulated 
in Table 5. Therefore, the unsafe data has been analysed further to understand the distribution of PAHs in 
each sample of fruits and vegetables.  
 
 
 

Table 5 Concentration Range of PAHs 
PAHs Min 

Concentration 
Max 
Concentration 

Nap 0 115.50 
Pyr 0 1896.00 
Phe -0.03 209.00 
Chr 0 2361.00 
BaP 0 338.00 
BbF -0.05 2361.00 
BaA -0.25 176.00 

 
But the above scenario is not encountered in the samples related to safe data. Hence, the data has been 
analysed using sum of square method(Nataraj et al., 2022). The following equation (1) has been used for 
the computation of sum of square of each element in the dataset.  
 Sum of the squares = ∑ ∑ 𝑥𝑥(𝑖𝑖, 𝑗𝑗)216

𝑗𝑗
519
𝑖𝑖=1           (1)  

Where, i represents the row index ranging from 1 to 512 dataset. 
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              j represents the column index ranging from 1 to 16 PAHs 
             x(i,j) represents the value at the ith  row and jth column of the 512 x 16 dataset 
Then the sum of square values is analysed using analysis of variance and the F value has been calculated as 
0.9897 and the p-value as 0.05346. As the p value is greater than 0.05, samples fail to differ significantly 
from each other. The analysis of variance results is shown in Table 6. 
 

Table 6 ANOVA Measures between Samples corresponding to Sum of Square values of Unsafe. 
Source of 
Variation SS df MS F 

P-
value F crit 

Between 
samples 3E+13 287 9E+10 0.9898 0.5347 1.2145 

Within 
Samples 

3E+13 288 9E+10       

 
In this study, a stratified sampling technique has been employed, which ensures the samples were collected 
from different articles (representing various regions, and at different seasons, and multiple sources e.g., local 
markets, farms, urban, and rural areas). Therefore, this approach provides a significant representation of the 
dataset with high dimension, reducing the likelihood of sampling bias. In this analysis, cross-validation 
techniques have also been employed and used to train the machine learning models. The classification 
models use the feature normalization (bipolar normalization) and randomization techniques to prevent 
overfitting. Additionally, multiple methods have been used for the evaluation and presented the best 
performance metrics, such as sensitivity of each class, accuracy and misclassification rate. This 
comprehensive approach strengthens the validity of the findings and enhances the credibility of this 
research. The following section presents a detailed explanation on the modelling of the machine learning 
algorithms and the results. 
 

2.3 Design and evaluation of machine learning algorithms for the toxicity 
detection system    

Machine learning, a subset of Artificial Intelligence, leverages algorithms and data to emulate 
human brain functionality (Nataraj et al., 2021). Widely employed for pattern recognition, clustering, and 
signal processing, machine learning algorithms play a crucial role in prediction and clustering based on 
labelled or unlabelled datasets (Pandey et al., 2023b). In our analysis for toxicity detection, we have adopted 
simple and well-established learning algorithms to evaluate toxicity level of the fruits and vegetables. Based 
on expert knowledge and standard limits, the samples were categorized as safe and unsafe and validated 
using ANOVA analysis. 

In this research, k-fold cross-validation is utilized for data segmentation, linear and non-linear 
classifiers are employed for data evaluation. The classification algorithms are chosen due to their wide 
acceptance and convenience in modelling and evaluating PAH datasets. 
The designed models feature 16 inputs and 1 output, evaluated using different machine learning algorithms 
to classify toxicity in fruits and vegetables. The neural network model incorporates one hidden layer with 
15 hidden neurons, utilizing the Levenberg-Marquardt backpropagation algorithm for weight updating. 
Error calculation is performed using the Mean Square Error method. The k-NN and SVM models are trained 
with standard parameters. The value of K varies from 0 to 10 for k-NN models, while a standard size is 
chosen as the sigma value for SVM models. 

This comprehensive approach aims to utilize diverse machine learning techniques for robust 
toxicity detection, providing a foundation for effective analysis and decision-making in environmental 
assessments. 

 
 

   2.4 k-fold Cross-Validation 
To assess the classification model and evaluate system performance, the k-fold cross-validation 

method is employed in this research. This sampling process serves to generalize the model and aids in 
selecting the most appropriate one for the task at hand. Well, there are many segmentation techniques that 
are used in the classification such as Hold Out, leave-one-out cross-validation, and k-fold cross validation. 



 
 
             

 Prepublished 
copy This is a peer-reviewed prepublished version of the paper 

 
 

It is well known that the usual methods such as Hold Out methods were used for large data set and the leave-
one-out-cross-validation is very similar to k-fold cross validation and the random splitting such as 60-40, 
70-30, 80-20 methods may lead to overfitting. In this analysis k-fold cross validation has been chosen, since 
these methods are powerful and have an ability to generalise the machine learning model, even if the data 
set/ feature set have limited samples. Also, ‘k’ provides equally sized validation for multiple epochs.  
Specifically, a 5-fold cross-validation is utilized, denoted by k=5, where the dataset is divided into 5 non-
overlapping folds of equal size (Megalingam et al., 2019). 

This method is instrumental in training and testing the model across all dataset subsets, effectively 
reducing variance (Sonwani et al., 2022). The PAH dataset, with its raw 519 x 16 features, undergoes 
segmentation into training and testing datasets through the five-fold cross-validation. The training dataset 
comprises 80% of the total dataset (415 x 16 features), while the testing dataset holds the remaining 20% 
(104 x 16 features). This five-fold method results in the creation of five distinct training and testing sets. 
Figure 2 describes the entire process of 5-fold cross validation (A. Ramezan et al., 2019), (Wong & Yeh, 
2019). 

 

 
Fig. 2 Flowchart of K-Fold Cross Validation 

 
The segmented training sets are concurrently trained using various algorithms, including feed-forward 
backpropagation-based Neural Network, Support Vector Machine (SVM), Ensemble, Regression, 
Discriminant, Tree, k Nearest Neighbour (k-NN), and Naive Bayes. Subsequently, the trained models 
undergo testing using the remaining five distinct 20% testing datasets. 

The training and test results derived from the algorithms are discussed in detail in the subsequent 
section of this article, providing a comprehensive understanding of the model's performance across diverse 
evaluation scenarios. 

 

3 Results and Discussion 
The main aim of this research is to understand the levels of toxicity in fruits and vegetables using 

machine learning algorithm and analyse the levels of Polycyclic Aromatic Hydrocarbons (PAHs). The main 
objective revolves around the careful investigation of PAHs collected from various sources, validated by a 
comprehensive statistical analysis to correlate the data set, discerning between safe and unsafe data. 

Analysis of the collected PAHs led to the development of a robust two-class pattern recognition 
model. The dataset of 16 input features is used as input to various machine learning algorithms, each of 
which is characterized by different technical specifications. Given the nature of this binary classification 
problem, only one output neuron is considered. Based on the outcomes, the results highlight that the machine 
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learning method achieves over 85% accuracy in classifying two-class problems. The following section 
provides details on the results of various machine learning approaches and how they contribute to the 
detection of toxicity in fruits and vegetables. 

3.1 Classification of safe and unsafe data using MATLAB Classification Learner 
app 

In this study, the development of machine learning algorithms for toxicity analysis on fruits and vegetables 
was undertaken using MATLAB's Classification Learner application (Wang et al., 2022). While some 
algorithms were directly implemented through the Classification Learner, others required custom 
parameterization. In this research, various classification algorithms have been examined in an attempt to 
establish a reliable and efficient model for detecting toxicity in fruits and vegetables. Various classification 
algorithms have been used in this evaluation process to determine a reliable and efficient model for the 
detection of toxicity in fruits and vegetables. The classification models were designed with 16 inputs and 2 
outputs by applying respective approaches. The Discriminant Analysis classifier has been employed with 
linear (LDA- Linear discriminant analysis) and quadratic (QDA- quadratic discriminant analysis) 
discriminant approaches, which is ideal for the analysis of high dimensional data with limited significance 
in feature interactions (Le et al., 2020). This model is specifically suitable for toxicity classification based 
on its ability to handle various covariance structures, providing robust performance among various 
correlations of PAH.  Ensemble models were designed with bagged trees and RUSBoosted trees that 
enhance the model’s robustness and handles class imbalance(Ampomah et al., 2020). Ensemble model 
especially suited for the classification tasks involving toxicity detection and offering a balance between 
accuracy and computational efficiency. Whereas Kernel models were designed using SVM and logistic 
regression kernels. These models can capture complex patterns through non-linear 
transformations(Colkesen et al., 2016). An advantage of kernel model is its flexibility in handling non-linear 
relationships which makes its suitable for complex toxicity classification. 
  
Other models such as KNN models were designed using fine, medium and coarse KNN configurations(Ali 
et al., 2020). This model provides an effective and simple approach for the detection of toxicity. Naive 
Bayes models are effective for classification of toxicity due to their ability to handle continuous data. This 
model was designed using Gaussian and kernel distributions(Pérez et al., 2009). Artificial Neural networks 
models provide high accuracy and speed and are also powerful for complex classification tasks (Tritsaris et 
al., 2021). Neural networks were designed using wide, bilayered and trilayered configurations. SVM models 
were designed using various kernel functions such as Linear SVM, Quadratic SVM, Cubic SVM, Fine 
Gaussian SVM, Medium Gaussian SVM and Coarse Gaussian SVM(Nanda et al., 2018). These models are 
suitable for toxicity detection due to its robustness and efficiency in binary classification tasks. Decision 
trees are a popular choice as they provide interpretable models for toxicity classification. These models were 
designed using fine, medium and coarse configurations(Vargaftik et al., 2021). Regression models were 
designed using binary GLM logistic regression, efficient logistic regression and efficient linear SVM (Wu 
& Yang, n.d.)which provides accurate, efficient predictions and are suitable for binary classifications. The 
design specification of the classification models are given in Table 7. 
 
 
 
 
 

Table 7 Design specification of the classification models used in the toxicity detection system 
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The design performance of the classification models are represented in Table 8 and the results are compared. 
From the results, it can be observed that based on the design and performance metrics, Coarse KNN model 
have high total cost (validation) of 86, prediction speed of 9,000 and Training time is 1.2029 sec compared 
to the other models. Whereas Trilayered Neural Network appears to be the best model for toxicity 
classification in fruits and vegetables with a lowest total cost (validation) of 11, with a high prediction speed 
of 14,000 obs/sec and a reasonable training time of 6.8536 sec. It is now evident that neural network models 
are proven to be efficient in terms of design, learning nonlinear patterns and prediction. 
  

Table 8 The design performance of the classification models: 
Model Total Cost 

(Validation) 
Prediction Speed 

(obs/sec) 
Training Time 

(sec) 
Linear Discriminant 71 13,000 13.803 
Quadratic Discriminant 67 7,700 13.192 
Bagged Trees 25 3,100 4.7758 
RUSBoosted Trees 31 3,500 5.5973 
SVM Kernel 26 16,000 8.5592 
Logistic Regression Kernel 34 12,000 7.3023 
Fine KNN 20 9,000 2.6819 
Medium KNN 24 8,400 2.3804 
Coarse KNN 86 9,000 1.2029 
Gaussian Naive Bayes 56 7,200 8.8527 
Kernel Naive Bayes 54 3,500 8.0303 
Wide Neural Network 15 15,000 6.8221 
Bilayered Neural Network 12 21,000 6.5796 
Trilayered Neural Network 11 14,000 6.8536 
Linear SVM 44 5,000 2.3861 
Quadratic SVM 32 7,100 1.6382 
Cubic SVM 34 9,400 1.4974 
Fine Gaussian SVM 22 7,000 1.4187 
Medium Gaussian SVM 32 5,900 1.4945 
Coarse Gaussian SVM 64 5,000 1.4597 
Fine Tree 17 3,400 13.21 
Medium Tree 17 6,000 2.2963 
Coarse Tree 24 7,900 1.515 
Binary GLM Logistic 
Regression 

14 3,800 3.2137 

Efficient Logistic Regression 14 7,200 2.21 
Efficient Linear SVM 19 8,100 1.6321 

Min 11 3100 1.2029 
Max 86 21000 13.803 

 
As discussed, the proposed methodology allowed for a comprehensive evaluation of each classifier's 
performance in toxicity detection, with the chosen parameters tailored to the characteristics of the dataset 
and the objectives of the study. The results obtained from model 1 classification learner are shown in Table 
9, presenting the minimum, average, and maximum classification accuracy from 10 trials.  
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Table 9 The Classification Accuracy of Toxicity detection using model 1 without applying Principal 
Component Analysis (PCA). 

 
Classification 

models Classification Accuracy (10 trials) 

Model Type MIN (%) MAX (%) Average (%) 

Discriminant 86.3198 87.0906 86.7052 
Ensemble 81.1175 98.2659 92.3314 

Kernel 93.4489 94.9904 94.2197 

KNN 83.4297 97.1098 93.7058 
Naive Bayes 89.2100 89.5954 89.4027 

Neural Network 97.1098 97.8805 97.4952 
SVM 70.3276 97.1098 89.8844 

Tree 89.7881 91.1368 90.7996 
Regression 92.6782 97.8805 95.2794 

 
From the results, the Ensemble model has the highest accuracy of 98.2659% compared to other models. 
Ensemble models combine predictions from multiple machine learning models to enhance overall 
performance. On the other hand, the SVM model performed the least, achieving an accuracy of 70.3276%. 
This lower performance can be attributed to the challenge of finding the best hyperplane to separate different 
classes, especially in our dataset with non-linear characteristics and some PAH values being zero. The SVM 
model's sensitivity to parameters like the choice of kernel and regularization parameter (C) contributed to 
its specific challenges. Despite variations, all models maintained an average performance rating exceeding 
85%. This summary provides a straightforward overview of the results without using any feature 
optimization techniques, emphasizing the highest classification accuracy of the Ensemble model, and the 
challenges faced by the SVM model in the context of the dataset complexity.  

Hence, a classification model has also been developed by using PCA (Principal Component Analysis). 
The classification accuracy of the classification models is presented in Table 8. By applying PCA, the order 
of features is sorted according to the dominants of the feature, and no PAH values were neglected. Following 
this optimization, the ensemble model displayed performance ranging from a minimum of 55.4913% to a 
maximum of 97.88% over 10 different trials. overall, it has been observed that a performance rating of 86% 
has been achieved across all the trials.  
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Table 10 The Classification Accuracy of Toxicity Detection using model 1 with applying PCA. 
Classification 
models 

                        Classification Accuracy (10 
trials) 

Model Type MIN (%) MAX (%) Average (%) 

Discriminant 86.3198 87.0906 86.7052 
Ensemble 55.4913 97.8805 87.3732 
Kernel 89.5954 95.3757 93.1920 
KNN 72.4470 95.3757 91.2653 
Naive Bayes 89.2100 94.4123 92.4855 
Neural Network 94.7977 98.2659 96.1946 
SVM 70.3276 97.1098 92.4213 
Tree 89.7881 96.7245 94.0848 
Regression 92.6782 97.8805 95.0867 

 
From Table 10, it can also be observed that the traditional ANN model achieved a minimum 

classification accuracy of 92.42% and a maximum of 98.26%, this shows the feed forward back propagation 
using LM algorithm have proven the robustness in non-linear pattern recognition method. Similarly, the 
minimum accuracy of 72.447% and 95.37% of maximum accuracy are attained from the k-NN model. The 
SVM classifiers attained a minimum accuracy of 70.327%, and a maximum accuracy of 97.109%. The 
results indicate that the neural network models, trained using the Levenberg backpropagation algorithm, 
achieved a maximum accuracy of 98.26%. 

Additionally, the confusion matrices corresponding to the classifier models are illustrated in figures 
3 to 4 and elaborated in the following sections. Due to the extensive nature of discussing all observations 
from multiple classifiers, this article focuses on presenting the confusion matrix corresponding to the 
maximum classification accuracy achieved by the ANN model with PCA versus the minimum classification 
accuracy obtained by the SVM model without PCA. Figure 3 and Figure 4 presents the confusion matrix 
corresponding to the ANN model and SVM model respectively. 
 

 
Fig. 3 Confusion Matrix of SVM Model with Minimum Accuracy of Classifier 1 

 
Referring Figure 3 it can be observed that SVM Model (Without PCA) has the following sensitivity levels. 

1. True Positive Rate for Pattern 1: 97.4% 
2. True Positive Rate for Pattern 2: 48.6% 
3. False Positive Rate for Pattern 1: 2.6% 
4. False Positive Rate for Pattern 2: 51.4% 

The two-class SVM model can also be used to determine the effectiveness of classification model for each 
class based on its sensitivity. The sensitivity of the "Safe data" category is 97.4%, indicating that the related 
samples were correctly classified with few occurrences of misclassification. Similarly, the sensitivity of the 
"Unsafe data" category is 48.6%, indicating that the classification model has a lower sensitivity and a 
misclassification accuracy of 51.4%. As a result of this, the SVM model developed for the two-class problem 
is not appropriate for the generalization of the toxicity detection system. 
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Fig. 4 Confusion Matrix of ANN Model with Maximum Accuracy of Classifier 2 

 
Referring Figure 4 it can be observe that the ANN Model (With PCA): 
   - True Positive Rate for Pattern 1: 97.4% 
   - True Positive Rate for Pattern 2: 99.0% 
   - False Positive Rate for Pattern 1: 2.6% 
   - False Positive Rate for Pattern 2: 1.0% 

The two-class ANN model can also be used to determine the   effectiveness of classification model 
for each class based on its sensitivity. The sensitivity of the "Safe data" category is 97.4%, indicating that 
the related samples were correctly classified with few occurrences of misclassification. Similarly, the 
sensitivity of the "Unsafe data" category is 99.0%, indicating that with more accuracy, the related samples 
were correctly classified. As a result of this, the ANN model developed for the two-class problem is suitable 
for the generalization of the toxicity detection system. However, we have also considered the four-class 
problem for the generalization of the toxicity detection system. The classification model’s effectiveness for 
the multiclass based on its sensitivity have been discussed in the following section.    

Additionally, our observations reveal that the outputs from ANN models, using a binary activation 
function, ranged from -0.22699 to 2.8721 without rounding the net values or applying absolute values. Based 
on these findings, we further divided the dataset into four distinct sets corresponding to No Harm, Low 
Harm, Moderate Harm, and Severe Harm. These divided datasets were employed to model a multi-layer 
neural network for classifying different levels of toxicity. The split datasets were also validated using 
ANOVA for the F-value and P-value, both of which demonstrated significant differences between the four 
toxicity levels. 

 
3.2 Level of toxicity using multi-layer neural network 

The ANN model for the two-class problem achieved a maximum accuracy of 98.26%, with a 
misclassification of 6 samples. Regression analysis for the two-class problem was performed at various 
stages of training, validation, and testing, as illustrated in Figure 5(Faraw, 2015).  
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Fig. 5 Regression Analysis of two class Pattern Recognition using FFNN 

 
The R values during these stages were found to be 0.99951, 0.96653, and 0.85693, respectively. These R 
values, being close to 1, confirm the robustness of the results(Faraw, 2015)(Judd et al., 2017). Additionally, 
Figure 6 displays a scattered plot revealing that the output neural network effectively discriminates between 
0 and 1.  

 
Fig. 6 Scattered plot of two class patterns comparing the actual and target outputs. 

 
Leveraging this discrimination, we further divided the data into four sets and modelled a multi-layer NN for 
the four-class problem. The development of the multi-layer neural network model involved configuring 16 
input neurons, one hidden layer with 15 hidden neurons, and 2 output neurons to address the four different 
toxicity patterns. With 1000 epochs and a goal parameter set to 1e-10, the MLNN model demonstrated with 
a performance of 97% accuracy with mean square error (MSE) of 9.99e-11 and 3% misclassification rate. 
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Analysing the confusion matrix in Table 9 revealed accurate classification for all 222 "no harm" samples, 9 
out of 10 "low harm" samples, and 6 out of 7 "moderate harm" samples. Notably, one "low harm" sample 
was incorrectly categorized as "moderate harm," resulting in a 17% false negative rate. For the "severe 
harm" category, 272 out of 275 samples were correctly classified, with a 1% false positive rate indicating 
two samples falling into "no harm" and one into "low harm." This analysis justifies the MLNN model's 
effectiveness in determining the toxicity level of fruits and vegetables, even with a dataset of 513 samples 
(excluding 6 misclassified samples in the two-class problem). 

Table 11 Confusion Matrix for MLNN for the Four Class Problem 

    Actual output 
TP FP 

    
No 
Harm 

Low 
harm 

Moderate 
harm 

Severe 
harm 

T
ar

ge
t O

ut
pu

t 

No Harm 222 0 0 0 100% 0% 
 

Low harm 0 9 1 0 90% 10%  

Moderate 
harm 

0 0 6 0 100% 0%  

Severe harm 2 1 0 272 99% 1%  

False Negative 1% 10% 17% 0% 97% 3%  

 
From the confusion matrix represented in Table 11, it is observed that there are false negative samples and 
false positive samples. Therefore, the sensitivity and specificity of the multi-classification system has been 
analyzed using equation 2 and equation 3. 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃

     (2) 

𝑆𝑆𝑆𝑆𝑠𝑠𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑇𝑇𝑃𝑃

     (3) 

 
The Sensitivity and specificity results are tabulated in Table 12 and discussed below. 
 
 

Table 12 The Sensitivity and specificity results 

Class Sensitivity = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁

 Specificity = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃

 
No Harm 222

222 + 0 = 1.00 (100%) 
9 +  1 +  0 +  1 +  0 +  6 +  0 +  272
9 +  1 +  0 +  1 +  0 +  6 +  0 +  272 =  

289
289

= 1.00 (100%) 
Low Harm 9

9 + 1 = 0.90 (90%) 
222 +  0 +  0 +  1 +  0 +  6 +  0 +  272
222 +  0 +  0 +  1 +  0 +  6 +  0 +  272 =  

500
500

= 1.00 (100%) 
Moderate 
Harm 

6
6 + 0 = 1.00 (100%) 

222 +  0 +  0 +  0 +  0 +  1 +  0 +  1 +  272
222 +  0 +  0 +  0 +  0 +  1 +  0 +  1 +  272

=  
498
498 = 1.00 (100%) 

Severe Harm 272
272 + 2 = 0.99 (99.26%) 

222 +  0 +  0 +  0 +  9 +  1 +  0 +  6
222 +  0 +  0 +  0 +  9 +  1 +  0 +  6  =  

238
238

= 1.00 (100%) 
 
An understanding of the effectiveness of the classification model for every class can be established from 
the sensitivity and specificity results derived from the confusion matrix. The results are discussed as follows: 
Level of Sensitivity 

The ability of a model to distinguish examples of a specific class from all instances that genuinely 
belong to that class is measured by its sensitivity. Therefore, the classification model based on the multi-
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layer neural network model with maximum classification accuracy has been chosen for the sensitivity and 
specificity analysis. From this analysis, considering the "No Harm" and "Moderate harm" classes: 
Sensitivity stands at 100%, indicating that the model accurately detects every "No Harm" and "Moderate 
harm" occurrences. Considering the "Low Harm" category, the model's sensitivity is 90%, indicating that 
90% of "Low Harm" occurrences are accurately identified, with minimal instances of misclassification. 
Similarly, the sensitivity of the "Severe harm" class have 99.26%, indicated a high accuracy in identifying 
instances of "Severe harm", with a few misclassifications.  

Level of specificity relates to how effectively the model can identify and reject samples that do not 
fall within a specific class. In this classification problem, every class has a specificity value of 100%, which 
strongly suggests that samples that do not belong to each class were successfully rejected by the model. 
From this analysis, with high sensitivity and specificity values across all classes, the classification model 
appears to be effective at identifying samples of each class overall, according to the results of the sensitivity 
and specificity analysis. There is certainly potential for development, nevertheless, particularly in accurately 
recognizing cases of the "Low harm" class, where the sensitivity is marginally lower than that of other 
classes. Additional examination and enhancement of the model could potentially enhance its efficacy in 
terms of increased classification precision. 

Moreover, regression and scatter plots were used to assess the strength of the relationship between 
targeted outputs and the actual output. The regression plot and scatter plots are depicted in Figure 7 and 
Figure 8 for the four-class problem during training, validation, and testing stages, respectively (Faraw, 
2015). The R values are 0.9919, 0.989, and 0.91 and these results further validate the robustness of the 
classification model. For future studies, increasing the sample size could enhance system stability and 
facilitate the generalization of the model for global applicability. 

 
Fig. 7 Regression analysis of Multi Class Pattern Recognition using MLNN 
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Fig. 8 Scattered plot of four class patterns comparing the Actual and Target outputs 

 

4 Conclusion 
This study thoroughly investigated the presence of Polycyclic Aromatic Hydrocarbons (PAHs) in fruits and 
vegetables, employing robust statistical measures for a comprehensive understanding of the dataset. The 
detection of toxicity in these consumables were successfully achieved through the implementation of 
machine learning algorithms, including Artificial Neural Network (ANN), k-Nearest Neighbors (K-NN), 
and Support Vector Machine (SVM). Remarkably, the medium k-NN and Cubic-k-NN models 
demonstrated 100% accuracy, while Quadratic SVM, Cubic SVM, and cosine k-NN models exhibited an 
accuracy of 92.3%. Despite the promising results from all three models, ANN classifiers emerged as the 
most accurate in predictions, especially given the binary class nature of the problem and the minimal number 
of samples considered for the toxicity detection system. 

 
Furthermore, the outputs from the ANN models were investigated to determine the toxicity level 

of the samples, revealing highly promising results. To enhance the generalization of this toxicity 
classification system, future work will involve developing a real-time dataset with diverse feature extraction 
and optimization methods. The models trained using various machine learning algorithms showcased 
efficiency and provided substantial results, laying the groundwork for the development of a generalized 
prototype model. Standardizing the level of toxicity will enable a more precise representation of the severity 
of fruits and vegetables. The results of this study establish the viability of applying machine learning 
algorithms to predict toxicity in various products, paving the way for broader application in the future. Also, 
the performance of the models trained using different machine learning algorithms provides a solid 
foundation for the development of a standardized toxicity classification system. This standardization 
facilitates to provide precise decision of toxicity severity in products, thereby enabling informed decision-
making and regulatory intervention.  

Finally, the study has several limitations, such as those associated with the collected dataset. While 
the dataset used in this research presents samples from variety of regions, seasons, and sources, it may not 
accurately reflect the global diversity of fruits and vegetables. This constraint may affect the generalizability 
of our classification models. Expanding the methodology to include samples from different countries 
considering the climates, and farming practices might strengthen the analysis. In collaboration with research 
institutions and industries may allow a practical implementation of the research and it would also be 
beneficial to investigate longitudinal studies examining PAH contamination over multiple periods and 
seasons. This would provide a more complete understanding of temporal changes and their impact on 
contamination levels. Furthermore, establishing the study's limitations is crucial for interpreting the findings 
and directing future research. By addressing potential overfitting, the need for more diverse datasets, and 
other constraints, future work on this study will focus on expanding datasets, incorporating longitudinal 
data, leveraging advanced detection technologies and evaluation methods. This may enhance the reliability, 
stability of the classification models and applicability of PAH analysis in fruits and vegetables. 

In summary, our research not only highlights the current state of PAH contamination in fruits and 
vegetable but also opens direction for future research and technological applications that can significantly 
enhance food safety and public health. By addressing these challenges and suggesting concrete solutions, 
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contributing to safer and healthier food safety. 
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